
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

70

The Optimal Resource Discovery and Allocation Algorithm

for One hop Using Anonymous Arbitrary Topology
Mr.Srinivasan Nagaraj Mr.K.Koteswara Rao Mr.G Appa Rao Mr.TV Madhasudanarao Dr.GSVP Raju
GMR Inst. Of Tech. GMR Inst. Of Tech. GITAM University TPIST AndhraUniv
RAJAM-532127,India RAJAM-532127,India Vizag-530041India Bobbili,India Vizag-530041,India

ABSTRACT
A distributed system consists of, possibly heterogeneous,

computing nodes connected by communication network that do

not share memory or clock. One of the main benefits of

distributed systems is resource sharing which speeds up

computation, enhances data availability and reliability. However

resources must be discovered and allocated before they can be

shared. Virtual caching is a new caching scheme which allows a

host node to grant authority of caching pages in some fraction of

its own cache to nearby nodes. However the virtual caching

protocol doesn't mentions how a client node obtains virtual

cache from remote host. To address this problem we formulate a

resource discovery and allocation problem. We are focusing our

attention on how to locate resources-surplus donor nodes and to

determine how much of the request for resources of deficient

nodes will be satisfied, efficiently in a connected network

especially within a finite hop of the resource deficient node. We

intend to minimize the amount of unfulfilled request of deficient

nodes. Virtual cache allocation can be changed any time

depending upon the requirement. Hence the proposed heuristics

are efficient both in terms of time and amount of communication

performed.

We also estimate the quality of distribution achieved by

comparing the distribution yielded by the heuristics and by the

solution of ILP formulation of the problem. We propose and

compare few heuristics for minimizing the amount of unfulfilled

request for resources, of deficient nodes when nodes look for

resources within finite hops. In this paper we are restricting

ourselves to single hop only. For the bounded hops we restrict

ourselves to the resource distribution within one hop. By using

non-anonymous arbitrary topology with sequence number of

request to resolve deadlocks and distributing resources over the

original arbitrary network. Sequence number of the request is

the unique ID of sender node. We proposed a heuristic to

distribute resources over anonymous arbitrary topology by

passing a token . The token is privilege to distribute the

resources. Each resource - surplus node is giving its extra nodes

in such a way so that it itself doesn't becomes resource-deficient

in the process. Load is not infinitely divisible. We are focusing

our attention only to determine how much of the request of each

resource - deficient node will be satisfied.

Keywords:
donor, deficient, token, caching, optimal

Chapter 1
1.1 Introduction
A distributed system is a collection of loosely coupled

processors interconnected by communication network [21]. One

of the main advantages of the distribution system is resource

sharing. However in order to maximize the resource utilization,

they must be discovered and allocated efficiently. To make the

resource utilization more efficient caching is used. Virtual

memory systems may be viewed as caching secondary storage

data into faster main memories. Carrying this principle into

distributed systems, Virtual caching was proposed .In Virtual

caching allows a host node to grant authority of caching pages in

some fraction of its own cache to nearby nodes. Virtual caching

may be compared with virtual memory; in either case, there is a

larger accessible virtual address space, with mappings into

physical spaces outside the physical space of the accessing unit.

Virtual Caching scheme is a new caching scheme. In virtual

caching scheme, the cache granting node is called the virtual

host .Such a virtual host relinquishes control of some part of its

own cache space so that the same can be used by other nodes;

we call such other nodes virtual clients. Virtual hosts can be

considered as donor nodes which are having surplus resources.

Virtual clients can be considered as deficient nodes which need

resources. However the virtual caching protocol doesn't

mentions how a. client node obtains virtual cache from remote

host. We address this issue by proposing few heuristics and

studying their performances.

1.2 Resource Discovery and Allocation Problem

The virtual client nodes can be considered as deficient nodes as

looking for resources (cache) and virtual host nodes can be

considered as donor nodes willing to give resources (cache).

Under this paradigm we formulate the resource discovery and

allocation problem as follows.

Problem statement: There are n nodes in a connected

undirected network G=(V,E). Assume that each edge e =(i,j)

has an associated non negative real valued weight,

weight(e)=weight;,j' We assume that for all i and j,

weighf;.,j=weightj,i' Here weights represent the cost of com-

munication between the nodes. Each node ~ is having some

capacity (resource owned by the node) Ci and some

requirement (resource required by the node) ri. Capacity of each

node may be equal or less or greater than the requirement. For

sake of simplicity assume that sum of all capacities and

requirements over all nodes across the network are greater than

or equal; implying that total requirement can be met within the

network. Let R be set of all the nodes whose requirement of

resource is more than their own capacity i.e. R= {ni :ri>Ci} Let

S be the set of all the nodes whose capacity is more than their

requirement i.e. S={ ni : ri<Ci }. Let T = [tij] (where i=l..n and

j=1..n) be the transfer matrix denoting the amount of resource

which is transferred. ti,j < 0 means node ni will receive Ti,j units

of resources from node nj. ti,j > 0 means node ni will give Ti,j

units of resources to node nj.

Task is to devise an efficient algorithm (whose

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

71

communication complexity is less than O(N2)) to

minimize the sum,

 Σ((ri - Ci) + Σ (tij) under the constraint that

 niεR njεS

∀ ni E S, « Ci - ri) - Σ tij) >=0 i.e. we have to satisfy

 ∀ njεR

requirement of resource deficient nodes under the constraint

that nodes having surplus resources share resources among

resources deficient nodes in such a way that they themselves

don't become resource deficient. Also resource deficient nodes

can not more resources than their requirement.

We consider two versions of the above problem.

Problem 1 (bounded hops version) PI: In this version

resource-deficient nodes look for resources within finite hops.

Problem 2(unbounded hops version) P2: In this version, we

are not limiting the hops within which resource-deficient node

can look for the resources.

In order to compare the optimality of our resource

distribution algorithm we use the solution given by Integer

Linear Programming (ILP) as benchmark. Solution given by

(ILP) is the best solution which is possible under the restriction

of bounded hops. For the unbounded hops case optimal value of

the metric when sufficient resources are

available Σ (ri - ci) >=Σ(rj – Cj)is 0 otherwise the value of niεS

njεR

metrics is Σ (ri - ci) -Σ(CJ – RJ) .

 niεS njεR

We. compare the value of the metric yielded by these

benchmarks to the metric corresponding to our algorithms to

find the quality of distribution achieved. We put the constraint

that donor nodes give resources in such a way that they don't

become resource deficient. Also the deficient nodes don't accept

resources more than their requirement. we want to minimize the

amount of unfulfilled request of the deficient nodes under these

constraints within efficient message and time complexity. We

also formulate the resource discovery problem as an

optimization problem and solve it using an ILP solver. The

solution thus obtained is then compared with the distribution

achieved by the heuristics with respect to the amount of

unfulfilled request as the metric.

Chapter 2

2.1 Virtual Caching Scheme
2.1.1 Schematic of Virtual Caching
The idea of virtual caching is to get the sole authority to use

fraction of the cache space of nearby nodes (called virtual hosts

or simply hosts hereafter) which are presently not utilizing their

cache space in full. Such virtual hosts must be able to afford to

relinquish

control of the part of its own cache space that is to be used by

other node (called virtual clients or simply clients

hereafter)storing data in the cache.

More precisely, virtual cache of a node the virtual cache of a

node A is cache borrowed by node A from some other node B in

the network. A very active node A may reserve (borrow) some

part of the cache of some other node B which is perhaps not so

active and can afford to lend a part of its cache to A. This

reserved cache is called the virtual cache of node A at B. Nodes

A and B are called client and host, respectively. Note that the

client logically sees a much bigger cache than its physical cache.

When a client accesses a page, it first checks in its own physical

cache and then in its virtual borrowed caches in other host nodes.

As long as a part of cache space is given to a client by a

virtual host, only the client will have the authority to write (store

data) to the virtual cache. The virtual host, however is always

allowed to read the virtual cache in order to satisfy the page

request coming to it, i.e. if the requested page is not found in its

cache (non virtual part),then it will also search the virtual cache

(parts given to clients) to see if the page is there. If the page is

found, then it reads the page and satisfies the request. A virtual

host may give part of its cache to more than one client. Each

client will have read/write permission to the virtual cache

assigned to it. The virtual client host will have write permission

only to non virtual part of its own cache. Once the virtual cache

has been given to a client, only the client can read from or write

to the virtual cache allocated to it.

A client node can acquire virtual cache from more than one

virtual host. While receiving a request from client to retrieve

data from virtual cache, the host behaves as a virtual origin

server for that data object. However the above overhead

associated with virtual caching is not only well compensated

rather suppressed by reduction in average latency at the proxy

servers because of better cache sharing.

2.1.2 The Protocol
Following is the precise description of events and associated

actions for the client and the host nodes of the virtual caching

scheme.

CLIENT END EVENTS and ACTIONS

Event 1 :When a client node receives or generates a request for

a page. The client searches its cache (local cache and virtual

cache if any) for the page. Here the local cache means entire

physical cache, and by virtual cache we mean the table containing

list of pages stored in the virtual cache. We call this table the

virtual cache page table.

Case 1: Page is found in the cache.

Case 1.1: Page is available in the local cache.

Action: Request is to be satisfied by reading the page from the

cache in the conventional manner.

Case 1.2: Page is found in the virtual cache.

Action: Client sends a PAGE-RETRIEVE request with the

PageID to the host node.

Case 2: Page is not found in the cache (neither in virtual nor

in local cache). Action: Client sends a request for the page to the

upper level node in the caching hierarchy towards the origin

server.

Event 2:When a page is brought from the origin server. The

client decides if the page is to cached based on the diffusion

policy (such as D4, harvest or any other). If the page is to

cached then clients first tries to cache the page in its local cache.

Case 1: There is enough empty space in the local cache for

caching the page. Action: Cache tpe page in the local cache in

conventional manner.

 Case 2: The local cache is full

Action: Check if there is enough space available in the virtual

cache. If the client has virtual cache at more than one hosts then

this checking is done in the order of increasing cost in terms of

time of accessing the virtual cache. In other words, preference is

given to the virtual cache from where the cached page can be

retrieved faster. If enough space is available in the virtual cache,

then send the page to the host with a PAGE-INSERT request to

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

72

insert the page in the virtual cache, The client marks this page as

"sent to host for caching" and makes and entry about the page in

the acknowledgement table. This acknowledgement table lists

all those pages, which have been sent to some hosts for caching

in the virtual cache, but the acknowledgements have not been

received from the host.

Case 3: Clients finds that both its local cache and virtual

cache are full and there is no space in the cache to store the new

page.

Action: Decide which page to replace (choose the victim page)

considering pages in local as well as virtual caches all at a time.

This decision is taken on the page replacement strategy (LRU,

LFU, FIFO or other) followed,

Case 3.1: The victim page is in local cache.

Action: Replace the victim page with the new page in the

conventional manner.

Case 3.2: The victim page is in virtual cache.

Action: Send a PAGE-REPLACE request to the host along with

the new page to be cached and PageID of the victim page that is

to be replaced. Remove the entry for the victim cache page table

and mark the new page as "sent to host for caching", i.e. make

an entry about the page in the acknowledgement table.

Event 3 :When an acknowledgement is received from some

host.

Action: The client retrieves the pageID from the

acknowledgement and removes the page entry for that page

from the acknowledgement table and makes entry for the page in

the virtual cache page table (this table lists the pages cached in

its virtual caches).

HOST END EVENTS and ACTIONS

Event 1 :When the host receives a PAGE-RETRIEVE request.

Action: The host checks if the client is a valid client. If yes, then

it checks the page table for that, client. If page is found, then it

reads the pages and sends back to the client. In case the client is

not a valid client or the requested page is not found in the virtual

cache of the client, an error message is generated and sent to the

client.

Event 2 : When the host receives a PAGE-INSERT request.

Action: The host checks the validity of the client as done for the

event-l done above. If the client is a valid client, then it checks if

there is enough unused space in the virtual cache of the client to

the cache page. If yes, then it writes the page to the cache and

sends acknowledgement to the client that page has been cached.

It makes an entry for this page in the" page table for the client.

Event 3 :When the host receives a PAGE-REPLACE request.

Action: If the client is valid, then the host checks if the victim

page is there in the virtual cache of the client. If yes, then the

victim page is replaced by the new page received from the client

and an acknowledgement is sent to the client for this action.

However, if the victim page is not found in the virtual cache of

the client or the client is not a valid client, then an error message

is generated.

The client nodes can be considered as heavily loaded nodes

looking for the host nodes can be thought of as lightly loaded

nodes to give off their load. Looking the cache allocation from

this perspective we did an in-depth study of existing load

balancing algorithms.

2.3 Resource Discovery Algorithms

Resource discovery was first defined in [22],as the {ask to

compute the connected components in the underlying graph of

Go (where the underlying graph is the undirected graph obtained

from Go by removing the direction from all arcs). More

formally, The input to the problem is a directed graph Go(V,Eo).

Each vertex (network node) knows (has a list of) all its outgoing

arcs (but not its incoming arcs). A distributed algorithm is said

to solve the Resource Discovery Problem if the following

applies to every weakly connected component C in the directed

graph G when the algorithm terminates:

(a) there exists a vertex (termed root) v in C such that for every

other vertex u in C, G contains a directed arc (v, u) (or in other

words, v knows all the ID's in C);

(b) every vertex u in C "designates" vertex v as the unique root

of the component (in the implementation a variable called

PTR(u) is set to the ID of v).

2.3.1Flooding Algorithm
According to [22], this algorithm is widely used by internet

routers and where every node acts as a transmitter and receiver

and every node tries to send every message to every node of its

neighbor, a newly added new edge is not used for any

communication, direct communication exists only in between

initially existing set of neighboring edges of the network. The

required number of rounds of this algorithm is equivalent to the

diameter of the graph. So H archal et. al claimed that this

algorithm can be very slow if not started with a graph, which has

small diameter.

2.3.2 The Swamping Algorithm
According to [22], swamping algorithm is similar to flooding

algorithm except this algorithm allows a node to connect with all

of its current neighbors, not only with the set of initial neighbors.

Harchal et. at. suggested that the main advantage of this

algorithm is this algorithm needs O(/og n) rounds to conyerge to

a complete graph and which is irrespective to the initial

configuration. However the disadvantage is communication

complexity of this algorithm grows very quickly.

2.3.3 The Random Pointer Jump Algorithm
In this algorithm, in each round, each node contacts with a

random neighbor, and then this random neighbor sends all of its

neighbors to the sender node. Finally sender neighbor and

random neighbor's neighbors get merged. [22] claimed that a

strongly connected graph with n nodes needs 9(n) complexity

time to converge to a complete graph.

2.4 Load Distribution Approaches

Livny and Melman [13] showed that probability P that the

system is in a state in which atleast one task is waiting for

service and atleast _one server is idle is high, indicating good

potential for performance improvement through load distribution.

At high system utilizations, the value of P is low as most servers

are likely to be idle, which indicates lower potential for load

distribution. Similarly at low system utilizations, the value of P

is low as most servers are likely to be idle, which indicates

lower potential for load distribution. Load distribution seeks to

improve the performance of the distributed system usually in

terms of response time or resource availability by allocating

workload amongst a set of co-operative hosts.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

73

2.4.1 Load Balancing

Load Balancing tries to ensure that every processor in the

system does almost the same amount of work at any point of

time. Processes might have to be migrated from one machine to

another even in the middle to ensure equal workload.

Algorithms for load balancing have to heavily rely on the

assumption that the information available at each node is quite

accurate, in order to prevent processes from being endlessly

circulated about the system.

2.4.2 Load Sharing
Load sharing scheme {2] is a weaker version of the load

balancing which tries to initiate a process to lightly loaded node

and hence distribute the overall load of the system to its

individual nodes using only non-preemptive transfer of

processes. Although load sharing doesn't ensure equal workload

for every node in the system, it is easier to implement and ,can

more easily accommodate heterogeneity in the system.

2.4.3 Hierarchical Balancing Methods
The Hierarchical Balancing Method organizes system into

hierarchy of balancing domains, thereby decentralizing the

balancing process. Specific processes are designated to control

the balancing operations at different level of hierarchy. The

hierarchical scheme distributes the load balancing

responsibilities to all the processors in the system. It is effective

for balancing local load imbalances as well as excessive global

balances.

2.4.4 The Gradient Model
The basic concept of this approach is that under-loaded

processors inform other processors in the system about their

state and over-loaded processors responds by sending a portion

of their load to their nearest lightly loaded processors in the

system. The resulting system is the form of relaxation where

task migration through the system is guided by the proximity

gradient and gravitates towards the under-loaded points in the

system. The scheme is based on two threshold parameters: the

Low Water Mark (LWM) and High Water Mark (HWM). A

processor state is considered lightly loaded if its load is below

LWM and heavily loaded if its load is above HWM, and

moderate otherwise. A node proximity is defined as the shortest

distance from itself to the nearest lightly loaded node in the

system. On the basis of proximity the transfer decision are taken.

2.4.5 Nearest Neighbor Algorithm
With nearest neighbor load balancing algorithms, a processor

makes balancing decision based on localized workload

information and manages workload within neighborhood.

Nearest neighbor load balancing algorithms rely on successive

approximation to global uniform distribution; hence each

operation need only be concerned with direction of workload

migration and the issue how to apportion excess workload. The

diffusion and dimension exchange methods that fall in this

category are discussed. With diffusion method, a heavily or

lightly loaded processor balances workload with all of its

neighbors simultaneously in load balancing operation. Cybenko

[20] showed that diffusion method eventually coerce any initial

workload distribution into global uniform distribution in static

situation "in which no workload are generated or consumed

during load balancing. Although the result of both theoretical

and experimental study point to the superiority of dimension

exchange methods in hypercubes, it might not be the case for

other popular networks [1]. The most of the study is made about

the synchronous implementation of these algorithms. Local

average diffusion and optimally tuned diffusion are the modified

diffusion methods. Dimension Exchange methods outperform

diffusion methods in synchronous implementations.

Dimension Exchange Algorithm:

With the dimension exchange method, a processor in need of

load balancing balances its workload with its neighbors one at a

time a new workload index is computed, which will be used in

subsequent pair wise balancing [10].

With the dimension-exchange method, any processor which

invokes a load balancing operation balances its workload with

its neighbors successively. For a processor i, it works in the

following way.

 f=for(c=1;c~d(i);c++) Wi = Wi + ג(WjC - Wi)

where jcεA(i); and 0<1>ג, called the dimension-exchange

parameter, is given a fixed value beforehand which determines

the fraction of excess workload to be migrated between a pair of

processors. The formula says that a balancing operation in the

dimension-exchange method comprises d(i) pair wise balancing

steps for processor i where d(i) is the degree of node i. At each

step, processor i balances its workload with one of its neighbors,

and uses the new result for the subsequent balancing. It is

because of the sequential nature in the sequence of balancing

steps, a load balancing operation requires d(i) communication

steps in both the all-port and the one-port communication

models. The efficiency of the dimension-exchange method is

determined by the dimension exchange parameter. A dimension-

exchange operation with different choices of the parameter will

reduce the workload variance of the system by different degrees.

Two choices of the parameter have been suggested as rational

choices in the literature,

a) Average dimension exchange (ADE)

b) Optimally tuned dimension exchange (ODE)
The dimension exchange method can be implemented without

difficulty in cases where only a few processors that are not close

to each other are in need of load balancing at the same

time .However its synchronous implementation requires

processors to be coordinated in order to parallelize balancing

operations along different communication channels as well as to

avoid communication collisions. The parallelization of pair wise

balancing operations can be realized by partitioning the set of

edges into a number of subsets such that no two adjoining edges

are in the same subset. The pair wise balancing steps along the

channels in the same subset can then be performed concurrently

without collisions. Such graph partition is equivalent to the

problem of edge coloring of graphs.

Diffusion Exchanged Algorithm

With the diffusion method, a heavily or lightly loaded processor

balances its workload

with all of its nearest neighbors simultaneously in a load

balancing operation [1].

With the diffusion method, any processor which invokes a load

balancing operation compares its workload with those of its

nearest neighbors, and then gives away or takes in certain

amount of workload with respect to each of nearest neighbors.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

74

The diffusion operator in a processor i can be written in the

form

Fi(.) == Wi + Σαij(Wj – Wi)

lεA(i)

where 0 < αij < 1,called the diffusion parameter, is predefined

to dictate the portion to be migrated between any two processors.

Processor i apportion excess workload

I Wj – Wi l to processor j if Wj >Wi, or fetches some workload

from processor j otherwise. Clearly, a load balancing operation

with the diffusion method requires only one communication step

in the all-port communication model, but d(i) steps in the one-

port communication model. As in the dimension-exchange

method, the efficiency of the diffusion method is determined by

the diffusion parameter. Following are two common choices of

the parameter.

a) Local average diffusion(ADF) b)optimally tuned diffusion

(ODF)

3. Resource Discovery and Allocation

algorithms for Bounded Hops
3.1 Problem Statement
In the bounded hops version, of the problem there is a bound on

the hops for the resource deficient nodes to look for resource-

surplus nodes in the network.. Resource deficient nodes can look

for resources with a finite number of hops only. Clearly, such a

solution obtained doesn't give an optimal result.

Problem P 1: - Resource discovery and allocation problem for

finite hops.

There are n nodes in a connected undirected network

G=(V,E). Assume that each edge e =(i,j) has an associated non

negative real valued weight, weight(e)=weightij. We assume that

for all i and j, weightij.= weighiij.. Here weights represent the cost

of communication between the nodes. Each node 1li is having

some capacity (resource owned by the node) Ci and some

requirement (resource required by the node) Ti' Capacity of each

node may be equal or less or greater than the requirement. For

sake of simplicity assume that sum of all capacities and

requirements over all nodes across the network are greater than

or equal; implying that total requirement can be met within the

network. Let R be set of all the nodes whose requirement of

resource is more than their own capacity i.e. R= {ni : ri> ci;}.

Let S be the set of all the nodes whose capacity is more than

their requirement i.e. S={ ni : ri<ci }. Let T = [tij] (where i=1..n

and j=1..n) be the transfer matrix denoting the amount of

resource which is transferred. Tij < 0 means node ni will receive

Tij, units of resources from node nj. tij > 0 means node ni will

give Tij units of resources to node nj.
Task is to devise an efficient algorithm (whose communication

complexity is less than O(N2)) to minimize the sum, Σ ((ri-

ci)+ Σ tij)

 niεR njεS

under the constraint that∀ ni ε S,((ci -ri)- Σ tij)>=0 i.e.

 ∀ njεR

we have to satisfy requirement of resource deficient

nodes under the constraint that nodes having surplus resources

share resources among resources deficient nodes in such a way

that they themselves don't become resource deficient. Also

resource deficient nodes do not accept more resources than

their requirement i.e.

∀ ni ε R,(ri- ci) - Σ tij)>=0.

 ∀ ni ε S

In order to compare the optimality of our resource distribution

algorithm we are using the solution given by Integer Linear

Programming (ILP) as benchmark. Solution given by (ILP) is

the best solution which is possible under the restriction of

bounded hops. In this study we are solving the problem for 1

hop.

3.2 Model of Computation
We consider message passing systems with no failures. In a

message passing system, processors communicate by sending

messages over communication channels, where each channel

provides a bidirectional connection between two specific

processors. furthermore, we assume our timing model to be

synchronous, i.e. processes in the system run in lock step

manner, where in each step, a process receives messages (sent to

it in the previous step), performs a computation, and sends

messages to other processes (received in the next step). In

synchronous computation, a process knows all the messages it

expects to receive messages and perform computation at any

time.

3.3 In case of Non-Anonymous Arbitrary Topology
Resources are distributed in the overlapping balancing domain

by allowing them to proceed in circular wait condition. We had

also seen that this approach may cause deadlock We can also

avoid deadlocks by preventing circular wait condition from

occurring. One way to ensure circular wait condition never holds

is to impose a total ordering of all I_AM_STARTING requests

sent by donor nodes and to require that each deficient node

Sends an OK message in increasing order of enumeration of the

request. This can be easily done by assuming that each node in

the network has a unique ID (which can be thought of as an IP

address) and by associating this ID with each message sent by

the node. So when a deficient node receives L_AM_STARTING

messages from more than one donor node, a deficient nodes

sends an OK message to the donor nodes in their increasing

order of IDs of the respective sender nodes. The overlapping

balancing domains proceed one after the other. After the

distribution occur in each balancing domain, it sends an

LAM_DONE message. When the root of the spanning tree

receives LAM_DONE message from all the balancing domains,

it knows that the resource distribution has finished in the

balancing domains and consequently sends Terminate message.

4. Proposed Algorithm for Anonymous Arbi-

trary Topology
In this algorithm , each node at some point of the time

holds a token called DELEGATKLEADERSH1P _TOKEN.

The node which has the token is the leader and has the

privilege to delegate leadership by passing the token. The

leader can distribute resources if all of its children have

been visited. When the token visits each node takes some

decision depending upon the-fact that the receiver node is a

donor node or deficient node. If the receiver node is a donor

node, it distributes its surplus resources among its

immediate deficient neighbors. Otherwise if the receiver

node is a deficient node, it just forwards the token. The

token traverses the node of the spanning tree in a post order

so that each node receives the token at most twice. The idea

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

75

behind using the post order traversal is that we want a node

to distribute resources only if all of its child nodes have

distributed resources. .

The proposed algorithm for anonymous arbitrary topology

works in two phases.

1. Spanning Tree Construction: A distributed spanning tree

construction algorithm converts the arbitrary topology into a tree

topology. In the spanning tree, each node is aware of its parent

and of its immediate child nodes.

2. Resource Distribution Phase: Initially root node r of the tree

is having the DELEGATKLEADERSHIP _TOKEN. Root node

then sends the token to one of the unvisited child node i. Upon

receiving the token, the unvisited node i marks itself visited. If

the node i has some unvisited child node j it forwards the token

to it. Otherwise if the node i has no unvisited child node it

distributes the resources among its immediate neighbors.

Resource distribution is done as follows. The donor node i

first sends LAM_STARTING message to all of its resource

deficient neighbors. Each deficient neighbor node upon re-

ceiving the message sends OK message along with its amount of

resources requirement. Upon receiving OK messages from all

the deficient neighbors, the donor node serves request according

to the priority of their respective sender node. Priority of the

sender node is inversely proportional to the number of its donor

neighbors. The donor node the sends GIVE messages along with

the amount of resources given to all its immediate deficient

neighbors to distribute the resources. After resource distribution,

the donor node sends DELEGATE-LEADERSHIP _TOKEN

message to its parent, if no parents exists the root node sends

TERMINATE message to all of its children to indicate the

termination of the algorithm.

4.1Pseudocode of the Proposed Algorithm for
the Resource Distribution Phase Anonymous
Arbitrary Topology
Resource distribution phase starts when the node receives

TERMINATE_PHASELMSG of spanning tree construction

phase. TERMINATE-PHASELMSG marks the end of spanning

tree construction phase and the beginning of resource

distribution phase.

Initial state at all nodes at the beginning of resource

distribution phase

{

Each node knows which of its neighbors are its parent and

children in the spanning tree. Each node also knows which

nodes are its immediate neighbors and. whether they are donor

nodes or Deficient nodes. Root node is having the

DELEGATE_LEADERSHIP _TOKEN.

}

When a node has a DELEGATE-LEADERSHIP _TOKEN

{

If all of the children of receiver node have been visited {

If the receiver node is donor node. {

If resource deficient node exist. {

Send LAM_STARTING_MSG to all the currently deficient

nodes. Note that it is possible that node which were deficient

earlier are no longer deficient, as they could have got resources

from some other donor nodes.

}

Else if no resource deficient neighbors exist {

Send to TERMINATE message to all the children,

if the receiver node is ROOT node.

Otherwise send DELEGATE_LEADERSHIP _TOKEN to the

parent node.

}

}

Else if the receiver node is a deficient node

{

If the receiver node is ROOT node

{ Send TERMINATE message to all the children.

}

If the receiver node is not the ROOT node {

Mark the receiver node has been visited.

Send DELEGATE_LEADERSHIP _TOKEN message to the

parent.

} }

}

Else if the some children of the receiver node are unvisited

{

Send DEl.EGATE_LEADERSHIP -TOKEN message to

the unvisited child node.

}

}

}

When a node receives I_AM_STARTING_MSG

{

Receiving node marks LAM_STARTING~ISG has been

received. Mark that the reply OK message has been sent and

send OK message to sender node.

}

When a node receives OK_MSG

{

Record the number of neighboring donor nodes, sender node has.

Mark OK_MSG has been received from the sender node.

If Receiver node has received all OICMSG from neighboring

resource (as of now) deficient nodes

{

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

76

Sort deficient neighboring nodes in ascending order

of number of donor nodes they have.

(This is the decreasing order of the priority of resource deficient

nodes.)

For each of the neighboring deficient node, if their OK_MSG

contains some request for resources(≥ 0)

{ send GIVE_MSG with resources given in decreasing order of

priority. }

If receiving node is a ROOT node.

{ Send TERMINATE message to all of its children.

}

Else if receiving node is not a ROOT node.

{ Send DELEGATE_LEADERSHIP _TOKEN message to the

parent.

} }

 Else { Wait for all OK_MSGs to arrive.

}

}

When a node receives GIVE_MSG

{

Receiver node marks GIVE_MSG has been received from the

sender node. Receiver node records the amount of resources

received from the sender node.

}

When a node receives TERMINATE_MSG

{

Send TERMINATE_MSG to all its children.

}

4.2 Complexity Analysis of the Resource
Distribution Phase of the Proposed 1- Hop
Algorithm for Anonymous Topology

Message Complexity: Resource distribution in each balancing

domain requires passing of constant number of messages on

each edge between donor node and deficient node. To be more

precise during resource distribution at most 5 messages pass

over each edge (1 LAM_STARTING message, 1 OK message

and 1 GIVE message, 1 LAM_DONE message, 1 TERMINATE

message). If Nd is the number of donor nodes and K is the

maximum degree of a donor node (in the tree topology). Then

message complexity of the resource distribution phase of the

algorithm is O(Nd K) which in turn is O(E) as all the resources

are distributed along the edges of the network.

Bit Complexity: Each message has 0 (log N) bits for

representing the node to which the message is meant. Each node

also contains O(SIZE) bits for representing the amount of

requirement and capacity of resources where SIZE is a constant.

So size of each message is O(log N + SIZE).

Therefore bit complexity of the resource distribution phase is

O(N(log N +SIZE)) i.e. O(N(log N)) bits.

Time Complexity: Load distribution in singular domain takes
0(1) time. Overlapping domains in which resource-surplus nodes

are adjacent also share resources as singular domains and hence
take 0(1) time. However overlapping domains in which
resource-surplus nodes are non adjacent, proceeds one after the
other synchronously. Resource distribution takes O(Ko) time
where KO is the maximum number of overlapping domains.
Time taken by token DELEGATE-LEADERSHIP _TOKEN
return to the root node after visiting all the nodes of the network
is O(N). Thus overall time complexity of resource distribution
phase for anonymous network is O(KO + N) which is O(N).

5. Conclusion :
In this paper to address the virtual cache allocation problem, we

formulated a general resource discovery and allocation problem.

This formulation is general in the sense that we haven't made

any assumption specific to cache distribution and hence the

proposed heuristics can be used to distribute any static resources.

we presented the basic scheme and protocol of virtual caching

scheme. Different recent resource discovery algorithms, load

distribution approaches were presented. Clearly none of the

load distribution and resource discovery approaches could be

applied to the problem we have formulated to minimize the

amount of unfulfilled request of deficient nodes. By using non-

anonymous arbitrary topology with sequence number of request

to resolve deadlocks and distributing resources over the original

arbitrary network. Sequence number of the request is the unique

ID of sender node. The basic assumption that each node in the

network has a unique ID in the non anonymous algorithms has

been relaxed here. So, each node in the network may not nec-

essarily have unique ID. We proposed a heuristic to distribute

resources over anonymous arbitrary topology by passing a

token .The token is privilege to distribute the resources. We

gave a complete complexity analysis of the proposed algorithms.

6. REFERENCES:
1) [1] Xu, B. Monien, R. Luling, F. C. M. Lau : Nearest

Neighbour Algorithms for Load Balancing in Parallel

Computers Concurrency: Practice and Experience,

Vol. 7, No.7, pp. 707-736, Oct. 1995..

2) [2] Yung Wang and Robert Morris: Load Sharing in

Distributed Systems. IEEE Trans. on Computers, pp

204-217, March 1985.

3)

3] Jorge Escorcia, Dipak Ghosal, Dilip Sarkar: A

novel cache distribution heuristic algorithm for a mesh

of caches and its performance evaluation. Computer

Communications 25(3): 329-340 (2002)

4) {4] Joydeep Chandra: Analytic and Simulation studies

on Effect of Distribution of Caches in Networks.M.

Tech. Thesis, Department of Computer Science and

Engineering, Indian Institute of Technology,

Kharagpur, 721302, India, Jan. 2002.

5) [5] Mohapatra, Pradosh. : Fully Sequential and

distributed dynamic algorithms for Minimum

Spanning Tree. Computing Research Repository,

Feb .2000.

6) [6] Santoro, N. : On the Message Complexity of

Distributed Problems Int. Journal of Compo and In!

Sci. 13. 1984, pages 131-147

7)

7] Casavant, T.L., and Kuhl J.G.: A Taxonomy of

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

77

Scheduling in General Purpose Distributed Computing

Systems. IEEE Transactions on Software Engineering,

VOL

8) 1

4, No 2, February 1988

9) [8] Bubendorfer, K.P : Resource based policies for

load distribution Ph.D Thesis, Vic toria

University of Wellington, August 1996..

10) [9 Balter, Harchol and, T. Leighton, and D. Lewin:

Resource Discovery in Distributed Networks. In Proc.

15th ACM Symposium on Principles of Distributed

Computing,Technical May 1999 pp229-237

11) [10 RG.Gallager, P.A. Humblet, and P.M. Spira: A
distributed algorithm for minimum weight spanning

trees A CM transactions on Programming Language

and Systems,PP66-77.

