
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

20

Optimized Frequent Pattern Mining for Classified Data

Sets

ABSTRACT
Mining frequent patterns in data is a useful requirement in

several applications to guide future decisions. Association rule

mining discovers interesting relationships among a large set of

data items. Several association rule mining techniques exist,

with the Apriori algorithm being common. Numerous

algorithms have been proposed for efficient and fast

association rule mining in data bases, but these seem to only

look at the data as a set of transactions, each transaction being

a collection of items. The performance of the association rule

technique mainly depends on the generation of candidate sets.

In this paper we present a modified Apriori algorithm for

discovering frequent items in data sets that are classified into

categories, assuming that a transaction involves maximum one

item being picked up from each category. Our specialized

algorithm takes less time for processing on classified data sets

by optimizing candidate generation. More importantly, the

proposed method can be used for a more efficient mining of

relational data bases.

Keywords:
Data mining, association rule, Apriori algorithm, transactions,

frequent items, itemsets.

1. Introduction
Mining frequent patterns or trends in data is an

interesting, useful and important requirement in several

applications to guide future decisions. Association rule (AR)

mining discovers interesting relationships among a large set of

data items by finding all frequent itemsets. A very useful

application is in Web services and e-Commerce, in areas like

web site navigation analysis and online orders and sales

transactions analysis, to know customer preferences and

trends. There are several algorithms for association rule

mining such as Apriori [4] and FP growth [13]. Here the input

data is a collection of transactions, each transaction containing

one or more items chosen from a warehouse of items, each

item occurring once.

Ever since AR mining was proposed for market

survey in [1], it has been the subject of intense research, and

has spawned several applications. One of the common and

useful algorithms is the Apriori algorithm [4], and there have

since been numerous algorithms and techniques suggested for

its efficient and fast implementation to improve performance.

Also, a lot of algorithms have also been proposed for its

implementation in databases, as the database is regarded as a

collection of transactions. One aspect that we found in the

existing algorithms, while applying to databases, esp.

relational, is that they treat each row (transaction) only as just

a set of items. However, we feel that performance of the

algorithm could be improved if we treat the data items as

being classified into categories. In other words, we look upon

a relational database as a set

of rows, each row (tuple) is a transaction set of selected data

items each coming from a different category (attribute),

assuming a maximum of one item per category. Thus the

database constitutes a classified data set. We have found that,

when the existing Apriori algorithm is suitably modified to

take into consideration this view of databases, a significant

performance of the algorithm results.

Apriori algorithm iteratively searches for frequent

itemsets in the given transaction database. At each iteration, a

new candidate set of itemsets is generated based on the output

of the previous iteration. The performance of Apriori depends

on several factors such as size of the input database,

transaction size, and the operations of candidate sets

generation and selection based on the count of minimum

support of the generated candidate sets in the transaction

database. The generation of candidate sets itself consists of

two operations, viz., joining and pruning. The joining

operation produces the candidate sets for the current iteration

and the pruning operation reduces the size of the candidate

sets based on prior knowledge. Both these operations are

computational expensive. Techniques proposed to improve

Apriori have concentrated on both algorithmic and
implementation aspects. Most concentration has been on the

phases of pruning, counting, partitioning the input data set,

data structures used, storage and access, and reducing the

number of passes over the input database. In this paper we

present a modified Apriori algorithm for classified data sets

that optimizes candidate generation by reducing the number of

iterations in the joining phase, and also the number of

candidate itemsets generated. This specialised algorithm not

only takes less time than the general version, but also yields a

more efficient method of mining relational databases.

2. Earlier work
The problem of mining association rules was introduced by

Agrawal, et al. in [1], who also brought out the Apriori

algorithm [4] for market-based data. Subsequently, there have

been many efficient and fast AR algorithms proposed,

including improved Apriori implementations. Partitioning

[18] was used to speed up Apriori in respect of I/O, while

sampling [20] was adopted to reduce processing. Both these

algorithms sought to achieve reduced number of passes over

the input database. An algorithm to improve pruning and

counting in Apriori was suggested in [16]. A Hash-based

algorithm for candidate set generation is suggested in [17].

Other fast and efficient methods were proposed in [3], [6], [7],

[15], [19]. Techniques for mining large databases with

performance are discussed in [2], [5], [8], [9], [11], [15].

Useful techniques for mining frequent sets are discussed in

[10] and [14].

A Raghunathan
Deputy General Manager-IT, Bharat
Heavy Electricals Ltd, Tiruchirappalli,

India

K Murugesan
Assistant Professor of Mathematics,
National Institute of Technology,

Tiruchirappalli,, India

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

21

3. Frequent items mining using Apriori

algorithm
There are several algorithms to find frequent patterns in data

sets. One of the common and useful algorithms is the Apriori

algorithm, whose pseudocode is given in Fig. 1 adapted from

[12]. It uses prior knowledge of frequent itemset properties

and employs an iterative approach using a level-wise search

based on candidate generation. This technique is applied to a

general data set of items. The input is a database of

transactions containing items drawn from a set of items. Each

transaction contains an itemset. The output of the algorithm is

a set of itemsets that frequently occur in the input transactions

[12].

There are several applications involving special cases of data

sets that may include data items classified into categories,

such as in a departmental store. Here a transaction involves

picking up items from each category. Existing AR mining

algorithms treat each transaction as a set of items, without

regard to the classification. In this paper, we propose a

modification of the Apriori algorithm to apply to such

classified data sets, leading to faster results. We assume that at

most one item is picked from each category. As explained

earlier, this assumption is useful to apply our algorithm to

relational databases.

Let us illustrate our case with an example. Let us consider a

small computer shop selling classified items as in Table 1.

Table 2 shows a selection of these items under various

categories that participate in a set of transactions for

illustration. The items have been assigned unique IDs for use

in the algorithms. Table 3 shows a sample database

containing transactions involving these items.

We shall apply the standard Apriori algorithm given in Fig. 1

to this transactional data D. Since the algorithm is a general

one that treats all items in one pool, the transactional items are

considered irrespective of their category.

Table 1 – Sample items on sale in a computer shop

Category Items

Computer Desktop, Laptop, Tablet

Peripherals Printer, Scanner, All-in-one

Software Antivirus, Games, Utility, Educational

Accessories Media, UPS, Flash Drive, Modem, Speaker

Algorithm: Apriori. Find frequent itemsets using an iterative

level-wise approach based on candidate generation.

Input: Database D of transactions; minimum support

threshold, min_sup.

Output: L, frequent itemsets in D.

Method:

1. L1= find_frequent_1-itemsets(D, min_sup);

2. for (k = 2;Lk-1 ≠ Ø; k++)

3. {

4. Ck = apriori_gen(Lk-1);

5. for each transaction t ∈D // scan D for counts

6. {

7. Ct = subset(Ck, t);

8. for each candidate c ∈ Ct

9. c.count++;

10. }
11. Lk = {c ∈ Ck| c.count ≥ min_sup);

12. }
13. return L = ∪ kLk;

procedure apriori_gen (Lk-1)

1. for each itemset l1 ∈ Lk-1
2. for each itemset l2 ∈ Lk-1

3. if (l1[1] = l2[1]) ^ (l1[2] = l2[2]) ^ …^ (l1[k-2] = l2[k-

2]) ^ (l1[k-1] < l2[k-1])

4. then

5. {

6. c = l1 l2; // join step: generate

candidates

7. if has_infrequent_subset(c, Lk-1) then

8. delete c; // prune step: remove infrequent

candidates

9. else add c to Ck;

10. }
11. return Ck;

procedure has_infrequent_subset (c:candidate k-itemset; Lk -

1:frequent (k - 1) itemsets)

1. for each (k - 1)-subset s of c

2. if s ∉ Lk-1 then return TRUE;

3. return FALSE;

procedure find_frequent_1-itemsets(D, min_sup)

// Form C1, the candidate 1-itemset list from D, with
the items uniquely listed in sorted order.

1. C1 = {c ∈ D};

2. for each transaction t ∈ D // scan D for counts

3. {

4. Ct = subset(C1, t);

5. for each candidate c ∈ Ct

6. c.count++;

7. }

8. L1 = {c ∈ C1| c.count >= min_sup);

return L1;

Fig. 1. The Apriori Algorithm for mining and

discovering frequent itemsets from data.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

22

Table 2 – Items with unique IDs

Category Items ItemID

Computer Desktop I1

 Laptop I2

Peripherals Printer I3

Software Games I4

Accessories UPS I5

 Flash Drive I6

Table 3 – Transactional data for a Computer shop

TID List if Item IDs

T1 I1, I3, I5

T2 I3, I5

T3 I2, I3, I6

T4 I1, I4, I6

T5 I2, I6

T6 I2, I3, I4, I6

T7 I2, I4

T8 I1, I3, I4, I5

T9 I3, I6

Applying the normal Apriori Algorithm given in Fig. 1 to the transactions in Table 3, we generate the candidate

itemsets and frequent itemsets, where the minimum support count is assumed to be 2, i.e., 2/9 = approx. 20%. It is assumed

that items within a transaction or itemset are sorted in lexicographic order. The outputs are shown in Tables 4 – Table 12.
Table 4 Table 5 Table 6 Table 7 Table 8

C1

Itemset Sup.
count

{I1} 3

{I2} 4

{I3} 6

{I4} 4

{I5} 3

{I6} 5

L1

Itemse
t

Sup.
count

{I1} 3

{I2} 4

{I3} 6

{I4} 4

{I5} 3

{I6} 5

C2

Itemset

{I1,I2}

{I1,I3}

{I1,I4}

{I1,I5}

{I1,I6}

{I2,I3}

{I2,I4}

{I2,I5}

{I2,I6}

{I3,I4}

{I3,I5}

{I3,I6}

{I4,I5}

{I4,I6}

{I5,I6}

C2

Itemset Sup.
count

{I1,I2} 0

{I1,I3} 2

{I1,I4} 2

{I1,I5} 2

{I1,I6} 1

{I2,I3} 2

{I2,I4} 2

{I2,I5} 0

{I2,I6} 3

{I3,I4} 2

{I3,I5} 3

{I3,I6} 3

{I4,I5} 1

{I4,I6} 2

{I5,I6} 0

L2

Itemset Sup.
count

{I1,I3} 2

{I1,I4} 2

{I1,I5} 2

{I2,I3} 2

{I2,I4} 2

{I2,I6} 3

{I3,I4} 2

{I3,I5} 3

{I3,I6} 3

{I4,I6} 2

Table 9 Table 10 Table 11 Table 12

C3

Itemset

{I1,I3,I4}

{I1,I3,I5}

{I1,I4,I5}

{I2,I3,I4}

{I2,I3,I6}

{I2,I4,I6}

{I3,I4,I5}

{I3,I4,I6}

{I3,I5,I6}

C3

Itemset

{I1,I3,I4}

{I1,I3,I5}

{I2,I3,I4}

{I2,I3,I6}

{I2,I4,I6}

{I3,I4,I6}

C3

Itemset Sup.count

{I1,I3,I4} 1

{I1,I3,I5} 2

{I2,I3,I4} 1

{I2,I3,I6} 2

{I2,I4,I6} 1

{I3,I4,I6} 1

L3

Itemset Sup.count

{I1,I3,I5} 2

{I2,I3,I6} 2

At the end, the candidate set of 4-itemsets, C4 = Ø, and the

algorithm terminates. All the frequent itemsets in the

transaction database, L1, L2 and L3, have been found as shown

in Tables 5, 8 and 12.

4. Working of the algorithm

The Apriori algorithm works as follows: Step 1

(Fig. 1) invokes the find_frequent_1_itemset procedure,

which scans the input transaction data D and forms C1, the

candidate 1-itemsets, which is nothing but the list of unique

individual items in D. It then computes the number of

occurrences of each item and produces L1, which contains the

items occurring with the minimum support count given,

min_sup (assumed to be 2 in this example). Successive

candidate itemsets Ck are then generated iteratively (steps 2-

10) by joining Lk-1 with Lk-1 (step 6). The apriori_gen procedure

generates the candidate sets and eliminates those having a

subset that is not frequent. This is called pruning and is done

by invoking the has_infrequent_subset procedure. Finally, all

those candidates satisfying minimum support form the set of

frequent itemsets, L1 through L3. Thus we can see that the

itemsets {I1, I3, I5} and {I2, I3, I6} occur 2 times each in the

transaction dataset D.

5. Observations with existing algorithm

We have used the Apriori algorithm shown in Fig. 1

to mine the input data set and got the result. In the candidate

2-itemset set C2 (Table 6) generated by the algorithm from L1

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

23

(Table 5), the presence of itemsets {I1, I2} and {I5,I6} may

be noted. Each of these itemsets has items drawn from the

same category, i.e., in itemset {I1, I2}, both items I1 and I2

belong to the category Computer and similarly both the items

I5 and I6 belong to the category Accessories. Since we have

assumed that not more than one item is chosen from a
category, we would not like these itemsets to be generated as

candidates. They were generated because the apriori_gen

procedure considers all itemsets of Lk-1 for k-itemset candidate

generation, regardless of categories, and always executes n x n

times, where n is the size of Lk-1. Hence we bring out a

modified algorithm taking into consideration special cases

when the itemsets contain classified items under several

categories, with a transaction involving no more than one item

from each category. This method could not only be applied to

special applications, but also would reduce the no. of

iterations in generating the candidate itemsets.
6. Modified algorithm for Classified Data Sets

We now present a modified version of the Apriori

algorithm in Fig. 2 to mine classified data sets, with items

falling under distinct categories, assuming that a transaction

involves maximum one item in each category.

Algorithm: Apriori_Class. Find frequent itemsets belonging to different categories using an iterative level-wise

approach based on candidate generation.

Input: Database D of transactions involving classified items, min. support threshold, min_sup.

Output: L, frequent itemsets in D.

// This algorithm considers items classified under various identified categories,

// eg., A,B,C, etc. The items within each category bear unique IDs, eg., A1,A2,D3,E4, etc.

// A typical transaction comprises zero or max. one item selected from each category.

// Hence, the transaction database D is a matrix, with rows representing transactions and

// columns containing item IDs under various categories.

// Items within a transaction or itemset are assumed to be sorted in lexicographic order.

Method:

1. L1= find_frequent_1-itemsets(D, min_sup);

2. for (k = 2;Lk-1 <> Ø; k++)

3. {

4. Ck = apriori_gen(Lk-1);

5. for each candidate c ∈ Ck

6. for each transaction t ∈ D

7. if c∈ t then c.count++;

8. Lk = {c ∈ Ck | c.count >= min_sup);

9. }

10. return L = ∪ kLk;

procedure find_frequent_1-itemsets(D, min_sup)

// Form C1, the candidate 1-itemset list from D, with the items uniquely listed in sorted order.

9. C1 = {c ∈ D};

10. for each candidate c ∈ C1

11. for each transaction t ∈ D

12. if c ∈ t then c.count++;

13. L1 = {c ∈ C1| c.count >= min_sup);

return L1;

procedure apriori_gen(Lk-1)

1. if k = 2 then

2. begin

3. ub = count(Lk-1);

4. for (l1 = 1; l1 < ub; l1++)

5. begin

6. l2 = l1 + 1;

7. repeat until (category(l2) > category(l1)) or (l2 > ub)

8. l2++;

9. if (l2 <= ub) and (category(l2[1]) > category(l1[1])) then

10. begin
11. lb = l2;
12. for (j = lb; j ≤ ub; j++)
13. {
14. l2 = Lk-1[lb];
15. c = l1 l2;
16. if has_infrequent_subset(c, Lk-1) then delete c;

Fig. 2. Modified Apriori algorithm for mining classified data sets.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

24

17. else add c to Ck;

18. }
19. end;
20. end;
21. end;
22. else if k > 2 then
23. begin
24. ub = count(Lk-1);

25. for (l1 = 1; l1 < ub; l1++)
26. begin
27. l2 = l1 + 1;
28. while (l1[1] = l2[1]) ^ (l1[2] = l2[2]) ^ …^ (l1[k-2] = l2[k-2]) ^ (l1[k-1] < l2[k-1]) do

29. begin
30. if (category(l2[k-1]) > category(l1[k-1])) then
31. begin
32. c = l1 l2;
33. if has_infrequent_subset(c, Lk-1) then delete c;
34. else add c to Ck;

35. end;
36. l2 ++;
37. end;
38. end;
39. end;
40. return Ck;

procedure has_infrequent_subset(c:candidate k-itemset; Lk-1:frequent (k-1) itemsets)

1. for each (k-1)-subset s of c

2. if s ∉ Lk-1 then return TRUE;

3. return FALSE;

We now apply the modified algorithm to our example. Table 13 shows the same items shown earlier in Table 1,

but now assigned distinct IDs under four categories A - D. Table 14 shows the transactional data of Table 2 as a selection

from the various categories.

Table 13 – Items in Computer shop with unique IDs

A - COMPUTER B - PERIPHERALS C – SOFTWARE D - ACCESSORIES

A1 Desktop B1 Printer C1 Games D1 UPS

A2 Laptop D2 Flash Drive

Table 14 – Transactional data for Computer shop

TID A -

COMPUTER

B -

PERIPHERALS

C -

SOFTWARE

D -

ACCESSORIES

T1 A1 B1 D1

T2 B1 D1

T3 A2 B1 D2

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

25

T4 A1 C1 D2

T5 A2 D2

T6 A2 B1 C1 D2

T7 A2 C1

T8 A1 B1 C1 D1

T9 B1 D2

Applying the modified Apriori Algorithm given in Fig. 2 to Table 14, we generate the candidate itemsets and

frequent itemsets, with minimum support count 2. The outputs are shown in Tables 15 through 23.

Table 15 Table 16 Table 17 Table 18 Table 19

C1

Itemset Sup.

count

{A1} 3

{A2} 4

{B1} 6

{C1} 4

{D1} 3

{D2} 5

L1

Itemset Sup.

count

{A1} 3

{A2} 4

{B1} 6

{C1} 4

{D1} 3

{D2} 5

C2

Itemset

{A1,B1}

{A1,C1}

{A1,D1}

{A1,D2}

{A2,B1}

{A2,C1}

{A2,D1}

{A2,D2}

{B1,C1}

{B1,D1}

{B1,D2}

{C1,D1}

{C1,D2}

C2

Itemset Sup.count

{A1,B1} 2

{A1,C1} 2

{A1,D1} 2

{A1,D2} 1

{A2,B1} 2

{A2,C1} 2

{A2,D1} 0

{A2,D2} 3

{B1,C1} 2

{B1,D1} 3

{B1,D2} 3

{C1,D1} 1

{C1,D2} 2

L2

Itemset Sup.

count

{A1,B1} 2

{A1,C1} 2

{A1,D1} 2

{A2,B1} 2

{A2,C1} 2

{A2,D2} 3

{B1,C1} 2

{B1,D1} 3

{B1,D2} 3

{C1,D2} 2

Table 20 Table 21 Table 22 Table 23

C3

Itemset

{A1,B1,C1}

{A1,B1,D1}

{A1,C1,D1}

{A2,B1,C1}

{A2,B1,D2}

{A2,C1,D2}

{B1,C1,D1}

{B1,C1,D2}

C3

Itemset

{A1,B1,C1}

{A1,B1,D1}

{A2,B1,C1}

{A2,B1,D2}

{A2,C1,D2}

{B1,C1,D2}

C3

Itemset Sup.count

{A1,B1,C1} 1

{A1,B1,D1} 2

{A2,B1,C1} 1

{A2,B1,D2} 2

{A2,C1,D2} 1

{B1,C1,D2} 1

L3

Itemset Sup.count

{A1,B1,D1} 2

{A2,B1,D2} 2

As before C4 = Ø, and the algorithm terminates when all the

frequent itemsets in the transaction database have been found.

7. Working of the modified algorithm

The modified Apriori algorithm in Fig. 2 uses a

revised apriori_gen procedure in which Ck generation is

considered separately for cases k=2 and k>2. While generating

C2 from L1 (Fig. 2 procedure apriori_gen steps 7-19), two

items of L1 are joined only when their categories are different.

Thus the itemsets {A1, A2} and {D1, D2} are not generated

in the C2 given in Table 17. Moreover, as the items in L1 are

in sorted lexicographic order, we restrict the scope of items in

L1 for comparison in each iteration, reducing the range.

Likewise, in generating C3 from L2 through steps 25-34, two

items are joined only when their categories are the same. Thus

we eliminate the generation of itemset {B1, D1, D2} in Table

20, and this is done by step 30 in Fig. 2. Again the range of

items to be compared in each iteration is restricted in step 28.

Steps 6 and 27 also reduce the number of items in Lk-1 for

comparison by 1, thus reducing the number of iterations still

further.

8. Comparison of the Algorithms
We now compare the two algorithms and the results

obtained for our example discussed above for the same

transaction data set.

Eliminating itemsets
The original algorithm-generated C2 given in Table

6 is compared with the C2 in Table 17 generated by the

modified algorithm of Fig. 2. The former generates itemsets

{I1,I2} and {I5,I6} which contain items that are part of the

same category, as observed above. However, the

corresponding itemsets viz., {A1,A2} and {D1,D2} are not

generated in the C2 given in Table 17, as explained above.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

26

Similarly, while generating C3, the itemset {I3,I5,I6} output in

Table 9 is eliminated in the new algorithm by filtering out the

itemset {B1,D1,D2} in Table 20.

Optimising iterations

 As explained in the previous section, when

compared to the original algorithm, the new algorithm has far
fewer iterations, as implemented through the modified

apriori_gen procedure in Fig.2. In the original procedure in

Fig. 1, steps 1 and 2 iterate for each item of Lk-1 with itself,

thus executing n2 times, where n is the size of Lk-1. Whereas

in the modified procedure in Fig. 2, not only the outer loop

executes one less time than before (steps 4 and 25), but also

fewer itemsets are compared in each iteration in the inner

loop. Hence the candidate sets generation is done much faster.

Table 24 summarises the results of the comparison

for generation of each candidate set Ck. It can be noted that

the original algorithm takes n2 iterations whereas our modified

algorithm takes a figure of m iterations where m is O(n log n).
That is, the modified algorithm takes O(n log n) time

compared to O(n2), which is very significant. Also, the

number of generated intermediate itemsets in successive

iterations (during join operation before pruning) is also

reduced, as seen from the last two columns.

Table 24 – Performance comparison of the two Apriori algorithms for the sample transaction data

Candidate set

Ck
Set size
|Lk-1|

No. of iterations

(original)

No. of iterations

(modified)

 No. of itemsets

generated

(original)

No. of itemsets

generated

(modified)

 n n2 m n log n

C2 6 36 15 10.8 15 13

C3 10 100 18 23.0 9 8

C4 2 4 1 1.4 0 0

Total 18 140 34 35.2 24 21

9. Performance Analysis
We now analyse the comparative performance of

the two algorithms for various cases, based on our testing,

involving transactions of various sizes of elements and

categories. Table 25 shows the results. Here we note that the

total no. of iterations increases with an increase in either the

no. Elements or the no. of categories. In each case the

modified algorithm generates fewer itemsets in fewer

iterations compared to the original algorithm. We plot the

above results in Charts 1 and 2, which clearly show the

improved performance.

Table 25 – Performance comparison of the two Apriori algorithms for various transaction data sizes

Case

No.

No.

Of

cate

gori

es

No. Of

elements

Total set

size

|Lk-1|

Total no. of

iterations

(original)

Total no. of

iterations

(modified)

 Total no. of

itemsets

generated

(original)

Total no. of

itemsets

generated

(modified)

 ∑n ∑n2 ∑m ∑n log n

1 4 6 18 140 34 35.2 24 21

2 5 11 19 149 47 37.8 38 28

3 3 12 17 157 62 37.2 57 41

4 4 12 23 225 71 50.8 59 49

5 5 12 28 326 78 69.7 62 54

Further, taking a closer look at Table 25, we get

some interesting results with regard to transactions involving

classified data sets with the same number of elements but

distributed under different number of categories. Table 26

shows extracts of Table 25 with only the last three rows –

transactions with of elements 12, but different numbers of

categories – 3, 4 and 5. We observe that as the no. of

categories increases, the no. Of iterations in the modified

algorithm gets closer to n log n, as given by the column ∑m - ∑n

log n. Further, as the column reveals, the new no. of iterations

gets much less than the original no. of iterations as the no. of

categories. This means that the performance of our modified

algorithm increases when the same no. of items is distributed

under more categories, i.e., classification of data sets

increases. This is a significant result for our modified

algorithm. Chart 3 depicts the results based on Table 26.

Table 26 – Performance comparison for data sets with same no. of elements but under different categories

Case

No.

No. of

elements

No. of

catego

ries

Total set

size

|Lk-1|

Total no. of

iterations

(original)

Total no. of

iterations

(modified)

 Closeness of no.

of iterations

(modified) to n

log n

Diff. in no. of

iterations

(original -

modified)

 ∑n ∑n2 ∑m ∑n log n ∑m - ∑n log n ∑ n2 - ∑m

3 12 3 17 157 62 37.2 24.8 95

4 12 4 23 225 71 50.8 20.2 154

5 12 5 28 326 78 69.7 8.3 248

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

27

Chart 1 Chart 2

0

100

200

300

400

1 2 3 4 5

Performance of the two Apriori
algorithms in respect o f no. of iterations

No. of iterations (original)

No. of iterations (modified)

0

10

20

30

40

50

60

70

1 2 3 4 5

Performance of the two Apriori algorithms
in respect of no. of itemsets

No. of itemsets generated (origina l)

No. of itemsets generated (modified)

Chart 3

0

50

100

150

200

250

300

350

3 4 5

Comparative Performance of the two Apriori
algorithms for same no. of data items but with

varying categories

No. of iterations - original (n2)

No. of iterations - modified (m)

n log n

10.
Applications to databases

One of the important objectives of our adapting the

Apriori association rule mining technique to classified data

sets is to apply the concept to the realm of databases to mine

frequent occurrences of data items. Let us consider a

relational data table for example. A table consists of tuples or

rows where each row gives information about a distinct

object, each object having values under distinct columnar

attributes. Such a table of data values could be considered as a

classified data set in

our context. Each row can be taken to be a

transaction, each attribute a category, and each value to be a

data item or an element. Thus, a table is looked upon as a set

of transactions involving classified data items under various

categories. This correspondence gives us an easy way to apply

our Apriori algorithm to mine frequent occurrences of values

in relational databases.

For example, let us look at a sample library catalog

of books represented by Table 27.

Table 27 – Sample Library Books Catalog for Finding Frequent Itemsets

Book

No.

Title Author Publisher Year

Published

1 Java Schildt TMH 1998

2 C Schildt TMH 1997

3 HTML Collins Pearson 2000

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

28

4 XML Collins Pearson 2002

5 C Balagurusamy TMH 2001

6 XML Williamson TMH 2003

7 C++ Schildt TMH 2001

Applying our algorithm to the above table, we get the

frequent itemsets {Schildt, TMH} and {Collins,

Pearson}, assuming min_sup to be 2.

Time taken in secs by Apriori algorithms on

Sample Data (minimum support threshold =

0.2)

0

1

2

3

4

5

6

7

10000 20000 40000 60000 80000 100000

No. of records in table

T
im
e
 (
s
e
c
s
)

Apriori alg. (original)

Apriori alg. (modified)

Time taken in secs by Apriori algorithms on

Sample Data Size 100k records

0

20

40

60

80

100

120

0.2 0.1 0.05 0.03 0.02 0.01

Minimum support threshold

T
im
e
 (
s
e
c
s
)

Apriori alg. (original)

Apriori alg. (modified)

Chart 4 Chart 5

We tested the original and our modified algorithms

on sets of relational tables of various sizes and obtained a

good performance. The results are plotted in Charts 4 and 5.

In Chart 4, the time values are shown for minimum support

threshold value of 0.2 for various data volumes (no. of records

or transactions). Chart 5 depicts the times taken for a data

volume of 100k records for various minimum support

threshold values. We observe that there is a significant

improvement in the overall execution time by our

optimisation.

11. Conclusion and Future Work
In this paper we presented a modified Apriori association rule

mining algorithm for discovering frequent patterns in data sets

that are classified into categories, assuming a maximum of

one item per category. This specialised algorithm takes less

time (O(n log n)) than the general version (O(n2)) by reducing

the number of iterations as well as the number of candidate

sets generated. We also showed that, for the same number of

data items, the optimised algorithm performs better when the

items are distributed under more categories. While we have

taken up the Apriori algorithm for adaptation to classified data

sets, our approach could be used in other similar algorithms as

well. The proposed algorithm is appropriate to databases to

mine frequent occurrences of item values. We are working on

extending this approach to mine semi-structured data like

XML used in Web services. Future work would focus on

applying Association Rule mining techniques to enhance Web

services and Web mining with better data management in the

areas of storage and search facilities where the techniques

have a lot of potential.

REFERENCES
1. R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large databases.

In Proc. of ACM SIGMOD COMD, 1993.

2. R. Agrawal, T. Imielinski, and A. Swami. Database

Mining: a performance perspective, IEEE TKDE, Dec.

1993.

3. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and

A.I. Verkamo. Fast Discovery of Association Rules. In

U.M. Fayyad, et al. Advances in Knowledge Discovery

and Data Mining, AAAI/MIT Press, 1996.

4. R. Agrawal and R. Srikant. Fast Algorithms for Mining

Association Rules in Large Databases. In Proc. Of the

20th VLDB Conf., 1994.

5. R.J. Bayardo Jr. Efficiently mining Long patterns from

databases. In Proc. Of the ACM SIGMOD ICMD, 1998.

6. F. Bodon. A Fast Apriori Implementation. In Proc. 1st

FIMI 2003.

7. S. Brin, R. Motwani, J.D. Ullman, and T. Tsur. Dynamic

itemset counting and implication rules for market based

data. ACM SIGMOD Record, 1997.

8. M.S. Chen, J. Han and P.S. Yu. Data Mining: An

overview from a database perspective. IEEE

Transactions on Knowledge and Data Engineering, 1996.

9. B. Dunke and N. Soparkar. Data organization and access

for efficient data mining. In Proc. Of 15th ICDE, 1999.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 27

29

10. U.M. Fayyad, G. Piatesky-Shapiro, P. Smyth and R.

Uthurusamy, editors. Advances in Knowledge Discovery

and Data Mining. AAAI Press, 1998.

11. V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining very

large databases. IEEE Computer, 1999.

12. J. Han and M. Kamber, Data Mining Concepts and
Techniques, Morgan Kaufmann Publishers, 2001.

13. J. Han, J. Pei, and Y. Yin. Mining frequent patterns

without candidate generation. ACM SIGMOD ICMD,

2000.

14. H. Mannila, H. Toivonen and A.I. Verkamo. Efficient

algorithms for discovering Association Rules. AAAI

Workshop on Knowledge Discovery in Databases, 1994.

15. M.H. Margahny and A.A. Mitwaly. Fast Algorithm for

Mining Association Rules. AIML 05 Conf, Egypt.

16. S. Orlando, P. Palmerini and R. Perego. Enhancing the

Apriori Algorithm for Frequent Set Counting. DaWak

2001.

17. J.S. Park, M.-S. Chen and P.S. Yu. An effective hash-

based algorithm for mining association rules. In Proc. Of

ACM SIGMOD ICMD, 1995

18. A. Savasere, E. Omiecinski and S.B. Navathe. An

Efficient Algorithm for Mining Association Rules in

Large Databases. In Proc. Of 21st VLDB Conf., 1995

19. P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M.

Bawa, and D. Shah. Turbocharging vertical mining of

large databases. In Proc. Of the ACM SIGMOD ICMD,

2000.

20. H. Toivonen. Sampling Large Databases for Association

Rules. In The VLDB Journal, 1996.

