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ABSTRACT 
This paper deals with the control reconfiguration problem of 

partial actuator failure in a Three-Tank Multi-Input Multi-Output 

(MIMO) system. In order to tolerate known actuator failure, a 

reconfiguration in control parameter/structure is made through 

output/state feedback. A new Proportional-Integral (PI) 

Reconfigurable Controller (RC) design is proposed for servo 

tracking problem using Singular Value Decomposition (SVD) 

based Parametric Eigenstructure Assignment (PEA) technique. 

The main contribution of the paper is to design an optimal 

controller to achieve response shaping and guaranteed stability of 

the system. The effectiveness of   the proposed controller is 

simulated by analyzing   servo-regulatory responses of the three-

tank system for various fault scenarios. Finally, performance of 

the proposed state and output feedback controllers are compared 

by using various performance indices. The comparison reveals the 

feasibility of controller used for practical applications 

Keywords 

 SVD, MIMO, PI, PEA, RC 

1.INTRODUCTION 
Over the past few decades, Eigenstructure Assignment (EA) 

technique was used for reconfiguration of Multi-Input Multi-

Output (MIMO) system. The existing method which deals with 

MIMO linear system is the Linear Quadratic Regulator (LQR). 

Out of these two, the eigenstructure assignment technique is most 

popular one, since, it guarantees the stability and provides 

acceptable performance. The LQR method based reconfigurable 

controller has been investigated by Theilliol et al(2002). Even 

though this method gives performance recovery, as far as stability 

is concerned, it is not suitable for critical systems. Therefore, EA 

is used for reconfigurable control system design while LQR is 

used for the nominal controller design. K.Konstantaopoulos 

(1996) has proposed a reconfigurable controller design through 

state and output feedback. This method is used to preserve the 

most dominant eigenvalues of the  closed-loop system and 

guarantees the stability of remaining closed-loop eigenvalues. 

Proportional-Integral reconfigurable controller was proposed by 

Jin.Jiang (2000), where the state feedback gain matrix was 

calculated through a Singular Value Decomposition (SVD) based 

EA system. However, this design does not provide parametric 

solution and closed-loop design degrees of freedom. Wang  

 

(2005) proposed a proportional type state feedback reconfigurable 

controller based on PEA for linear continuous system.  Using this 

technique, all the eigenvalues of the original system are recovered 

and overall stability is guaranteed, provided  

that full state feedback is permitted,. A few algorithms for 

eigenstructure assignment via output feedback were reported in 

the literature: Srinathkumar(1975),S.L.Shaw(1975), Lewis 

(1993), Alexandridis et al (1996), Sreenatha (1999), Esna Ashari 

(2005). All these methods are used to assign max(m,p), 

eigenvalues, where m, p are the number of inputs and outputs. But 

the disadvantage of the above methods is that, it is difficult to 

control over all the eigenvalues. Umamaheswari et al (1993) 

proposed eigenstructure assignment based output feedback 

controller for a decentralized system. In this paper the problem of 

eigenstructure assignment has been converted into a constrained 

nonlinear minimization problem. Duan (2003) applied a robust 

output dynamic compensator to magnetic bearing system.  In 

practical servo system the importance is not only given to recover 

the closed loop eigenvalues of the system, but also for response 

shaping. The rest of this paper is organized as follows: The Three 

Tank System (TTS) is described in section-2. The section-3 

presents Reconfigurable Controller (RC) design. Simulation 

results are presented in sections 4.   Conclusion and references are 

presented at the end. 

2.BENCHMARK THREE-TANK SYSTEM 
The schematic diagram of benchmark Three-Tank System as 

defined by Patton (2005) is shown in Figure.1. The interacting 

TTS comprises of three identical tanks with cross section of A. 

The tanks are inter-connected by two cylindrical pipes with a 

cross-section S and outflow coefficients az1 & az2. The nominal 

inflows (q1 & q2) are located at tank1 and tank3 respectively. The 

nominal outflow pipe has a cross section S with an outflow 

coefficient az3 and located at tank 3. 

 

 

 
 

 

 

 

                                 

Figure.1   Three-tank system 

The three-tank system is modeled and it is defined by the  mass 

balance Equation (1): 
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Table I Physical   Parameters of the Three- Tank System 

Parameter Value 

Tank cross section  area 2
A = 0.0171 m  

Pipe cross  section area 
2

S = S = S = 0.00005 m
1 2 3

 

Pipeoutflow coefficients 
0.511, 0.5279 & 0.7313

1 2 3
= = =a a  a

z z z

 

Maximum level H = 0.68 m
max

 

Maximum in-flow level 
-4 3

q = 1.0 * 10  m / s  max  

The nonlinear system is linearized around the steady state operating 

points (h1 = 0.6 m, h2= 0.5m and   h3= 0.4m). The linearized 

continuous model is described by a discrete linear state model with 

a sampling period Ts=1s as given in Equation (2) 

}( 1) ( ) ( )

( ) ( )

+ = +

=

x k Ax k Bu k

y k C x k
                                           (2) 

0.9896 0.0103 0.0001 58.18 0.0011
1 0 0

A 0.0103 0.9791 0.0106 , B 0.3028 0.312 and C
0 0 1

0.0001 0.0106 0.9819 0.0011 57.95

;= = =
              

             

 
 

( ) [ ] , ( ) [ ] ( ) [ ]1 2 3 1 2 1 3= = =
T T T

x k h h h u k q q and y k h h  are the state, 

input and output vectors respectively. 

3. DESIGN OF RECONFIGURABLE 

CONTROLLER 

3.1 PI Controller Design 
Consider a servo system with state feedback and integral control 

is assumed to be completely controllable and observable. The 

process state and output equations are given in Equations (3a)-

(3b) 

x(k + 1) = Ax(k) + Bu(k)                                                    (3a) 

y(k) = C x(k)                                                                  (3b)   

where ∈
n

x(k) R   is the state vector, ∈
m

u(k) R  is the input vector 

and ∈
p

y(k) R  is the output vector. A , B and C are the system, 

input and output matrices respectively. The integrator state is 

represented in Equation (4) 

e(k + 1) = e(k) + T e(k)s                                                      (4) 

where tracking error ( ) ( ) ( )re k = r k - y k , r(k) is the reference 

input vector, yr(k) is the output vector that is required to follow 

the reference input vector and  Ts is the sampling period. Many 

techniques are available for incorporating integral action into the 

controller design. One of the simplest techniques is state 

augmentation.   

          The feedback control is required to generate control signal 

such that the   output vector yr(k) tracks the reference input vector 

r(k) and reaches steady state. In order to maintain controllability, 

the number of tracking outputs cannot exceed the number of 

control inputs (Theilliol et al., 2002). At steady state the value of 

y(k) is given by Equation(5) 

 → ∞
   lim

k y (k) = r(k)r

 
                                                             (5) 

Augmented system is derived from Equation(3)-(4) and is  

represented by  Equation (6)  

%

%





% %%

%
x(k + 1)= Ax(k) + Bu(k)+Er(k)

yk) = C x(k)
                                                (6) 

where 

             

� %

% %

    
         

    
         

% A 0x(k+1) x(k)
x(k + 1)= x (k) = A =

-T C Ie(k+1) e(k) s r, , ,

0B C 0
B = C=  , E =

T I0 0        I s,

 

and Cr is the tracking output matrix. If the augmented system 

matrix (A, B)
% % is controllable and the control law is 

[ ] % ( )%u = Ky = K K C x kP I ,   then the closed loop Equation (6) can 

be rewritten and represented as given in Equation (7) 

� % % � %%
x (k + 1)= ( A+ BKC )x (k) + Bu(k)+Er(k)                                      (7) 

The design of a output feedback controller based on the 

augmented system can allow the computation of   Proportional 

and Integral controller gains for the system. 

3.1.1 Output feedback controller gain calculation 

using SVD based PEA 
          Any system can be represented in terms of its eigenstructure 

i.e. in terms of its eigenvalues and eigenvectors. The augmented 

system in terms of eigenvalues and eigenvectors is presented in 

Equation (8) 

      % % %
( A+ BKC )v = z v  

i i i
                                                              (8) 

where i = 1,2,3....,n + p  

 Define  Λ = diag(z , z , ....z ),V = [v , v , ....v ]
1 2 n+p 1 2 n+p             
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The Equation (8) can be written in  the matrix form as given in 

Equation (9):    

            % % %( A + BKC)V = VΛ                                                             (9)  

Let  %
W = KCV  then, Equation (9) can be rewritten as   

     % %A V + B W = VΛ                                                                    (10)      

           Right Eigenstructure Assignment (RESA) is considered, 

when p>m. Hence, the solutions of above Equation (10) can be 

obtained from Theorem 3.1(Duan, 2003). If � �(A, B)  is 

controllable, then while taking SVD, there exists orthogonal 

matrices iφ and iψ  satisfying the following Equation (11)                                                      

0 ,− = Σ ∀ ∈      
% %B A zI z Cii iψ φ                                        (11)                                                      

Partitioning of iφ is given in Equation (12), from which we can 

obtain the parametric expressions of eigenstructure assignment as 

given in Equation (12) 

   
( )*

, ,
*

+ × ×
= ∈ ∈

 
  

n p m m mDi N R D Ri i iNi
φ                                (12) 

           In order to improve the transient response and the stability 

of system, the parametric vectors are chosen such a way that the 

norm of feedback gain matrix, condition number of eigenvector 

are small and satisfy the following constraints: 

CR1: z z ↔= f = f , i, j = 1,2, ....n + pi j i j  

CR2: det 0≠(V)  

CR3 :
T T -1

W(I - (C * V) [(CV)(CV) ] CV) = 0   

Now, the parametric expression of feedback gain matrix
×

∈
m p

K R  

can be written as given in Equation (13)        

      
1

) [( )( ) ]
−T T

K = W(CV CV CV                                         (13)            

 where                 

........ , , 1, 2, ......., ,and1 2

........ ,1 2

= = = + ∈+

= +

  

  

m
V v v v  v  N f  i n p f Cn p i i i i

W w w w  w = D fn p i i i

    

3.1.2  State feedback controller gain calculation 

using SVD based PEA 
 The procedure used for the output feedback can easily 

be extended to the case of state feedback. When the number of 

outputs is identical to the number of states p= n  i.e., C = In ,  

the above expression  in Equation (13) reduces  to that 

represented  in Equation(14) 

   
1

( )
−

K = W CV                                                                    (14) 

It is apparent that state-feedback compared to output feedback, 

offers a greater flexibility with regards to eigenstructure 

assignment. However, from the practical point of view, state 

feedback is quite undesirable, since, for large systems it requires 

measuring and feeding all the states of the system. 

3.1.3 Reconfigurable controller 
   The above technique has been extended to recover the 

performance of the closed-loop system, when the system is 

affected by actuator fault. In this paper, known multiplicative 

type actuator failure (reduction in control effectiveness factor) is 

considered. The system equation can be represented by Equation 

(15)  

 

x (k + 1) = A  x (k) + B  u(k)f ff f

y (k) = C x (k)
f f

                                            (15)                                       

where x , yf f  are the state and output vectors of the faulty system 

and Af ,  B f  are the state and input matrices respectively.  Faulty 

system can be recovered by reconfiguring the controller gain of 

nominal system. State feedback controller gain for recovered 

system (Kf) is determined by replacing (A, B)
% %  with augmented 

faulty system �(A , B ),%
f f  where 

% �and

.

   
   

  

A 0 Bf fA = B =f f
-T C I 0s r ,

 

3.1.4 Parametric optimization 
The aim of optimal controller design is to choose the parametric 

vectors and eigenvalues to satisfy all the robust measures such as 

performance measure, closed-loop stability measure, tracking 

performance and optimal controller gain. 

i) Robust stability  

 Guaranteed closed-loop robust stability can be achieved 

by minimizing eigenvalues sensitivities with respect to open-

loop system parameter perturbations. One of the measures of 

sensitivity is the condition number of the closed loop 

eigenvector. For practical applications, Frobenius condition 

number is more conservative than spectral condition number 

(Ashari, 2005). The Frobenius condition number is given in 

Equation(16): 

                 F
κ

-1
(V) = V VF                                          (16) 

ii) Minimum control effort: 

    In some practical applications, constraints such as 

settling time and actuator usage limits the selection of 

eigenvalues. In order to minimize the control effort, closed-

loop eigenvalues are assigned closer to open loop 

eigenvalues. Therefore, the performance index Jc is used to 

minimize the difference between open loop eigenvalues and 

closed loop eigenvalues  with respect to the elements of 

eigenvalues constrained by  u(k) <  umax (k): 

                                              

∑
n+p

J = λ - λ , i = 1,2, .....n + poi ci
i=1

                                     (17)    

where λoi  and  λci  are open loop and closed loop eigenvalues  

respectively.   

iii) Optimal dynamic performance 

       Optimal dynamic performance of the system is obtained 

by choosing optimal controller parameters and the control 
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parameters are parameterized in terms of parametric vector. 

The following cost function reported by Radke et al (1987) is 

used to achieve minimum integral square error.  

            
2e (k)

∞
∑
k=1

J =                                                    (18) 

3.1.5 Reconfigurable Controller design via output 

feedback 
 The desired eigenvalues of closed loop augmented 

system are chosen as 0.9857+0.01342i, 0.9857-0.01342i, 0.9355, 

0.9231 and 0.9109 and the parametric vectors are selected as 

5 + 5i  9
f = ; f = f ;  f = ;
1 2 1 36 + 5i -10 ,

10  16
f =   and f =54 10 -14

   
      

   
      

.  

The achievable eigenvalues which are very close to desired ones 

are: 0.9836 + 0.0080i, 0.9836 - 0.0080i, 0.9368, 0.9245 and           

0.9111.  

   In this paper, 80% reduction in the flow rate of 

actuator 2 has been considered as actuator fault and it is 

introduced at the sampling instant k=1500. Due to the presence of 

integral controller, actuator fault acts on the system as a 

perturbation. Under the assumption that actuator fault information 

provided by the Fault Detection and Isolation (FDI) system is 

correct, the reconfigurable controller reconfigures its parameters 

provided in the form of state and input matrices. After the fault 

has occurred, the controller resynthesizes the state feedback law 

such that eigenstructure of the closed loop system can completely 

recover that of the normal (Fault-free) system. Eigenvectors and 

feedback gain matrix of normal (Fault-free) and recovered system 

are presented in Table II. 

Table II  Output feedback controller parameters 

System state  Achievable eigenvectors and Controller gain 

Fault-free  
0.1386 0.0044i 0.5790 0.7671 1.4188

0.0891 0.1825i 0.0199 0.2776 0.0194

0.1528 0.0090i 0.6439 0.7660 1.2438

4.9968 4.9998i 8.9765 9.9757 15.9235

5.9969 4.9988i 9.9836 9.9615 13.9599

=

±

− −

− −

±

± − −

 
 
 
 
 

m

mV

( )0.0019 0.0005 0.0001 0.00003

0.0006 0.0018 0.00004 0.0001
= − −

− −
K  

 Recovered  
0.1386 0.0044i 0.5790 0.7671 1.4188

0.0891 0.1825i 0.0199 0.2776 0.0194

0.1528 0.0090i 0.6439 0.7660 1.2438

4.9968 4.9998i 8.9765 9.9757 15.9235

5.9969 4.9988i 9.9836 9.9615 13.9599

=

±

− −

− −

±

± − −

 
 
 
 
 

m

m
f

V

( )0.0019 0.0005 0.0001 0.00003

0.0031 0.0088 0.0002 0.0003
= − −

− −
K f  

3.1.6 Reconfigurable Controller design via statet 

feedback 
The achievable eigenvalues of fault-free and recovered system via 

state feedback for the same faulty conditions are 

0.9857+0.01342i, 0.9857-0.01342i, 0.9355, 0.9231 and 0.9109. 

The parametric vectors are chosen as 

5 + 5i  9
f = ; f = f ;  f = ;
1 2 1 36 + 5i -10 ,

10  16
f =   and f =54 10 -14

   
      

   
      

 

Eigenvectors and feedback gain matrix of normal (Fault-free) and 

recovered system are presented in Table III. 

Table III  State feedback controller parameters 

 

  

4.SIMULATION RESULTS 

4.1Output feedback controller 
The output response of system under normal conditions when 

excited with step input and the corresponding variations in 

manipulated variables are shown in Figure.2a-2b (solid line) and 

3a-3c. For the purpose of validation, a step change in the tank 

level of h1 0.06m and h3 0.04m(10% changes around the 

operating point) is applied at 250th sampling instant and is 

maintained up to 3000th sampling instant.  It can be observed in 

Figure 3a that the flow rate of actuator 1 increases from 

3.5787×10-5 m3/s to 4.7287 ×10-5 m3/s and flow rate of actuator 2 

increases from 6.5363×10-5 m3/s to 8.625×10-5 m3/s. The 

occurrence of 80% failure in actuator 2 (q2) at 1500th sampling 

instant decreases its flow rate of it from 8.625×10-5 m3/s to 7×10-5 

m3/s.  It also decreases flow rate of actuator 1(q1) from 4.7287 

×10-5 m3/s to 4.4167 ×10-5 m3/s (refer Figure 3b). The variation in 

manipulated variable drives the process output away from the 

desired trajectory as shown in Figure 2a and Fig 2b (refer dashed 

line). It can also be seen in Figure 2 that the process outputs are 

not able to track the set points at k=1500. Due to the actuator 

failure, level h1 decreases from 0.66 m to 0.6524 m (refer Figure 

2a) and consequently, the level h3 decreases from 0.44 m to 

0.4269 m (refer Figure 2b). 

System state  Achievable eigenvectors and Controller 

gain 

 

Fault-free 

0.1386 0.0044i 0.5790 0.7671 1.4188

0.0891 0.1825i 0.0199 0.2776 0.0194

0.1528 0.0090i 0.6439 0.7660 1.2438

4.9968 4.9998i 8.9765 9.9757 15.9235

5.9969 4.9988i 9.9836 9.9615 13.9599

=

±

− −

− −

±

± − −

 
 
 
 
 

m

mV

( )K
0.0019 0.0004 0.0006 0.0001 0.00003

0.0006 0.0002 0.0017 0.00004 0.0001
= − −

− −
 

 

Recovered 

0.1386 0.0044i 0.5790 0.7671 1.4188

0.0891 0.1825i 0.0199 0.2776 0.0194

0.1528 0.0090i 0.6439 0.7660 1.2438

4.9968 4.9998i 8.9765 9.9757 15.9235

5.9969 4.9988i 9.9836 9.9615 13.9599

=

±

− −

− −

±

± − −

 
 
 
 
 

m

m
f

V

( )0.0019 0.0004 0.0006 0.0001 0.00003

0.0030 0.0012 0.0086 0.0002 0.0003
= − −

− −
f

K
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Figure 2. Outputs responses for 80% failure in actuator 2: 

 (a) Level h1 ( b) Level h3  

 

The reconfigurable controller drives the three tank system and 

brings the output back to the desired trajectory as much as 

possible when the fault occurs. The tracking performance of the 

recovered system outputs and the associated manipulated 

variables are shown in Figure 2a-2b (refer dotted line) and Figure 

3c respectively.  It can be found from the Figure 2 that the 

reconfigurable controller recovers its nominal characteristics with 

reasonably small transients in the presence of actuator fault. After 

the reconfiguration, decrease in h1 is brought from 0.6524 m to 

0.6572 m and h3 from 0.4269m to 0.4345 m (refer Figure 2a-2b 

dotted line). 

0 1000 2000 3000 4000 5000 6000
2

3

4

5

6

7

8

9
x 10

-5

Sampling Instants

F
lo
w
 r
a
te
(m

3
/s
)

q1

q2

 

0 1000 2000 3000 4000 5000 6000
2

3

4

5

6

7

8

9
x 10

-5

Sampling Instants

F
lo
w
 r
a
te
(m

3
/s
)

q1

q2

 

 

0 1000 2000 3000 4000 5000 6000
2

3

4

5

6

7

8

9
x 10

-5

Sampling Instants

F
lo
w
 r
a
te
(m

3
/s
)

q1

q2

 

Figure 3. Variations in manipulated variables under different 

conditions; (a) Normal (Fault free)  (b) Faulty condition (c) 

Recovered condition 

 

 

b 
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Table IV Comparison of ISE performance indices of output 

feedback RCS 

Error/State Normal(Fault

-free) 

Faulty Recovered 

ISEeh1 0.2772 0.2923 0.2707 

ISEeh2 0.2007 0.2409 0.1858 

It can be seen from the Table IV that the ISE of system increases 

from its nominal values due to actuator failure. After the 

reconfiguration, its value becomes less than the normal one. 

Robust performance indices of fault which were mentioned earlier 

are presented in Table V. The K (V)
2 values for normal and 

recovered systems are same but control energy required for the 

recovered system is more than that of normal system. It is 

reflected in K . 

Table V Robust stability and performance measures of output 

feedback RCS 

 

Performance 

measure 

Normal(Fault-free) Recovered 

)K (V2  
94.1058 94.1058 

K  
0.0024 0.0094 

 

4.2State feedback controller 
The reference input used for output feedback controller is used for 

this state feedback analysis also. Under normal operating 

conditions, the outputs perfectly track the corresponding reference 

inputs. It can be observed in Figure 5a that the flow rate of 

actuator1 increases from 3.5787×10-5 m3/s to 4.7287 ×10-5 m3/s 

and flow rate of actuator 2 increases from 6.5363×10-5 m3/s to 

8.625×10-5 m3/s.  The actuator faults are introduced on the 

actuator 2 at t =1500s as shown in Figure 5. The occurrence of 

80% failure in actuator2 at 1500th sampling instant decreases the 

flow rate  from 8.625×10-5 m3/s to 7×10-5 m3/s.  It also decreases 

flow rate of actuator 1 from 4.7287 ×10-5 m3/s to 4.1854 ×10-5 

m3/s(refer Figure 5b). Due to actuator failure   level h1 decreases 

from 0.66 m to 0.6491 m (refer Figure 4a dashed line) and 

consequently, the level h3 decreases from 0.44 m to 0.4244 m 

(refer Figure 4b dashed line).  
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Figure 4. Outputs responses for 80% failure in actuator 2: (a) 

Level h1 ( b) Level h3 

The tracking performance of the recovered system outputs and the 

associated manipulated variables are shown in Figure 4a-4b and 

Figure 5c respectively. It can be found from the Figure 2 that the 

reconfigurable controller recovers its nominal characteristics with 

reasonably small transients in the presence of actuator fault. After 

the reconfiguration, decrease in h1 is brought from 0.6491 m to 

0.6552 m and h3 from 0.4244 to 0.4332 m(refer Figure 4a-4b 

dotted line).It can also found that the small overshoot at the step 

changing instant. 

a 

b 
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Figure 5. Variations in manipulated variables under different 

conditions; (a) Normal (Fault free)  (b) Faulty condition (c) 

Recovered condition 

 

 

4.2.1 Performance Evaluation of state feedback 

controller 
     The ISE of normal (fault-free) case, faulty case and recovered 

case are reported in Table VI. From Table IV and Table VI, it is 

confirmed that the ISE value of state feedback controller is lesser 

than that of the output feedback controller.  

Table VI ISE performance indices of output feedback RCS 

Error/State Normal(Fault-

free) 

Faulty Recovered 

ISEeh1 0.2216 0.2366 0.2146 

ISEeh2 0.1491 0.1919 0.1334 

The robust stability and robust performance indices are listed in 

Table VII. The K (V)
2 value of recovered system through state 

feedback is smaller than  one which is computed through output 

feedback. 

Table VII Robust stability and performance measures of 

output feedback RCS 

Error/State Normal(Fault-free) Recovered 

K (V)
2  

94.1058 94.1058 

K  
0.0024 0.0092 

 

5.  CONCLUSION 
 In this paper, parametric eigenstructure based output and state 

feedback PI reconfigurable controllers were proposed and were 

applied to the three tank system against actuator failure. With 

reference to Table IV-VII, it can be concluded that the state 

feedback controller provides better result as compared to output 

feedback controller. This is due to the fact that all closed-loop 

poles are preserved and located at the desired location. In order to 

achieve the guaranteed stability by output feedback controller 

design, optimal parametric vectors are chosen so that the 

achievable eigenstructure are very close to the desired one. An 

important issue in reconfigurable controller design is the trade-off 

between performance recovery and stability. The parametric 

vectors provide the degrees of freedom to compromise this issue. 

The proposed controllers work effectively around an operating 

point against partial actuator failure. 

 

 

 

6.REFERENCES 
[1] Youmin Zhang and Jin Jiang (2000).Design of Proportional-

Integral Reconfigurable Control Systems via Eigenstructure 

Assignment, proc. ACC. Chicago, 9, 3732-3736. 

[2]   Guo-Sheng Wang, Qiang Lv, Bing Liang, and Guang-Ren       

a 

b 

c 



©2010 International Journal of Computer Applications (0975 - 8887) 

Volume 1 – No. 26 

56 

 

       Duan (2005). Design of  Reconfiguring  ControlSystems via   

       State Feedback Eigenstructure Assignment, Int.J Inf. Tech.,   

       11, 61-69. 

[3]   Hou, M., Xiong, Y.S., and Patton, R.J(2005). Observing a 

Three Tank System,  IEEE Trans. on Control Systems Tech., 

13, 478-484. 

[4]   Didier Theilliol, Hassan Noura and Jean-Christophe Ponsart 

2002).Fault diagnosis and    accommodation of a three-tank 

system based on analytical redundancy, ISA Trans., 41, 365- 

382 

[5]   Youmin Zhang and Jin Jiang (2008).Bibliographical review  

on reconfigurable fault- tolerant   control systems, 

Annual Reviews in Control, 32, 229-252 

[6]   Duan.G.R(2002).Parametric Eigenstructure Assignment via    

       State Feedback: A Simple  Numerically Reliable Approach,    

       Proc. World Congress on Intelligent Control and Automation   

       China,1, 165-173. 

[7] Esna Ashari(2005). Reconfigurable control system design   

      using eigenstructure assignment:  static,dynamic, and robust     

      approaches Int. J. of Control  78, 1005-1016. 

[8] Radke,F., and  R. Isermann(1987). A parameter-adaptive PID 

controller with stepwise parameter optimization, Automatica, 

449-451. 

[9] A.G.Sreenatha, Vivek Rajhans and Neeraj Bhardwaj (1999).    

        Robust controller Design for a skid to turn missile, Acta   

        Astronautica, 45, 85-92. 

[10] S.Srinathkumar(1978).Eigenvalue / Eigenvector Assignment  

Using Output Feedback, IEEE Transactions on Automatic 

Control , 23, 79-81. 

[11] B.Umamaheswari and A.Sambandan(1993). A numerical    

         method for decentralized eigenstructure assignment by   

         output   feedback, System & Control Letters, 20, 149-155 

[12] S.L.Shah, D.G. Fisher and D.E Seborg (1975).     

        Eigenvalue/Eigenvector assignment for  multivariable   

        systems and further results for output feedback control,   

        Electronics Letters, 11, 388-389. 

 

 


