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ABSTRACT 
The comparison study is drawn  between  two widely used 
motif representations i.e. Positional Weight Matrices (PWM) 
and Consensus Sequences. In the case of motif finding, where 
the binding sites are not known a priori but the algorithm must 
search a large space of possible binding sites, the PWM model 
may be difficult to learn as the search space is very large even 
for the PWM of short length (RN for a PWM of length N, 
where R is the space of real numbers between 0 to 1).  
Optimization methods used to search for the best PWM may 
converge to a local minimum.  On the other hand the 
consensus sequence has a smaller search space (15N for a 
motif of length N) which is easier to search for the global 
optimum.  
  

INTRODUCTION 
The control or regulation of gene expression governs how 
much quantity of a particular protein is produced in a cell. The 
regulation is primarily achieved by turning on or off the 
transcription of genes. Most protein coding genes are 
transcribed by RNA polymerase II. However eukaryotic RNA 
polymerase cannot initiate transcription on its own.  It 
requires the assistance of other proteins called transcription 
factors for initiating transcription.  Any protein that is needed 
for the initiation of transcription, but which is not itself a part 
of RNA polymerase, is called a transcription factor (TF).  
Thus TFs play an important role in regulating transcriptional 
initiation, and hence gene expression. 
Many TFs bind to DNA at specific sites, from where they 
collaborate with RNA Polymerase and with other TFs.  A TF 
recognizes its specific binding site on DNA by the nucleotide 
sequence or pattern.  The exact nucleotide sequence that is 
recognized varies for different TFs.  It is of fixed length, 
usually ranging between 5-20 bp. A noteworthy feature is the 
ambiguity of the binding sequence. A TF can bind to a 
number of similar looking sequences with different binding 
affinities.  Some positions in the binding sequence are highly 
conserved.  Base substitutions in these positions can reduce or 
completely eliminate the TF binding.  Whereas some other 
positions in the binding sequence are relatively less conserved 
and can be mutated without affecting the binding affinity.  
This ambiguity is useful as it allows different degrees of 
interaction with the TF at different DNA sites according to the 
binding affinity, which in turn results in different expression 
levels of various genes regulated by the same TF. 
The nucleotide preferences of a TF at different base positions 
are described by a motif.  A motif is a model that essentially 
captures the common features of the binding sequences of a 
TF.  Many motif representations are available in the literature 
[references].  However, in practical usage two motif 
representations are frequently encountered: 

i)  Positional weight matrices (PWM) [Stormo et 

al.], and, 

ii)  Consensus sequence [Wasserman et al.]. 
In this study, experiments on a large number of transcription 
factors have been performed to study which model can more 
effectively represent their binding preferences under various 
situations. Based on this study, some general conclusions are 
drawn concerning the suitability of these two models.  The 
conclusions of this study are meaningful to any bioinformatics 
study concerning motif representation or motif finding. 
 

Method 

This section describes the methods used in this study to learn 
and test the different motif representations.  The PWM and 
consensus representations are described first.  Then a 
description of the cross-validation experiments performed to 
estimate the goodness of these two models is given.  The 
criteria used to evaluate the methods, viz. sensitivity or true 
positive rate (TPR), false positive rate (FPR) and receiver-
operating characteristics (ROC), are also explained. 

 

The PWM Representation 

The positional weight matrix (PWM) [Stormo et al. (1982), 

Stormo (2000)] is a numerical representation of the binding 
preferences of a TF.  It records the base preferences at each 
position of the binding sequence of the TF. Let the binding 
sequence of the TF be of length l.  The PWM for this TF is a 

matrix of dimensions 4×l  whose each cell ,b jw  records the 

relative preference or weight of the base { }, , ,b A C G T∈  

at the position { }1,2, ,j l∈ K of the binding sequence.  

For instance consider the 15 bp long binding sequences of the 
transcription factor NF-Y shown in Figure 1(a).  The 

frequency matrix ,b jF f =    for these sequences is shown 

in Figure 1(b), where ,b jf  is the relative frequency of base 

b  at position j  in the sequences.  The positional weight 

matrix ,b jW w =    is shown in Figure 1(c).  The weight  

,b jw  is calculated as 

   

 ,  (1) 

 

 
where bp  is the background frequency of the base b in the 

genome1. 
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Position →→→→ 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Seq 1 C T T G G C C A A T C A G A A 

Seq 2 T T C A G C C A A T C G G A G 

Seq 3 C G C G G C C A A T C A G C G 

Seq 4 T T T A G C C A A T C A G C T 

Seq 5 C C T G G C C A A T C A G C G 

Seq 6 C C C G G C C A A T C A G C G 

Seq 7 G T T A G C C A A T C A G C A 

Seq 8 A T C A G C C A A T G A G C T 

Seq 9 C C C A G C C A A T C A G A G 

Seq 10 C T C A G C C A A T G G G C G 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 0.1 0 0 0.6 0 0 0 1 1 0 0 0.8 0 0.3 0.2

C 0.6 0.3 0.6 0 0 1 1 0 0 0 0.8 0 0 0.7 0

G 0.1 0.1 0 0.4 1 0 0 0 0 0 0.2 0.2 1 0 0.6

T 0.2 0.6 0.4 0 0 0 0 0 0 1 0 0 0 0 0.2

(a)

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

-0.32 -1.01 -1.01 0.93 -1.01 -1.01 -1.01 1.39 1.39 -1.01 -1.01 1.19 -1.01 0.37 0.09

C

0.93 0.37 0.93 -1.01 -1.01 1.39 1.39 -1.01 -1.01 -1.01 1.19 -1.01 -1.01 1.07 -1.01

G

-0.32 -0.32 -1.01 0.60 1.39 -1.01 -1.01 -1.01 -1.01 -1.01 0.09 0.09 1.39 -1.01 0.93

T

0.09 0.93 0.60 -1.01 -1.01 -1.01 -1.01 -1.01 -1.01 1.39 -1.01 -1.01 -1.01 -1.01 0.09

(c)
 

Figure 1:  A small sample of binding sites for the transcription factor NF-Y. 

 
Given a new sequence, the PWM can be used to evaluate 
the binding affinity of the TF to this sequence.  The 
binding affinity is represented by the matrix score.  The 
matrix score of a sequence S of length l is calculated as 

, 

where ,b jW w =    is the PWM of the TF, 

 is the base at position j in the 

sequence S, 
min j  is the base which has the minimum 

weight at position j of the PWM, and 
max j  is the base 

which has the maximum weight at position j of the 
PWM.  The matrix score is a real number within the 
range [0,1].  The process of calculating the match score 

of a sequence S against a given PWM W is usually 
referred to as matching the sequence S with W. 

If the matrix score for the sequence S exceeds a certain 
threshold t, the sequence is said to be a valid binding 
sequence of the TF.  The threshold t is calculated based 
on p-value which states the likelihood of obtaining a 
score higher than t by chance.  The p-value is computed 
with the help of a background sequence set.  The 
background sequence set represents the average 
composition of the genome.  It could consist of 
sequences chosen randomly from the genome, or 
sequences generated by a Markov model trained on the 
genome [reference for RSA tools].  By matching a large 
number of background sequences (~1,000,000 
sequences) to the PWM, the chance distribution of the 
match score is obtained.  The nature of the match score 
distribution varies according to the PWM, but in general 
it resembles the distribution shown in Figure 2.  The area 
under the distribution beyond t gives the chance 
probability of obtaining a match score higher than t.  
This chance probability is the p-value of the score t.  Or 
stated simply, 
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We choose the threshold t for the PWM corresponding to a standard p-value cutoff of 0.001 or 0.0001. 
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Figure 2:  Match score distribution 

The Consensus Representation 

The consensus sequence model only specifies the set of valid 
binding sequences of a TF using a regular expression or other 
notations.  It does not provide any numerical measure of the 
binding affinity.  In other words, it only specifies which 
sequences are bound and which sequences are not bound by 
the TF.  Two consensus notations are popular.  The first 
notation uses the IUPAC nomenclature of single letter codes 
(Figure 3) to represent the allowed bases at any particular 
position in a binding sequence.  The second notation states the 
most common (or highest affinity) binding sequence of the TF 
and specifies the maximum number of base substitutions that 
are allowed in the binding sequence [Pevzner and Sze (2000)].  
This notation assumes that all positions are equally open to 
base substitution.  In this study, we have used the first 
notation which uses IUPAC nomenclature, as it is closer to 
the biological understanding. 

There are several ways of generating an IUPAC consensus 
sequence from the data of known binding sites of a TF [Day 
and McMorris (1992)]. For instance in one of the approaches 
a base is considered significant at a position if it occurs in any 
one of the binding sites.  In another approach a base is 
considered significant at a position only if it occurs in more 
than 25% of the binding sites [Daniels and Deininger (1991)].  
The former approach is more inclusive while latter approach 
is more accurate.  We have chosen the latter approach in this 
study due to its better accuracy.  An illustration of generating 
the IUPAC consensus sequence in this manner corresponding 
to the binding site data of Figure 1(a) is shown in Figure 3. 

Given a new sequence, the consensus model can determine by 
direct comparison with the consensus sequence whether it is a 
valid binding sites for the TF

. 

Position →→→→ 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Seq 1 C T T G G C C A A T C A G A A 

Seq 2 T T C A G C C A A T C G G A G 

Seq 3 C G C G G C C A A T C A G C G 

Seq 4 T T T A G C C A A T C A G C T 

Seq 5 C C T G G C C A A T C A G C G 

Seq 6 C C C G G C C A A T C A G C G 

Seq 7 G T T A G C C A A T C A G C A 

Seq 8 A T C A G C C A A T G A G C T 

Seq 9 C C C A G C C A A T C A G A G 

Seq 10 C T C A G C C A A T G G G C G 

Consensus C Y Y R G C C A A T C A G M G 

  

                                                                                               (a) 

Symbol A C G T R Y M K 

Meaning A C G T A/G C/T A/C G/T 

Symbol S W H B V D N  

Meaning G/C A/T A/C/T G/C/T A/C/G A/G/T A/C/G/T  

  
(b) 
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Figure 3:  (a) Learning the consensus sequence from a collection of TF binding sequences, (b) single-letter IUPAC 

codes for representing degeneracy of nucleotides in a consensus sequence 

 

Cross validation experiments 

In this study, the performance of a motif model (PWM or 
consensus) has been evaluated by performing cross-validation 
experiments.  The data for this experiment is a set of 
experimentally validated TFBSs for a particular TF obtained 
from TRANSFAC or JASPAR databases.  The TFBS 
sequences must be of the same length and aligned with respect 
to each other. 

 In the K-fold cross validation procedure, the total 
set of TFBSs is partitioned into K equal parts.  The 
partitioning is performed randomly.  Then K iterations of 
training and testing are performed as follows. 

In the first iteration, the sequences in parts 1,2,...,(K-1) are 
together used for learning the motif model.  Then the learnt 
model is tested on the sequences in part K.  During testing, the 
model is used to classify each sequence in part K as TFBS or 
not.  If the model is 100% accurate, it must classify all 
sequences in part K as TFBSs.  However due to the modelling 
error, some sequences are not classified as TFBSs.  The true 
positive rate (TPR) or sensitivity of the model is then 
computed as 

TPR = No. of sequences classified as TFBSs / Total no. of 
sequences tested 

Simultaneously, the motif model is also tested on a set of 
background sequences.  The background sequences are 
supposed to not contain matches of the motif.  However, we 
may still find matches of the PWM in the background by 
random chance.  The false positive rate (FPR) of the model is 
computed as 

FPR = No. of background sequences classified as TFBSs / 
Total no. of background sequences tested 

In the second iteration, the parts 1,2,…,(K-2),K are together 
used for learning the motif model, whereas the part (K-1) is 
used to test the model.  Again the TPR and FPR are 
computed.  Similarly, in the nth iteration, the parts 1,2,…,(K-
n),(K-n+2),…,K are used for learning the motif model, 
whereas the part (K-n+1) is used for testing the model. 

After K such iterations, one cross validation experiment is 
completed.  During the course of cross-validation, the entire 
data has been used as test set exactly once.  Therefore it 
provides an unbiased estimate of the model’s performance, 
i.e., the performance is not biased by the manner in which the 
data is partitioned into training and test sets.  The TPR and 
FPR for the cross validation experiment is the average of the 
TPR and FPR values obtained over all K iterations. 

A special case of K-fold cross-validation is the leave-one-out 
cross validation (LOOCV).  In LOOCV, a single observation 
is used as the test data, and the remaining observations as the 
training data. This is the same as a K-fold cross-validation 
with K being equal to the number of observations in the 

original sample. The iterations of cross-validation ensure that 
each observation is used once as the test data. Leave-one-out 
cross-validation is computationally expensive, however it is 
possible in this problem as the sequence data in this study is 
limited. 

Receiver-operating characteristics 

A cross-validation experiment gives an unbiased estimate of 
the TPR and FPR of TFBS detection by the motif model.  The 
TPR gives an estimate of how easily the model can detect true 
matches, whereas the FPR gives an estimate of how easily the 
model reports false matches.  Ideally one would like 100% 
TPR and 0% FPR.  However, practically TPR is lower that 
100% and FPR is higher that 0%, and the two are related.  For 
example, in the case of a PWM, if the match score threshold is 
kept low, both TPR and FPR will be high.  On the other hand, 
if the match score threshold is kept high, both TPR and FPR 
will be low.  The receiver-operating characteristic (ROC) 
describes the relationship between TPR and FPR as the model 
parameters (such as PWM match score threshold) are varied.  
The variation is illustrated in Figure 4.  The perfect model 
yields a point in the upper left corner (coordinate (0,1)) of the 
ROC space.  Whereas the ROC curve of a completely random 
model is the 45º diagonal line.  For a better-than-random 
model, the ROC curve lies somewhere above the 45º diagonal, 
and the further away this curve is from the diagonal the better 
the predictor’s performance.  Thus, the area under the ROC 
curve is an indicator of the model’s performance.  In this 
paper, the performance of the motif model is studied using the 
ROC curve and the area under the ROC curve. 
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Figure 4: The Receiver Operating Characteristics (ROC) 

curve. 

 

Data 
 

The TFs of several different species from yeast to human are 

collected from JASPAR http://jaspar.cgb.ki.se , an open 
access database for eukaryotic transcription factor binding 
sites.  In total around 40 TFs are studied for different  species.  
The known sets of binding sites for these TFs are available in 
the JASPAR database.  Only TFs with a minimum of 10 
binding sites were selected for the evaluation. 
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To model the performance (FPR), a negative (background) set 
of sequences of the same species are also required. These 
could be modelled by selecting random sequences from the 
genome.  However a better way is to use random sequences 
from the Regulatory Sequence Analysis Tool (RSAT) server 

(refer http://rsat.ulb.ac.be/rsat/random-

seq_form.cgi).  RSAT holds pre-computed background for 
the whole genomes of several different species in the form of 
Markov models of orders 1-8.  The random sequences 
generated by the server using these Markov models are thus 
representative of the complete genome on average.  4000 
random sequences were collected for each species as the 
negative background set in this study. 

Results 
 The performance of both PWM and Consensus is evaluated 
by plotting the ROC curves of the data collected from 
JASPAR. Some significant cases are shown below (here red 
color signifies PWM and green color signifies Consensus): 

                              Figure 5(a)                                                                            

                                              
Figure 5(b) 

ROC curve for  TF GATA2 ( homosapien ) is shown in 
Figure5(a) and for Ubx (Drosophila ) in Fig5(b) and in both 
cases it is observed that PWM performed better. 

                          

 

 

                              Figure5(c) 

                                                                             

 

                                 Figure 5(d) 

ROC curve for TF Pax6 (homosapien) is shown in Figure5(c) 
and for NFkappaB ( homosapien ) in Figure5(d) and in both 
cases similar performance is observed. 

The area under the ROC is observed to be high for both 
models. The dependency of  ROC area on  the motif length 
and the total number of binding sites in both models can be 
shown by the following plots. 

 

 

 

 

 

 

 

 

 

Figure 5(e)                                                             
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Figure 5(e)                                                             

 

 

 

 

 

 

 

Figure 5(f)  

Plot in Figure5(e) is drawn between Area under ROC curve 
obtained from various TF’s studied for PWM and consensus 
as Y-axis and corresponding  motif total number of binding 
sites as X-axis and Plot in Figure5(f) has a change of X-axis 
as Length of the corresponding motif. It is observed from the 
scatter plots that both models have performed better but the 
consensus performance decreased when the difference 
between length of the motif and total number of binding sites 
is very small. e.g. in case of TF Androgen having 22 length 
motif with total 24 binding sites i.e. with difference of 2 , the 
area under ROC for consensus is found to be 0.18 while for  
PWM it is 0.84. 

  

CONCLUSION 
 
Both PWM and consensus sequences, are used for 
representing motifs. Mostly the Transcription factors with 
large number of binding sites can be represented better by the 
PWM while the Transcription factors with few and small 
length binding sites can be represented well by the consensus 
sequence. For Transcription Factors with large number or 
small number of binding sites, it is observed that as the no. of 
mismatches allowed increases the number of matching 
binding sites found also increases. It is an open question 
which of the two representations should be used in different 
situations or applications. 
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