
International Journal of Computer Applications (0975 – 8887)

Volume 1– No.26, February 2010

1

Dynamic Web Service Composition Based on

Operation Flow Semantics

Demian Antony D’Mello
Department of Computer Science & engineering

St. Joseph Engineering College Mangalore
Karnataka, INDIA – 575 028

Ananthanarayana V S
Department of Information Technology

National Institute of Technology Karnataka
INDIA – 575 025

ABSTRACT

Dynamic Web service composition is a process of building a

new value added service us ing available services to satisfy the
requester’s complex functional need. In this paper we propose

the broker based architecture for dynamic Web service

composition. The broker plays a major role in effective and

efficient discovery of Web services for the individual tasks of

the complex need. The broker maintains flow knowledge for the
composition, which stores the dependency among the Web

service operations and their input, output parameters. For the

given complex requirements, the broker first generates the

abstract composition plan and discovers the possible candidate

Web services to each task of the abstract composition plan. The
abstract composition plan is further refined based on the

Message Exchange Patterns (MEP), input and output parameters

of the candidate Web services to produce refined composition

plan involving Web service operations with preferable execution

flow. The refined composition plan is then transferred to generic
service provider to generate executable composition plan based

on the requester’s input/output requirements & preferences. The

proposed effective Web service discovery and composition

mechanism is defined based on the concept of functional

semantics and flow semantics of Web service operations.

General Terms

Distributed Computing, Web Technology, E-Commerce

Keywords

Web Services, Compositions, Flow Semantics, Discovery

1. INTRODUCTION
The success of Web service technology lies in the effective &

efficient dynamic discovery and compositions of advertised

Web services. A Web service is an interface, which describes a

collection of operations that are network accessible through
standardized XML messaging [1]. At present, the Web service

architecture is based on the interactions between three roles i.e.

service provider, service registry and service requester. The

interactions among them involve publish, find and bind

operations [1]. Web service discovery is the mechanism, which
facilitates the requester, to gain an access to Web service

descriptions that satisfy his functional needs. The dynamic

composition process assembles the available services to build

new service to satisfy the requester’s complex demand. UDDI
[2] is the early initiative towards discovery, which facilitates

both keyword and category based matching. The main drawback

of such mechanism is that, it is too syntactic and provides no

support for dynamic composition of Web services. There is a

need to describe the Web services in a natural way to improve

the effectiveness of the discovery and composition mechanism.

The conceptual Web service architecture [1] involving service

registry (UDDI) does not provide infrastructure or the

mechanism for effective & efficient dynamic Web service
discovery and composition. To enable effective and efficient

dynamic Web service discovery and composition, the existing

architecture has to be augmented by introducing new roles and

new operations.

1.1 Literature Survey and Brief Review

In literature, different architectures are proposed for dynamic

Web service discovery and composition. We classify the

architectures based on the storage of Web service information
and processing component of discovery and composition as

follows: agent based architectures, broker based architectures,

peer-to-peer architectures and hybrid architectures. In agent

based Web service architectures [4], the service agents are used

to initiate the request, terminate the request and to process the
messages. In the broker based architectures [5] [6], the broker is

used for the optimal selection of Web services for the

composition plan towards dynamic integration of QoS-aware

Web services with end-to-end QoS constraints. The peer-to-peer

composition architecture is an orchestration model which is
defined based on the peer-to-peer interactions between software

components hosted by the providers participating in the

composition [7]. Such architectures are also capable of

composing Web services across wide area networks with the

service composition based on the interface idea integrated with
Peer to Peer technologies [8]. In hybrid architectures, along with

service registry, other roles (for example third party provider in

[9] and composition engine in [10]) are defined for the abstract

composition plan generation and execution.

A variety of techniques have been proposed in literature which
integrates existing services based on several pieces of

information. Most of the composition strategies are defined

based on the output and input matching of available Web

services [11]. Such composition mechanisms use chain [12],

graph (tree) [13], vector [14] data structures for the dynamic
composition of concrete services. The main problem with this

approach is that, the repository search time is quite more for the

matching of output parameters with the inputs. Also domain

ontology has to be used for effective matchmaking. The
requester’s constraints are useful to build composition involving

concrete Web services [15]. The atomic or composite Web

services are composed to satisfy the complex demand based on

business rules or policy information [16]. The context

International Journal of Computer Applications (0975 – 8887)

Volume 1– No.26, February 2010

2

(process/user) or view also plays a major role in effective Web

service composition [17]. The goal [18], service behavior [19],

user satisfaction and interaction patterns [20] guide the effective
dynamic Web service composition.

The Web service composition can be modeled in different ways.

The Petri nets [21], Labeled behavior diagrams (LBD) [22],

Mathematical model [23], UML Activity [24] and state chart

diagrams [25], Workflow Model [26] and Finite automata [27]
are the major modeling methods used to represent the composite

Web service. In this paper, we propose a methodology to build

an abstract composition plan which is defined based on the flow

graph concept. The abstract composition plan (graph) is then

refined by selecting suitable candidate Web services and their
operations. The paper also proposes the broker based

architecture for the dynamic Web service composition which

facilitates the requester to discover the suitable Web service(s)

for his simple or complex functional need.

The rest of the paper is organized as follows. The next
subsection gives definitions for the terminology used throughout

the paper. In section 2, we present a model to describe the Web

service operation functionality and flow. Section 3 presents the

broker based architecture for the discovery and composition.

Section 4 presents the Web service discovery and composition
mechanism. In section 5, we discuss prototype implementation

and experiment results. Section 6 draws the conclusions.

1.2 Terminology Used in the Paper
Here the authors present definitions of terms used throughout

the discussion.

Simple Request. A simple request for the Web service contains

a single operation or functionality to be executed by the service

provider. For example, reserve train ticket is a simple request.

Complex Request. A complex request for the Web service

contains a set of related or unrelated multiple operations

(functionality) to be executed by the service provider. For

example, arrange tour with operations like reserve flight ticket,

reserve hotel room and book taxi is a complex request.

Atomic or Primitive Web Service. The atomic Web service is

a well defined network accessible application interface which is

a collection of related operations implemented by single

provider.

Composite Web Service. A composite Web service is
collection of operations/activities where each activity is offered

or implemented by different service providers. The composite

service provider may offer number of activities/operations by

reusing the existing services available over the Web.

Core Operation. A core operation of Web service is an
important operation of Web service. A Web service may contain

any number of core operations. For example, the travel service

may contain core operations like reserve train ticket and cancel

train ticket.

Supplementary Operation. A supplementary operation is a
Web service operation which provides support to the core

operation. The supplementary operations indirectly add the

value to the core services i.e. these operations support the

execution of core operations. For example, the operation check

train ticket availability is a supplementary operation.

Abstract Operation. The functionality of an operation

described in WSDL document of Web service during service

advertisement. This represents a set of concrete operations
supported by the advertised Web service.

Virtual Operation. A single, compact and complete description

of functionally similar abstract operations is referred to as

virtual operation.

Web Service Composition Problem. Given a set of available
Web services (atomic or composite), providing single or

multiple operations (activities), create a new Web service by

combining the available services (service operations) that

realizes the complex service request of the requester.

2. THE SEMANTIC MODEL FOR WEB

SERVICE DESCRIPTION, DISCOVERY

AND COMPOSITIONS
The effective Web service discovery and composition enforces

the service providers to follow the functional semantics and flow
semantics during service advertisements. The service requesters

also need to use the functional semantics while describing the

service request. In this section, we briefly explain the concept of

functional semantics and flow semantics for Web services.

2.1 Functional Semantics for Web Service

Operations

The functional semantics approach [28] adopts the natural way

of expressing the functionality of Web service operations i.e.

abstract operations of Web services are expressed in terms of

actions, objects, qualifiers and nouns. Thus functionality

(OPDesc) of an abstract operation can be described in the
following three formats.

(i) OPDesc = {(Generic Action) (Qualifier)* (Domain Object)+

(Domain Noun)}

(ii) OPDesc= {(Specific Action) (Qualifier)* (Domain Object)+}

(iii) OPDesc = {(Qualifier)* (Domain Object)+ Action Noun}

All abstract operation descriptions are preprocessed before

mapping them to virtual operations [28]. The following rules

guide the preprocessing of abstract operation description.

Rule 1. If the action noun is present along with the generic

action then the generic action is replaced by specific action
which is related to the action noun and the action noun is

eliminated from the description.

Rule 2. If the action noun is found in the operation description

with no generic or specific action then the specific action of the

action noun is considered eliminating the action noun.

As an illustration, consider the abstract operation description

“prime number generation”. This description is transformed into

“generate prime number” which can be considered as a virtual

operation.

2.2 Flow Semantics for Web Service

Operations

The Web service can be viewed as collection of interdependent

or independent operations. For example, the travel Web service

may offer its services though the following three interdependent

International Journal of Computer Applications (0975 – 8887)

Volume 1– No.26, February 2010

3

operations namely (i) check train ticket availability (2) make

train ticket reservation (iii) cancel train ticket. We define a graph

structure called Operation Dependency Graph (ODG) which
represents the possible order of execution of operations of a

Web service.

Operation Dependency Graph (ODG). Operation dependency

graph is a directed acyclic graph with finite vertices which

represent the number of operations of a Web service. A directed
edge (u v) between any two vertices u and v indicate the

possible order of execution such that, the activity v is executed

after successful execution of activity u i.e. the activity v is

dependent on activity u.

The authors define two forms of activity dependencies called
weak dependency and strong dependency. The weak dependency

is found between any two supplementary operations or between

supplementary and core operation. The strong dependency is

found between any two core operations or between core and

supplementary operation. As an illustration, consider the Web
service “Tour Arrangement Service” involving five core

operations. The possible order of execution of activities can be

modeled using ODG as shown in Figure 1. The dotted lines in

ODG represent the weak dependency and thick circles represent

the core operations of Web service.

Fig 1: Operation Dependency Graph (ODG) of Web Service

The ODG of all published Web services are represented using

flow knowledge as follows.

Operation Predecessor List (OPL). Operation predecessor list

of an operation OP is a sorted list containing operations for

which OP is dependent on them i.e. list of operations which are
predecessors of OP in the ODG.

Operation Dependency List (ODL). Operation dependency list

is a sorted list with finite elements where each element contains

two fields namely operation identifier and opl-link; where, opl-

link is a pointer to OPL of an operation.

Figure 3 shows the snapshot of ODL after advertisement of Web

services. The operations Op 1 to Op10 of four Web services are

found in the ODG (Figure 2) of published Web services.

2.3 Extension of WSDL 2.0 Document

We extend the WSDL 2.0 [3] structure to publish the Web

services with functional semantics and flow semantics as

follows. We select the documentation element of the WSDL to

insert the information which is necessary for effective service

discovery and composition. We define a new tag called

operationDesc to insert the functional semantics of all abstract

operations present in the Web service. We also define flowDesc
element to insert operation dependencies. The extended WSDL

document with functional and flow semantics for the “train

reservation service” is depicted in Figure 4.

Fig 2: Operation Flow Structure of Published Web Services

Fig 3: Operation Dependency List (ODL) of Web Services

3. THE ARCHITECTURE FOR DYNAMIC

WEB SERVICE COMPOSITIONS
The authors propose broker based architecture for dynamic Web

service discovery and composition by introducing two new roles
to the conceptual architecture [1] with a few new operations

between different architectural roles. The architecture involves a

total of five roles. They are Service provider, Service requester,

Service composer (generic service provider), Service registry

and the Broker.

The register operation is defined between the provider and

broker. The provider registers service specific information

including WSDL to the broker for Web service publishing. The

publish operation is defined between the broker and service

registry which saves the service binding and WSDL details into
service registry. The find service operation is defined between

the service requester and broker to obtain candidate Web

services for a service request. The execute composition

operation is defined between the broker and service composer in

which the broker sends an abstract composition plan involving
Web services and their operations. The monitor functional

knowledge operation is defined between the generic service

provider and broker in which the domain analyst monitors the

functional knowledge updated by the service registrations. A

variety of update operations are defined between internal

International Journal of Computer Applications (0975 – 8887)

Volume 1– No.26, February 2010

4

components of the broker. Figure 5 presents the broker based

architecture depicting various architectural roles and operations.

Fig 4: Extended WSDL Document of Train Reservation

Service

3.1 Architectural Roles and Operations
Service Provider. Service provider is a responsible and

authentic business organization which registers its services with

the broker. A provider is allowed to register multiple services

into the service registry through the broker. On successful
service registration, the broker returns the service key to the

provider.

Service Requester. Service requester is either a business

organization or a person who intends to utilize the services

published by the provider. The service requester has to submit
the service request to the broker for the service discovery .

Service registry. Service registry (e.g. UDDI) is a repository

which stores the service deceptions including business details,

service details and binding information. The service registry

provides access to service information through interface

operations. The service registry also saves the WSDL link of the

published Web service.
Generic Service Provider (Service Composer). Service

composer is a business organization which executes the

requester’s complex requirements if they are not satisfied by the

available atomic or composite Web services. The service

composer first generates the executable composition plan by
refining the operation dependencies of abstract composition plan

based on parameter constraints and then executes a set of Web

service operations as defined by the composition flow.

Broker. Broker is a middleware which is responsible for service

registration, publishing, discovery and composition plan
generation. The broker is designed with major five architectural

components. They are Service publisher, Service discovery &

composition plan generator, Service knowledge, functional

knowledge and flow knowledge.

3.2 Broker Components and their Functions
Service knowledge component of the broker is interlinked data

structure which stores the abstract details of service i.e.

operations supported by the Web service and their input/output
details (discussed in next sub-section). The functional

knowledge is the structure which represents actions, action

nouns, qualifiers and domain objects of service domains. The

detailed functional knowledge structure is found in [28]. The

flow knowledge is the structure which represents the
dependency among various operations supported by numerous

Web services (refer section 2.2).

Service publisher component reads the Web service description

from the provider and updates the functional knowledge, flow

knowledge and service knowledge accordingly. The service
discovery and composition plan generator uses the functional

knowledge to map the requested abstract operations into virtual

operations present in service knowledge. If all the requested

operations are found in the single Web service then the Web

service key is returned to the requester. If there exists no single
Web service which fulfills the requested operations then the

composition plan generator uses the flow knowledge to build

abstract composition plan consisting of requested operations,

supplementary operations and candidate Web services. The

refined composition plan is then transferred to the generic
service provider for the execution.

3.3 Extended Service Knowledge Structure
For the effective Web service composition, we define additional
data structures called Input List (IL), Output List (OL) and

Parameter List (PL) as follows.

1. Input List (IL). Input list is a dynamic sorted array with finite

elements. Each element has two fields namely ws-id and op-id

where, ws-id is Web service identifier and op-id is operation
identifier. This list is sorted based on the Web service

identifier.

2. Output List (OL). Output list is a dynamic sorted array with

finite elements. Each element has two fields namely ws-id and

op-id where, ws-id is Web service identifier and op-id is
operation identifier.

3. Parameter List (PL). Parameter list is a dynamic sorted array

with finite elements. Each element has four fields namely

para-id, para-name, input-link and output-link. para-id is

International Journal of Computer Applications (0975 – 8887)

Volume 1– No.26, February 2010

5

unique identifier generated by the broker, para-name refers to

operation parameter name, input-link refers to pointer to IL

(Web service operations for which the parameter is input
parameter) and output-link is a pointer to OL (Web service

operations for which the parameter is input parameter).

Apart from these three interlinked structures, the service

knowledge also consists of two more interlinked structures

called Web Service List (WSL) and Service Operation Tree
(SOT). The definitions of these structures are presented in [29].

Fig 5: The Broker based Architecture for Dynamic Web Service Discovery and Composition

3.4 Assumptions
The proposed broker based architecture for efficient & effective
Web service discovery and composition is designed based on the

following assumptions.

1. The composite Web service provider has to advertise the

individual activities of composite Web service as

operations.

2. The provider of the Web service has to browse the

functional knowledge before the service registration in

order to use the existing functional knowledge or augment

the functional knowledge with additional related action,

object, noun and qualifier words.

3. Service provider has to use the formats of functional

semantics [28] to describe the Web service operations.

4. While publishing operations on new domain object, the

provider has to identify the object type.

5. The provider of the Web service has to supply related
words for objects, actions, qualifiers, and nouns during

Web service registrations to improve the effectiveness of

discovery mechanism.

6. While describing the operation description the provider

should provide the complete description (major domain

objects along with sub- objects) of the functionality.

7. The provider of the Web service has to precisely identify
the core and supplementary operations.

8. The provider and requesters have to avoid the use of plurals

of domain object and action.

9. The provider should describe the input and output

parameters of operations with generic parameter concepts.

10. The requester has to understand the request format for

fruitful discovery results.

4. WEB SERVICE DISCOVRY AND

COMPOSITION MECHANISM
In this section, the authors describe the Web service d iscovery

and composition mechanism designed for the broker based Web
service architecture.

4.1 Effective Web Service Discovery
The Web service discovery process for the simple or complex

service request is described below.

International Journal of Computer Applications (0975 – 8887)

Volume 1– No.26, February 2010

6

1. The service request is preprocessed according to functional

semantic rules to retrieve the functional requirement(s) of

service request.

2. The action list, qualifier list (if required), object list and

noun list (if required) of the functional knowledge are

searched to get the corresponding identifiers. The non-

availability of any identifier results in discovery failure.

3. After obtaining required identifier(s) from the functional
knowledge, the operation patterns for each task of the

service request are formed. After building the operation

patterns, the patterns are searched in virtual operation list

(VOL). If the pattern is found then the corresponding

operation identifier is retrieved from the VOL otherwise,
discovery failure is reported.

4. The abstract Web service information of all published Web

services is searched by traversing SOT (Figure 6) for the

requested operation identifier(s). The discovered Web

services are stored against the requested operations.

5. The Web services found common in all requested operation

(s) are selected as candidate Web services for the service

discovery and are returned to the requester.

The absence of a common Web service for all requested

operations triggers the composition mechanism which is
presented in the next sub-section.

4.2 Web Service Composition Mechanism
The composition mechanism to generate abstract composition
plan involving Web service operations for the complex service

request is described as follows.

1. Initialize the ODG (adjacency list) as empty graph

2. For each requested operation (op-id) do the following.

 Insert the op-id into ODG as a new node.

 Search in ODL for the presence of op-id.

If the op-id (say p i) is found with empty OPL then the

operation becomes the independent operation. If some
operations (pj) are found in OPL then do Step-3

3. For every operation (pj) in OPL of p i do the following

 If pj is present in request then, include the edge (p j-

>p i) in the resulting ODG (adjacency list) of

composition plan. Repeat step 3 for pj until p i is
reached or empty OPL is found or already visited

operation is encountered.

 If the pj is not present in request and pj is

supplementary operation then insert new node (pj) to
ODG and insert the edge (pj->p i). Repeat step 3 for pj

until p i is reached or empty OPL is found or already

visited operation is encountered.

 If pj is not present in request and pj is not
supplementary operation and there exist predecessors

pk and pm of pj, such that, pk is in request and pk->pm

then, insert the edge (p k->p i).

4. The candidate Web services for all supplementary

operations are now obtained by traversing SOT.

Fig 6: Discovering Web services from SOT & WSL

As an illustration, consider the service request involving five

operations {Op2, Op4, Op8, Op9, Op10} and four advertised Web

services as in Figure 2. Table 1 shows the discovered Web
services for the requested operations Op 2, Op4, Op8, Op9 and

Op10 through the Web service discovery algorithm (Figure 6).

Table 1. Operations and discovered Web S ervices

Operation Discovered Web services

Op2 WS1, WS2, WS3, WS4

Op4 WS1, WS2, WS3, WS4

Op8 WS2, WS4

Op9 WS2, WS3, WS4

Op10 WS3, WS4

Observed that, no single Web service is found common to all

requested operations. Thus, the broker generates the abstract

composition plan which is shown in Figure 7.

4.3 Refining Abstract Composition Plan
The abstract composition plan is now refined in sequence based

on the message exchange pattern (MEP) of Web service

operations, core and supplementary operations, Input and Output

parameters and quality of service (QoS) like reliability.

International Journal of Computer Applications (0975 – 8887)

Volume 1– No.26, February 2010

7

-*

Fig 7: Abstract Composition Plan

Plan Refinement based on the Message Exchange Pattern

Let M+K be the nodes of abstract composition plan (M= number

of requested core operations and K= number of supplementary

operations explored), Let G be the ODG of abstract composition

plan.

Step-1. For each node (S) in G, perform Step-2.

Step-2. For each directed edge from node S to node D (S→D)

 perform Step-3.

Step-3. Let CS be the Web services selected at S and CD be the

 Web services selected at D.

 Eliminate all the Web services at S having MEP

other than {Out-Only, Out-In, In-Out and Robust-

Out-Only}.

 Eliminate all the Web services at D having MEP
other than {In-Only, In-Out, In-Optional-Out,

Robust-In-Only and Out-In}.

Plan Refinement based on the Supplementary and Core

operation Relationship

For every pair of nodes in ODG say, S and D with a dependency
relation (S→D) or (D→S) where S represents supplementary

operation and D is core operation, eliminate the Web services

which are not common in S and D.

Plan Refinement based on the Input and Output Parameters

The parameter list, input list and output list of service
knowledge are used for the plan refinement. Let M O be the

nodes of ODG with zero out-degree and M I be the nodes with

zero in-degree.

Step-1. For every node pair (X, Y) such that, X Є MO and Y Є

 MI perform step-2.

Step-2. Let CX be the Web services selected at X and CY be

 the Web services selected at Y.

 If there exists one pair of Web services (CXi, CYj) such

 that, any one output parameter of CXi is input parameter

 of CYj then, insert an edge between node X and node Y.

Plan Refinement based on the Quality of Service (QoS)

Let W be the number of Web services attached to any node of

composition plan. The Web services with highest QoS score are

retained for the individual activities of composition plan. Now

the composition plan consists of nodes each having Web service
operation in it.

After refinement of the abstract composition plan it is

transferred to the generic service provider with plan identifier

and requester identifier. The service composer transforms the

refined abstract composition into executable composition plan

involving concrete service operations. This transformation is
performed based on the functional requirements defined on the

input and output parameters of the abstract operations.

5. EXPERIMENTATION
The prototype of the proposed broker based Web service

discovery and composition mechanism is implemented on the

Windows XP platform using Microsoft Visual Studio .NET

development environment and Microsoft visual C# as a

programming language. The broker is designed and
implemented as a standalone visual program which interacts

with the provider and requester through different interface

forms. The service repository is implemented as a Web service

which in turn communicates with the SQL server 2000 database.

The database table is created to store the information (including
WSDL link) of all published Web services.

The requester of a Web service can submit the simple request as

well as complex request through different interface forms. The

requester can also browse the functional knowledge for the

successful discovery of requested functionality. The requester
can browse the service knowledge i.e. operations supported by

the specific Web service. The prototype also displays the refined

composition plan to the requester along with the generic

provider key and composition plan key. The authorized provider

of Web services is allowed to browse and augment the
functional knowledge in order to improve the effectiveness of

Web service discovery. The interface form is created for the

provider to publish the Web service along with the WSDL. The

service publisher component of the broker processes the WSDL

to extract functional and flow information of operations after
publishing the Web service into service registry.

The authors have conducted several experiments involving

simple and complex service requests. We use a collection of 35

Web services having total of 60 distinct operations from

XMethods service portal (http://www.xmethods.com) [30] and
divide them into SIX categories. The Web service operations are

published to the broker using functional semantics. The simple

Web service requests are created according to the functional

semantic rules. The Recall and Precision of discovery process

are recorded. The recall of discovery is less than 100% as some
Web service descriptions take multiple functional semantic

representations. The precision is 100% provided both the

provider and requester precisely follow the functional semantic

rules. The service operation tree of published Web services also

take less memory which results in 30% compactness
(compression ratio). The complex service requests are also

created to test the effectiveness of Web service composition in

travel domain. We define few Web services in travel domain

and register them into broker with functional semantics, flow

semantics, input parameter concepts and output parameter
concepts of operations. The empirical results proved the

correctness of proposed composition mechanism defined on

functional and flow semantics of web service operations.

6. EXPERIMENTATION
The dynamic Web service discovery enables the requester to

consume the desired Web services. The service composition

satisfies the requester’s complex need by integrating available

Web services. The functional semantics and flow semantics of

http://www.xmethods.com/

International Journal of Computer Applications (0975 – 8887)

Volume 1– No.26, February 2010

8

Web service operations enable the effective Web service

discovery and composition mechanism. The service knowledge

component of broker represents the abstract Web service
information which facilitates the quick Web service discovery.

The proposed broker based architecture for Web services

facilitates effective & efficient Web service discovery and

composition through functional and flow semantics of Web

service operations. The paper also suggests the augmented
WSDL 2.0 to enable semantics based discovery and

composition. The empirical results prove the correctness of

concepts proposed for the Web service discovery and

composition.

7. REFERENCES
[1] H. Kreger, “Web Services Conceptual Architecture (WSCA

1.0)”, Published May 2001, [online] Available:

www.ibm.com/software/solutions/webservices/pdf/wsca.pd
f, [visit: April 2007].

[2] Riegen, C.V. (Ed), 2002. UDDI Version 2.03 Data

Structure Reference [online]. OASIS Open 2002-2003.

Available from: http://uddi.org/pubs/DataStructure-V2.03-

Published-20020719.htm [Accessed 8 November 2007].

[3] David Booth and Canyang Kevin Liu, “Web Services

Description Language (WSDL)” Version 2.0 Part 0:

Primer, W3C Recommendation, Published: 26 June 2007,

[online] Available: http://www.w3.org/TR/2007/REC-

wsdl20-primer-20070626, [visit: December 2008].

[4] Paul A. Buhler, Dominic Greenwood and George

Weichhart, “A Multi-agent Web Service Composition

Engine, Revisited”, In Proceedings of the 9th IEEE

International Conference on E-Commerce Technology and

The 4th IEEE International Conference on Enterprise
Computing, E-Commerce and E-Services (CEC-EEE

2007), IEEE 2007.

[5] Tao Yu and Kwei-Jay Lin, “A Broker-Based Framework

for QoS-Aware Web Service Composition”, In Proceedings

of the 2005 IEEE International Conference on e-
Technology, e-Commerce and e-Service, 2005. EEE '05,

pp. 22- 29, IEEE 2005.

[6] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu,

Marlon Dumas, Jayant Kalagnanam, and Henry Chang,

“QoS-Aware Middleware for Web Services Composition”,
IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 30, NO. 5, pp. 311-327, MAY

2004, IEEE.

[7] Boualem Benatallah, Quan Z. Sheng and Marlon Dumas,

“The Self-Serv Environment for Web Services
Composition”, IEEE INTERNET COMPUTING,

JANUARY • FEBRUARY 2003, pp. 40-48, IEEE.

[8] LIU AnFeng, CHEN ZhiGang, HE Hui and GUI WeiHua,

“Treenet:A Web Services Composition Model Based on

Spanning tree”, In Proceedings of the 2nd International
Conference on Pervasive Computing and Applications,

2007 (ICPCA 2007), IEEE 2007.

[9] Rajesh Karunamurthy, Ferhat Khendek and Roch H.Glitho,

“A Novel Business Model for Web Service Composition”,

In Proceedings of the IEEE International Conference on
Services Computing (SCC'06), IEEE 2006.

[10] Maja Vukovi´c, Evangelos Kotsovinos and Peter Robinson,

“An architecture for rapid, on-demand service

composition”, Journal of Service Oriented Computing and
Applications -SOCA (2007) 1:pp. 197–212, Springer-

Verlag London Limited 2007.

[11] Lukasz Juszczyk, Anton Michlmayr, Christian Platzer,

Florian Rosenberg, Alexander Urbanec and Schahram

Dustdar, “Large Scale Web Service Discovery and
Composition using High Performance In-Memory

Indexing”, In Proceedings of the 9th IEEE International

Conference on E-Commerce Technology and The 4th IEEE

International Conferenceon Enterprise Computing, E-

Commerce and E-Services(CEC-EEE 2007), IEEE 2007.

[12] Lian Li Ma Jun Chen ZhuMin and Song Ling, “An

Efficient Algorithm for Web Services Composition with a

Chain Data Structure”, In Proceedings of the 2006 IEEE

Asia-Pacific Conference on Services Computing

(APSCC'06), IEEE 2006.

[13] Dong-Hoon Shin and Kyong-Ho Lee, “An Automated

Composition of Information Web Services based on

Functional Semantics”, In Proceedings of the 2007 IEEE

Congress on Services (SERVICES 2007), IEEE 2007.

[14] Buhwan Jeong, Hyunbo Cho, Boonserm Kulvatunyou and
Albert Jones, “A Multi-Criteria Web Services Composition

Problem”, In Proceedings of the IEEE International

Conference on Information Reuse and Integration, 2007

(IRI 2007), pp. 379-384, IEEE 2007.

[15] Haiyan Zhao and Hongxia Tong, “A Dynamic Service
Composition Model Based on Constraints”, In Proceedings

of the Sixth International Conference on Grid and

Cooperative Computing(GCC 2007), IEEE 2007.

[16] Bart Orri¨ens, Jian Yang and Mike. P. Papazoglou, “A

Framework for Business Rule Driven Service
Composition”, LNCS, vol. 2814, pp. 52-64, Springer 2003.

[17] Zakaria Maamar, Soraya Kouadri Moste´ faoui, and Hamdi

Yahyaoui, “Toward an Agent-Based and Context-Oriented

Approach for Web Services Composition”, IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING, VOL. 17, NO. 5, MAY 2005, pp. 686-

697, IEEE.

[18] Maja Vukovi´c, Evangelos Kotsovinos and Peter Robinson,

“An architecture for rapid, on-demand service

composition”, Journal of Service Oriented Computing and
Applications -SOCA (2007) 1:pp. 197–212, Springer-

Verlag London Limited 2007.

[19] Daniela Berardi, Diego Calvanese and Giuseppe De

Giacomo, “Automatic Composition of e-

Services”,Technical Report”, [online]:
http://www.dis.uniroma1.it/~mecella/publications/eService/

BCDLM_techRport_22_2003.pdf, [visit]: April 2009.

[20] Shuchao Wan, Jun Wei, J ingyu Song and Hua Zhong, “A

Satisfaction Driven Approach for the Composition of

Interactive Web Services”, In Proceedings of the 31st
Annual International Computer Software and Applications

Conference(COMPSAC 2007), IEEE 2007.

http://www.ibm.com/software/solutions/webservices/pdf/wsca.pdf
http://www.ibm.com/software/solutions/webservices/pdf/wsca.pdf
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9634
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9634
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9634
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4365394
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4365394
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4365394
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4296570
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4296570

International Journal of Computer Applications (0975 – 8887)

Volume 1– No.26, February 2010

9

[21] Rachid Hamadi and Boualem Benatallah, “A Petri Net-

based Model for Web Service Composition”, In

Proceedings of the 14th Australasian database conference,
Pages: 191 - 200, ACM, 2003.

[22] Gunter Preuner and Michael Schrefl, “Requester-centered

composition of business processes from internal and

external services”, Data & Knowledge Engineering 52

(2005) 121–155, ScienceDirect-Elsevier.

[23] Bixin Li, Yu Zhou, Ying Zhou and Xufang Gong, “A

Formal Model for Web Service Composition and Its

Application Analysis”, In Proceedings of the 2007 IEEE

Asia-Pacific Services Computing Conference, IEEE 2007.

[24] Yang Xu and Youwei Xu, “Towards Aspect Oriented Web
Service Composition with UM L”, In Proceedings of the 6th

IEEE/ACIS International Conference on Computer and

Information Science (ICIS 2007), IEEE 2007.

[25] Youssef Gamha, Nacéra Bennacer, Lotfi Ben Romdhane,

Guy Vidal-Naquet and Bechir Ayeb, “A Statechart-Based
Model for the Semantic Composition of Web Services”, In

Proceedings of the 2007 IEEE Congress on Services

(SERVICES 2007), IEEE 2007.

[26] Eric Bouillet, Mark Feblowitz, Hanhua Feng, Zhen Liu,

Anand Ranganathan and Anton Riabov, “A Folksonomy -

Based Model ofWeb Services for Discovery and Automatic
Composition”, In Proceedings of the 2008 IEEE

International Conference on Services Computing, IEEE

2008.

[27] Philippe Balbiani, Fahima Cheikh and Guillaume Feuillade,

“Composition of interactive Web services based on
controller synthesis”, In Proceedings of the 2008 IEEE

Congress on Services 2008 - Part I, IEEE 2008.

[28] Demian Antony D’Mello and V. S. Ananthanarayana,

“Effective Web Service Discovery Based on Functional

Semantics”, Communicated to First International
Conference on Advanced Computing (ICAC 2009),

Chennai, December 2009.

[29] Demian Antony D’Mello and V. S. Ananthanarayana, “A

Tree Structure for Efficient Web Service Discovery”,

Communicated to Second International Conference on
Emerging Trends in Engineering & Technology (ICETET-

09), Nagpur, December 2009.

[30] XMethods, [online] Available: http:\\www.xmethods.com,

[visit: February 2009].

