
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

86

CAFSM: A Communicating Adaptive Finite State
Machine for Personalized Multimedia Streaming

ABSTRACT
In this paper we present the design of a multimedia presentation system

which permits the dynamic adaptation of the content. The

Communicating Adaptive Finite State Machine (CAFSM) presented in

this paper, has been used to describe the multimedia streaming and

presentation system proposed here. This system is driven by a set of

messages that are used for communication and co-ordination among the

various component machines which form the system

Keywords
Communicating, Adaptive, Finite State Machines, Multimedia

Presentation, e-Learning

1. INTRODUCTION AND MOTIVATION
The Dynamic Extended Finite State Machine (DEFSM) was proposed in

[9, 10] to model a multimedia synchronization and execution system.

This presentation control model allows dynamic transitions in order to

deal efficiently with user interactions thereby reducing the number of

transitions required. Our attempt to modify the DEFSM model in order

to present content that can be dynamically adapted, led to the

development of the Communicating Adaptive Finite State Machine

(CAFSM) presented here. The limitation of the DEFSM model is that

each synchronization point in the presentation layout is modeled as a

state in the DEFSM. Thus, the DEFSMs representing fast changing

multimedia presentations will have several states and transitions. The

number of states and transitions in our model are independent of the

number of synchronization points in the presentation, thereby reducing

the memory requirement of the system especially for fast changing

multimedia presentations. Synchronization points are identified as

points in the presentation layout where one or more media objects begin

or end their presentation.

Communicating Finite State Machines (CFSM) were introduced in [2].

In this model Finite State Machines were used to model processes and

queues to represent the communication channels between them.

However the communication performed by the CFSM was carried out

using a broadcast model while our proposed CAFSM model can also

multicast data. In our proposed system the various components

communicate with each other by exchanging a finite set of messages

which have been specified here. The motivation behind this work was

the need to develop a distributed multimedia presentation system that

would ensure the synchronized playout, while simultaneously

handling adaptation and user interactions efficiently. Other existing

synchronisation models and their features are discussed in [1, 15, 16].

2. APPLICATION OF THE PROPOSED

RESEARCH WORK
This paper presents the design of a presentation tool that can support

the dynamic adaptation of the contents in distributed multimedia

applications. In this subsection a domain specific application of the

adaptive multimedia presentation tool is presented.

Adaptive E-Learning System:
E-learning systems do exists and are successfully being utilized by

several organizations and universities but the challenge now is to

personalize the content for each user automatically. The motivation

behind personalising content was the need to provide a learning

environment to suit each person’s learning capabilities. Adaptive e-

Learning systems are currently being designed and several existing e-

learning tools are being incorporated with this feature [4, 13, 5]. But

most of them use predefined or adaptive tests [14] to decide the

learning path, making them static adaptation models. Understanding

learning models [3, 7] and incorporating them into e-learning systems

is the biggest challenge and several research works have been

focusing on this aspect. The integration of neuro-fuzzy logic [11] and

eye tracking approaches [8, 12], to decide on the learning paths are

currently being researched in order to dynamically adapt the content

without the learners knowledge. 'Advance Personalised Learning' is

also one of the 14 Grand Engineering Challenges for the 21st century

put forth by the National Academy of Engineers [17].

In case of complex multimedia presentations where the data reside in

distributed servers, the response time of the presentation tool is also

important during adaptation. Presentation tools need to be redesigned

to handle adaptation. An innovative model called Communicating

Adaptive Finite State Machines CAFSM, introduced in this paper in

the following section, is used to present the design of the proposed

presentation tool. Quality of Experience (QoE) parameters are also

being defined and used to evaluate the performance of Adaptive e-

learning Systems being designed. SCORM the standard used in the

existing e-learning systems has also been extended [18] to support

Adaptive e-learning.

Susan Elias
Dept. of Computer Science

Sri Venkateswara Coll of Engg
Sriperumbudur, Chennai

Tamil Nadu, India

Lisa Mathew
Dept. of Mathematics

Sri Venkateswara Coll of Engg
Sriperumbudur, Chennai

Tamil Nadu, India

 Easwarakumar.K.S
Dept. of Computer Science
College of Engineering

Anna University, Chennai
Tamil Nadu, India

Richard Chbeir
Dept. of Computer Science
LE2I - Bourgogne University

Dijon, France

Jasmin C.B
Dept. of Computer Science

Sri Venkateswara Coll of Engg
Sriperumbudur, Chennai

Tamil Nadu, India

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

87

3. COMMUNICATING ADAPTIVE FINITE STATE

MACHINES: CAFSM
This section presents the proposed synchronization mechanism for

distributed multimedia presentations. In order to model the synchroniser

we define a modification of the finite state machine and refer to it as

Communicating Adaptive Finite State Machine (CAFSM). The proposed

model uses three variations of the CAFSM referred to as

i) Presentation FSM (PFSM)

ii) Media Schedule Managers (MSM) and

iii) Layout generator (LG).

The PFSM represents the entire presentation at the server (PFSMServer)

and also at the client (PFSMClient). Media Schedule Managers (MSM)

are used to co-ordinate the transfer/streaming of discrete/continuous

media objects, and are present at both the server MSMserver and at the

client MSMclient. There is one MSM for each continuous media object

(such as video, audio and animation) present at the server as well as the

client and a single MSM each at the server and at the client to handle the

transfer of all discrete media objects (such as text, images). The

function of LG is, to extract from the temporal layout of the

presentation the list of media objects beginning and ending at each

synchronization point, and communicate them to the PFSMclient on

demand. The communication between the various components of the

synchronization model is depicted in Figure 1. To ensure

synchronisation during playout, messages are used to control the entire

data flow required for the presentation. The sequence of messages

passed between the finite state machines and their state changes, as well

as the details of the individual components of the proposed CAFSM

model will be explained in the following subsections.

3.1 Presentation Finite State Machines: PFSM
Formally, a presentation finite state machine PFSM can be defined as a

4-tuple (S, Σ, L, δ), where S is a finite set of states {S1, S2, S3}, ∑ is a

set of the form (m, M) where m indicates a message and M indicates the

CAFSM involved, L is a set of participating media objects, and δ : S ×

2Σ × L2→S × 2Σ × L2 is a transition function. The set of messages used

by all the CAFSMs is given in Table 1. The transitions are in the form

δ(Si, (mj, Mk), L', L") = (Sl, (mp, Mq), L
*, L**), where Si and Sl are states

of the PFSM under consideration, (mj, Mk) and (mp, Mq) are the

messages received and sent respectively, along with the source /

destination finite state machines, L' L", L* and L** are lists of

multimedia objects. Here, it is assumed that the PFSMs can

communicate with each other as well as with the local MSMs only. In

case there is a need to send or receive the same message m to / from a

list L of local MSMs, the notation MSM(L) is used in place of Mk or Mq.

All interactions from the user are treated as messages initiated by the

PFSMclient. The rest of the section deals with the behaviour of PFSMs

i.e. the transitions associated with each of the PFSMs.

Table 1: List of messages

S.No Message Title

1 CR Connection Request

2 CI Connection Indication

3 CC Connection Confirmation

4 BT Begin Transmission

5 BP Begin Presentation

6 FP Finished Presentation

7 FT Finished Transmission

8 OK OK

9 SL0 Send List L0

10 SL1 Send List L1

11 SL2 Send List L2

12 RL0 Receive List L0

13 RL1 Receive List L1

14 RL2 Receive List L2

15 NL New List

16 DR Disconnection Request

17 DI Disconnection Indication

18 DC Disconnection Confirmation

19 PS Pause

20 RS Resume

21 FR Fast-forward/Rewind

22 DS Discard

23 AI Authoring-based Interaction

24 RD Receive Data

25 SP Start Presentation

Client PFSM
The PFSM at the client side represents the status of the ongoing

presentation at any point of time. It is modeled using 3 states S1, S2,

S3 and 18 transitions as detailed below. Figure 1 shows the transition

diagram for the PFSMclient.

T1: When the request for the presentation is initiated by the

user, the system is in state S1. This is represented by the

Start Presentation (SP) message from the PFSMclient to

itself. The PFSMclient initiates the connection

establishment further by sending CR messages to LG and

remains in state S1 until connection has been established

successfully.

T2: In state S1, when the Connection Indication (CI) message

is received from LG, a request for the list L0 is sent to LG.

T3: In state S1, when the Receive List RL0 message followed

by the list L0 of all participating media objects is

received from LG, the PFSMclient further initiates

connection establishment (CR message) with all the MSM

in L0 and with the PFSMServer.

T4: In state S1 when the Send List (SL0) is received from the

PFSMServer requesting for the list L0, it is forwarded to the

PFSMserver preceded by the RL0 message.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

88

Figure 1: CAFSM Model

T1, T2, T3

T4, T5, T6, T7, T8

Layout Generator

 S1

 T5

PFSMclient T1, T2, T3, T4, T12

S1

S2 S3

T13, T15

T14, T16 T11, T18

T6, T7, T8, T9, T10, T17

T3

PFSMserver T1, T2

S1

S2 S3

T8

T9 T7

T4, T5, T6

MSMserver

T2

T1

S1

S2

T6, T7

T3, T4, T5

MSMclient

T3

T1, T2, T7

S1

T4, T9, T10

T5, T6, T8

S2

T5: In state S1, when the Connection Confirmation (CC)

message is received from all the MSMs in L0 and the CI

message is received from the PFSMserver, the PFSMclient

changes state to S2 and sends the Send List (SL1 and SL2)

messages to LG, requesting for lists L1 and L2.

T6: In state S2, a message RL1 from LG, indicating that the list

L1 is being sent, triggers this transition. The lists are

received and a Begin Transmission (BT) message is sent to

the PFSMserver. The list L2 could possibly be empty at this

stage (for the first synchronization point L2 will definitely be

empty as no media object ends there).

T7: This transition is triggered in state S2, by a message RL2

from LG, indicating that the list L2 is being sent. At this

stage the list L1 could be possibly empty (for the last

synchronization point L1 will definitely be empty as no

media object begins there).

T8: When in state S2 and a SL1 message from the

PFSMserver requesting for the list L1 is received, the

available list is forwarded.

T9: As mentioned earlier, OK messages are sent by each

MSM as they receive sufficient data in their buffer

during streaming. When in state S2 and all the OK

messages are received from MSMs of media objects

that belong to the list L1, the Begin Presentation (BP)

message is sent to all the media objects that need to

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

89

commence. After sending the BP messages, the List L1 is

emptied and the request for the new list is sent.

T10: As the Finish Presentation (FP) messages are received in

state S2 from all the MSMs corresponding to the list L2, they

are eliminated from the list. When L2 becomes empty, the

request for the new list is forwarded to LG.

T11: At the end of the presentation, when there are no more

synchronization points, the LG sends a Disconnection

Indication (DI) in response to a request from the PFSMclient

for the lists of objects corresponding to the next

synchronization point. At this instance, L1 and L2 are empty

and the PFSMclient changes state to S1 from state S2, and

continues with the disconnection process by sending

disconnection request (DR) messages to the PFSMserver and

MSM(L0) at the client.

T12: In state S1, the PFSMclient waits until it receives the

Disconnection Indication (DI) from the PFSMserver and

Disconnection Confirmations (DC) from MSM(L0) and it

remains in S1 which is also considered as the final state of

the system.

T13: In case the PFSMclient receives a fast-forward/rewind FR

message from the user while it is in state S2, it sends a

Discard Message (DS) to the PFSMserver and to the MSMs of

all participating media objects at the client. It also calculates

the new index value that represents the point at which the

presentation should resume and sends it to LG with a

request for a new list that includes the media objects from

the point requested by the user and then changes to state S3.

The lists L1 and L2 are discarded.

T14: In state S3, the PFSMclient receives the FP messages from the

MSMs of all media objects at the client, indicating that they

have successfully discarded all the previous data. It also

receives a RL1 message from the LG which then sends a new

list L1. Subsequently, the PFSMclient sends a BT message to

the PFSMserver and changes the state to S2.

T15: While in S2, the PFSMclient could receive an interaction in

the form of Pause (PS) Presentation. The PFSMclient merely

forwards this message to the MSMs of all the media objects

involved in the presentation and goes to the state S3.

T16: While in S3, the PFSMclient could receive an interaction in

the form of resume RS message which is normally preceded

by a PS message. In this case, the PFSMclient also forwards

this message to the MSM of all the media objects involved

in the presentation and goes to the state S2.

T17: While in S2, the PFSMclient could receive an Adaptation-

based-Interaction (AI) message and that could result in a

change in the presentation layout. In this case, the PFSMclient

forwards the data relating to this interaction to the LG along

with a request for a New List (NL) message and sends DS

messages to the PFSMserver and all its MSMs.

T18: In state S2, when a request for disconnection from the user

(represented here by a Disconnection Request (DR)

message, in which the PFSMclient sends to itself in order to

further initiate the disconnection process) is received, it

sends DR messages to the PFSMserver and to the

MSM(L0), and goes back to state S1.

Server PFSM
The PFSM at the server side represents at any point of time the

status of the ongoing transmissions. It is modelled using 3 states

say S1, S2 and S3, and 9 transitions as detailed below. Figure 1

shows the transition diagram for the PFSMserver. The transitions in

the PFSMserver require only the lists L' and L* here contains only

list L1.

T1: The Connection Request (CR) initiated by the

PFSMclient triggers this transition in state S1. At this

stage, the list L1 is empty. It responds with a Send List

SL0 message to the PFSMclient.

T2: The PFSMclient sends a Receive List (RL0) message

followed by the list L0. On receiving this message the

PFSMserver sends a (CI) message to the PFSMclient, and

continues to remain in state S1.

T3: When the PFSMserver is in state S1 and it receives

Connection Indication (CI) messages from all the

MSMs, it changes the state to S2.

T4: While in state S2, the PFSMserver receives Begin

Transmission (BT) message from the PFSMclient. It

remains in the same state and makes a request to the

PFSMclient for the list L1.

T5: In state S2, a Receive List (RL1) message from the

PFSMclient indicates that the list L1 is being sent. A BT

message is sent to each MSM in the received list.

T6: While in state S2, as the FT messages are received from

the MSMs corresponding to list L1, they are eliminated

from the list and a request for the next list SL1 is

transmitted.

T7: When in state S2, on receiving the Disconnection

Request (DR) from PFSMclient and Disconnection

Indication (DI) from MSM(L0) at the server, it sends a

DI in turn to PFSMclient and changes the state to S1.

T8: The PFSMserver, on receiving the DS message, moves to

state S3 and discards the list L1.

T9: When in state S3, on receiving FT messages from the

MSMs of all media objects involved in the

presentation, it changes the state to S2.

3.2 Media Schedule Managers : MSM
Formally, a MSM can be defined as a 3-tuple (S, Σ, δ), where S is a

finite set of states {S1, S2}, Σ is a set of messages and δ : S × 2Σ →

S× 2Σ is a transition function that takes as input the state of the

machine and the messages received and changes its state. In the

subsequent paragraphs, the transitions associated with client and

server MSMs are described.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

90

Client MSM
T1: In state S1, when the MSMclient receives a request for

connection from its PFSM, it forwards the request to its

peered MSM at the server.

T2: In state S1, on receiving a Connection Indication (CI) from

the MSMserver, the MSMclient sends a message confirming the

connection to its PFSM. This completes connection

establishment.

T3: In state S1, on receiving sufficient data (which follows the

RD message) from their peered MSMs, the MSMclient sends

an OK message to the PFSM indicating that it is ready for

the presentation, and changes its state to S2.

T4: While in state S2, the MSMclient receives a BP message from

the PFSM and it commences its presentation.

T5: While in state S2, after completion of the play out, it

generates a message FP to itself which triggers a change of

state to S1 and sends a Finish Presentation (FP) message to

the PFSMclient.

T6: While in state S2, the MSMclient may receive a Disconnection

Request (DR). This will change its state to S1 and it will

forward the request to its peered MSM at the server.

T7: At state S1, the peered MSM replies with a Disconnection

Indication (DI), and the MSMclient in turn sends a

Disconnection Confirmation (DC) message to the

PFSMclient.

T8: In state S2, when the MSMclient receives the Discard message

(DS) from the PFSMclient, it changes the state to S1 and sends

Discard messages (DS) to its peered MSMserver. It also sends

a FP message to the PFSMclient indicating that it has

successfully discarded the current presentation data.

T9: In state S2, when the MSMclient receives the Pause (PS)

message from the PFSMclient, it forwards the message to its

peered MSMserver at the server. It also sends a FP message to

the PFSM indicating that it has successfully paused the

presentation of the media object it represents.

T10: In state S2, when the PFSMclient receives a Resume (RS)

message, it continues with the presentation of the media

object.

Server MSM

T1: In state S1, when the MSMserver receives the CR message

from the MSMclient, it sends a CI message back to its peered

MSMclient and also to the PFSMserver.

T2: In state S1, on receiving a BT message from PFSMserver, the

MSMserver changes its state to S2 and starts transmitting the

data to its peered MSMclient.

T3: In state S2, at the end of transmission, it triggers itself with a

Finish Transmission (FT) message and forwards the FT

message, to the PFSMserver and changes the state to S1.

T4: When in state S2 , if a message requesting

disconnection DR is received, then the MSMclient sends

a Disconnection Indication (DI) to the MSMclient and to

the PFSMserver and changes the state to S1.

T5: In state S2, when the MSMserver receives a Discard

message (DS) from its MSMclient, it sends a FT message

to the PFSMserver and changes state to S1.

T6: In state S2, when the MSMserver receives a Pause

message (PS) from the peer MSMclient, it sends a Finish

Transmission (FT) message to the PFSMserver and

remains in S2

T7: In state S2, when the MSMserver receives a Resume

message (RS) from its peer MSMclient, it continues with

its transmission.

3.3 Layout Generator : LG
Formally, the layout generator LG can be defined as a 3-tuple

({S1}, Σ, δ), where S1 is its only state, Σ is a set of messages, and δ

: S × 2Σ → S × 2Σ is a transition function which takes as input the

messages received to trigger new messages and perform

appropriate actions. The transitions are shown in Figure 1.

T1: When the LG receives the CR message from the

PFSMclient, it sends a CI message back to the

PFSMclient.

T2: When the LG receives a SL0 message requesting for the

lists L0, the receive lists RL0 message is sent followed

by the data (i.e. L0).

T3: When the LG receives a SL1 message requesting for the

lists L1, the receive lists RL1 message is sent followed

by the data (i.e. L1).

T4: When the LG receives a SL2 message requesting for the

lists L2, the receive lists RL2 message is sent followed

by the data (i.e. L2).

T5: If the user abruptly ends the presentation, then the LG

receives a Disconnection Request from the PFSMclient

and sends a Disconnection Indication back to the

PFSMclient.

T6: On the other hand, if the PFSMclient requests for the

next set of lists while there are no more

synchronization points, then the LG sends a DR

messages to itself which triggers further disconnection

by sending Disconnection Indication message to the

PFSMclient

T7: Here, the request from the PFSM for a new list is made

following a fast-forward/rewind request made by the

user. The PFSM also computes the index value to

indicate the location where the presentation should

commence, and sends this as the index value i. The LG

sends a new list replacing the existing list L1.

T8: The PFSMclient requests for the next set of lists in the

form of the message new list NL, followed by data.

This represents an (adaptation-based) interaction with

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

91

the presentation which could lead to changes in the spatio-

temporal relations and may cause inconsistency to occur.

Thus, the consistency checking algorithm [6] is employed

by the LG to produce a consistent set of constraints with the

LG using the modified layout to generate the next list L1 as

data to the PFSMclient.

4. ANALYSIS OF THE PROPOSED MODEL
The salient feature of the proposed model is the design of the set of

transitions that guide the runtime module to ensure a synchronised play-

out of the presentation. The set of transitions, presented along with each

of the CAFSMs in the previous section, also define the sequence of the

messages that are used to control the flow of the presentation. The

proposed model is deterministic i.e there is only one path that can be

traversed for a particular event. For multimedia presentations that have

rapidly changing objects, there would be several synchronisation points

leading to several states and transitions in the existing DEFSM model,

while the proposed CAFSMs have a fixed number of states and

transitions irrespective of the number of synchronisation points. The

response time, in case of interactions with the presentation as well as

navigations like skip, would then have a worst-case complexity of O(n),

where n represents the number of transitions to search from in the

existing DEFSM models. But in the proposed CAFSM model, there are

only 3 states and 18 transitions (at the most) to search from at any point

of time, leading to a system with an efficient response time to

interactions. The proposed CAFSM model has however been checked

using the model checker SPIN and the simulation results obtained have

correlated with the theoretical results.

5. CONCLUSIONS
This paper presents the design of a multimedia synchronisation

mechanism using a formal approach. The proposed CAFSM model with

the help of its message passing scheme ensures a synchronised play out

of the presentation and is also efficient in its time and space complexity

in comparison with the existing formal approaches that define similar

synchronization mechanisms. The proposed model can be further

enhanced to handle adaptive presentations, buffer management and

efficient retrieval policies for bandwidth restricted mobile multimedia

communication.

6. ACKNOWLEDGEMENT
We would like to acknowledge and thank the Defence Research

Development Organisation (DRDO), New Delhi, India for granting us

Extramural Research Funds for carrying out this research work. This

work is part of the research project titled “The design and development

of a multimedia presentation system that streams MPEG-21 compatible

media-on-demand”.

7. REFERENCES
[1] E. Bertino and E. Ferrari. Temporal synchronization models

for multimedia data. IEEE Trans. on Knowl. and Data Eng.,

10(4):612-631, 1998.

[2] D. Brand and P. Zafiropulo. On communicating finite-state

machines. J. ACM, 30(2):323-342, 1983.

[3] J. Canavan. Personalised e-learning through learning style

aware adaptive systems: MS thesis, 2004.

[4] H. Chorfi and M. Jemni. Perso: Towards an adaptive e-

learning system. Journal of Interactive Learning Research,

15(4):433-447, 2004.

[5] O. Conlan and V. Wade. Evaluation of APeLS - an adaptive

eLearning service based on the multi-model, metadata-

driven approach. Adaptive Hypermedia and Adaptive

Web-Based Systems, 3137:291-295, 2004.

[6] S. Elias, K. S. Easwarakumar, and R. Chbeir. Dynamic

consistency checking for temporal and spatial relations

in multimedia presentations. In Proceedings of The

21st ACM Symposium on Applied Computing, pages

1380-84, Dijon, France, April 2006.

[7] T. Flor. Experiences with adaptive user and learning

models in elearning systems for higher education.

Journal of Universal Computer Science, 10(1):58-72,

2004.

[8] C. Gütl, M. Pivec, C. Trummer, V. M. García-Barrios,

F. Modritscher, J. Pripfl, and M. Umgeher. Adele

(adaptive e-learning with eye-tracking): Theoretical

background, system architecture and application

scenarios. European Journal of open, Distance and E-

learning(EURODL), 2004.

[9] C.-M. Huang and C. Wang. Synchronization for

interactive multimedia presentations. IEEE

Multimedia, pages 44-61, Oct. 1998.

[10] C. M. Huang, C. Wang, and C. H. Lin. Interactive

multimedia synchronisation in the distributed

environment using the formal approach. IEE

Proceedings - Software, 147(4):131-146, 2000.

[11] M. Kock. Computational intelligence for

communication and cooperation guidance in adaptive

e-learning systems. In LWA, volume 448 of Technical

Report, pages 32-34. Department of Computer Science,

University of Wurzburg, Germany, 2008.

[12] F. Modritscher, V. Garcia Barrios, and C. Gutl.

Enhancement of scorm to support adaptive e-learning

within the scope of the research project adele. In

Proceedings of World Conference on E-Learning in

Corporate, Government, Healthcare, and Higher

Education 2004, pages 2499-2505, Washington, DC,

USA, 2004.

[13] M. Meccawy, P. Brusilovsky, H. Ashman, M.

Yudelson, and O. Scherbinina. Integrating interactive

learning content into an adaptive e-learning system:

Lessons learned. In Proceedings of World Conference

on E-Learning in Corporate, Government, Healthcare,

and Higher Education 2007, pages 6314-6319, Quebec

City, Canada, 2007.

[14] H. D. Surjono. Empirical evaluation of an adaptive e-

learning system and the effects of knowledge, learning

styles and multimedia mode on student achievement.

In Proceedings of the UiTM International Conference

on E-Learning, pages 12-14, Shah Alam, Malaysia,

December 2007.

[15] C.-C. Yang, Y.-C. Wang, and C.-W. Tein.

Synchronization modeling and its application for SMIL

2.0 presentations. The journal of Systems and Software,

80:1142-1155, 2007.

[16] A. Zhang. Synchruler: A rule-based flexible

synchronization model with model checking. IEEE

Trans. on Knowl. and Data Eng., 17(12):1706-1720,

2005. Member-Aygun, Ramazan Savas.

[17] www.engineeringchallenges.org

[18] Mödritscher, F., Garcia Barrios, V.M. & Gütl, C.

(2004). Enhancement of SCORM to support adaptive

E-Learning within the Scope of the Research Project

AdeLE. In Proceedings of World Conference on E-

Learning in Corporate, Government, Healthcare, and

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

92

Higher Education 2004 (pp. 2499-2505). Chesapeake, VA:

AACE.

APPENDIX

A. CLIENT PFSM

T1: δ(S1, (SP, PFSMclient),φ, φ) = (S1, (CR,LG), φ, φ)

T2: δ(S1, {(CI,LG)}, φ, φ) = (S1, (SL0), LG), φ, φ)

T3: δ(S1, {(RL0,LG),L0,φ) = (S1, {(CR, PFSMserver), (CR, MSM(L0))}, φ, φ)

T4: δ(S1, (SL0, PFSMserver), φ, φ) = (S1, {(RL0, PFSMserver, LG), (SL2, LG)},L0, φ)

T5: δ(S1, {(CC,MSM(L0)), (CI, PFSMServer)}, φ, φ) = (S2, {(SL1,LG), (SL2, LG)}, φ, φ)

T6: δ(S2, (RL1,LG), φ,L2) = (S2, (BT, PFSMServer),L1,L2)

T7: δ(S2, (RL2,LG),L1, φ) = (S2, φ, L1, L2)

T8: δ(S2, (SL1, PFSMServer), L1, L2) = (S2, (RL1, PFSMServer),L1, L2)

T9: δ(S2, (OK,MSM(L1),L1,L2) = (S2, {(BP,MSM(L1), (SL1,LG)}, φ,L2)

T10: δ(S2, (FP,MSM(L2)),L1,L2) = (S2, (SL2,LG),L1, φ)

T11: δ(S2, (DI,LG), φ, φ) = (S1, {(DR, PFSMServer), (DR,MSM(L0)}, φ, φ)

T12: δ(S1, {(DI, PFSMServer), (DC,MSM(L0)}, φ, φ) = (S1, φ, φ, φ)

T13: δ(S2, (FR, PFSMClient),L1,L2) = (S3, {(DS, PFSMServer), (DS,MSM(L0), ((NL, i),LG)}, φ, φ)

T14: δ(S3, {(FP,MSM(L0), (RL1,LG)}, φ, φ) = (S2, (BT, PFSMServer),L1, φ)

T15: δ(S2, (PS, PFSMclient),L1,L2) = (S3, {(PS,MSM(L0)), (PS, PFSMServer)}, φ, φ)

T16: δ(S3, (RS, PFSMclient),L1,L2) = (S2, {(RS, PFSMServer), (RS,MSM(L0))}, φ, φ)

T17: δ(S2, (AI, PFSMclient),L1,L2) = (S2, {(DS, PFSMserver), (DS,MSM(L0), ((NL, data),LG)}, φ, φ)

T18: δ(S2, (DR, PFSMclient),L1,L2) = (S1, {(DR, PFSMserver), (DR,MSM(L0)), (DR,LG)}, φ, φ)

B. SERVER PFSM

T1: δ(S1, (CR, PFSMclient), φ) = (S1, (SL0, PFSMClient), φ)

T2: δ(S1, (RL0, PFSMclient),L0) = (S1, φ, φ)

T3: δ(S1, (CI, MSM(L0)), φ) = (S2, (CI, PFSMclient), φ)

T4: δ(S2, (BT, PFSMclient), φ) = (S2, (SL1, PFSMclient), φ)

T5: δ(S2, (RL1, PFSMclient), φ) = (S2, (BT, MSML1),L1)

T6: δ(S2, (FT, MSM(L1)),L1) = (S2, (SL1, PFSMclient), φ)

T7: δ(S2, {(DR, PFSMclient), (DI, MSM(L0))}, φ) = (S1, (DI, PFSMclient), φ)

T8: δ(S2, (DS, PFSMclient),L1) = (S3, φ, φ)

T9: δ(S3, (FT, MSM(L0)), φ) = (S2, φ, φ)

C. CLIENT MSM

T1: δ(S1, (CR, PFSMclient)) = (S1, (CR, MSMserver))
T2: δ(S1, (CI, MSMserver)) = (S1, (CC, PFSMclient))

T3: δ(S1, (Data, MSMserver) = (S2, (OK, PFSMclient))

T4: δ(S2, (BP, PFSMclient)) = (S2, φ)
T5: δ(S2, (FP, MSMclient)) = (S1, (FP, PFSMclient))

T6: δ(S2, (DR, PFSMclient)) = (S1, (DR, MSMserver))

T7: δ(S1, (DI, MSMserver)) = (S1, (DC, PFSMclient))
T8: δ(S2, (DS, PFSMclient)) = (S1, {(DS, MSMserver), (FP, PFSMclient)})

T9: δ(S2, (PS, PFSMclient)) = (S2, {(PS, MSMserver), (FP, PFSMclient)})

T10: δ(S2, (RS, PFSMclient)) = (S2, (RS, MSMserver))

D. SERVER MSM

T1: δ(S1, (CR, MSMclient)) = (S1, {(CI, MSMclient), (CI, PFSMserver)})
T2: δ(S1, (BT, PFSMserver)) = (S2, (RD, MSMClient))

T3: δ(S2, (FT, MSMserver)) = (S1, (FT, PFSMserver))

T4: δ(S2, (DR, MSMclient)) = (S1, {(DI, MSMclient), (DI, PFSMserver)})
T5: δ(S2, (DS, MSMclient)) = (S1, (FT, PFSMserver))

T6: δ(S2, (PS, MSMclient)) = (S2, (FT, PFSMserver))

T7: δ(S2, (RS, MSMclient)) = (S2, (Data, MSMclient))

E. LAYOUT GENERATOR

T1: δ(S1, {(CR, PFSMclient)}) = (S1, (CI, PFSMclient))
T2: δ(S1, {(SL0, PFSMclient}) = (S1, (RL0, PFSMclient))

T3: δ(S1, {(SL1, PFSMclient}) = (S1, (RL1, PFSMclient))

T4: δ(S1, {(SL2, PFSMclient}) = (S1, (RL2, PFSMclient))
T5: δ(S1, {(DR, PFSMclient)}) = (S1, (DI, PFSMclient))

T6: δ(S1, {(DR,LG)}) = (S1, (DI, PFSMclient))

T7: δ(S1, ((NL, i), PFSMclient)) = (S1, (RL1, PFSMclient))
T8: δ(S1, ((NL, data), PFSM)) = (S1, (RL1, PFSMclient))

T9: δ(S1, ((NL, data), PFSM)) = (S1, (RL1, PFSMclient))

