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ABSTRACT 

This paper is concerned with a stability problem for a class of 

stochastic recurrent impulsive neural networks with both 

discrete and distributed time-varying delays. Based on 

Lyapunov-Krasovskii functional and the linear matrix inequality 

(LMI) approach, we analyze the global asymptotic stability of 

impulsive neural networks. Two numerical examples are given 

to illustrate the effectiveness of the stability results. 
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1. INTRODUCTION 

Over the past decades, the recurrent neural networks with time 

varying delays have found their important applications in 

various areas such as image processing, pattern recognition, 

optimization solvers and fixed point computation [4, 5, 6]. 

Stability analysis is the basic knowledge for dynamical systems 

and is useful in the application to the real life systems. Many 

important results have been proposed to guarantee the global 

asymptotic or exponential stability for the recurrent neural 

networks with time delays, see example [3-6]. On the other hand 

time delays are often encountered in neural networks due to the 

finite switching speed of amplifiers and the inherent 

communication time of neurons. 

Neural networks have a spacial nature due to the presence of 

parallel pathways with a variety of axon sizes and lengths, so it 

is desirable to model them by introducing unbounded delays. In 

recent years there has been a growing research interest in the 

study of neural networks with both discrete and distributed 

delays [17, 23, 24, 25, 29]. It should be mentioned that using 

linear matrix inequality (LMI) approach the sufficient global 

asymptotic stability conditions have been derived in [23] for a 

general class of neural networks with both discrete and 

distributed delays. Dynamical systems are often classified into 

two categories of either continuous-time or discrete-time 

systems. These two dynamic systems are widely studied in 

population models and neural networks, yet there is a somewhat  

 

 

 

 

 

new category of dynamical systems, which is neither 

continuous-time nor purely discrete-time; these are called 

dynamical systems with impulses. A fundamental theory of 

impulsive differential equations has been developed in [20]. For 

instance, in the implementation of neural networks, the state of 

the networks is subject to instantaneous perturbations and 

experiences abrupt changes at certain instants, which may be 

caused by the switching phenomenon, frequency change or other 

sudden noise that is it exhibits impulsive effects [27, 28, 30]. 

Neural networks are often subject to impulsive perturbations that 

in turn affect dynamical behaviors of the systems. Therefore, it 

is necessary to take both time delays and impulsive effects in to 

account on the dynamical behaviors of neural networks. 

When performing the computation, there are many stochastic 

disturbances that affect the stability of neural networks. A neural 

network could be stabilized or destabilized by certain stochastic 

inputs [1]. It implies that the stability of stochastic neural 

networks also has primary significance in the research of neural 

networks. Hence the stability analysis problem for stochastic 

neural networks becomes increasingly significant and some 

results related to this problem have recently been published, see 

[1, 12-14, 16, 19, 21, 22, 24, 26]. We establish new stability 

conditions for the recurrent impulsive neural networks to be 

globally asymptotically stable by utilizing Lyapunov-Krasovskii 

functional method and using some well-known inequalities. 

Compared with the earlier results in the literature, those results 

are less restrictive and less conservative. 

Motivated by the above discussions, this paper aims to develop 

the global asymptotic stability in the mean square for stochastic 

recurrent impulsive neural networks with both discrete and 

distributed delays. For the best of author’s knowledge there were 

no global stability results for stochastic recurrent impulsive 

neural networks with both discrete and distributed delays. Based 

on Lyapunov stability theory and linear matrix inequality 

technique, the stability conditions are given in terms of LMIs 

which can be easily checked by LMI control toolbox in 

MATLAB. We provide two numerical examples to illustrate the 

effectiveness of the stability results.  

 

2. PRELIMINARIES 
Consider the delayed stochastic recurrent neural networks with 

impulses and time-varying delays as follows:
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         ,                    ….   (1) 

 ,  ,  ,  

where  is the state of the ith neuron at time t,  denotes the passive decay rate, , , , are the 

synaptic connection strengths,  denotes the neuron activations,  is the constant input from outside the system,  

represents the discrete transmission delay with  and . The stochastic disturbance 

 is an m-dimensional Brownian motion defined on a complete probability space 

 with a natural filtration  .  Moreover,  

 

                     …. (2) 

Let  is locally Lipschitz continuous and satisfies the linear growth condition as well. 

 =  and  is a strictly increasing sequence such 

that . 

We assume that the neuron activation function ,  is bounded and satisfy the following Assumption: 

Assumption 1.  

         , for all , 

 Assume that  is an equilibrium point of Eqn. (1). It can be easily to verify that the 

transformation  transforms system (1) into the following system: 

 

                        ,                                                …. (3) 

        ,  ,  

where , , , , , 

, with . Let 

 denote the family of all nonnegative functions  on  which are continuously twice 

differentiable in y and once differentiable in t. For each values of , we define an operator  associated with delayed 

stochastic recurrent neural networks as 

 

where   ,  

and  , i,j=1,2,…,n. 

 

Lemma 2.1 (Schur Complement[2]). The following LMI 
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where  ,  and  depend on , is equivalent to , 

. 

Lemma 2.2  For any constant symmetric matrix , , scalar , 

 

3. GLOBAL STABILITY RESULTS 
In this section, we establish the global asymptotic stability of the addressed network by using linear matrix inequality 

method and Lyapunov functional technique. 

Theorem 3.1 If there exists a positive scalar  and positive definite matrices , positive diagonal 

matrices , such that the following linear matrix inequalities hold: 

                                         …. (4) 

…. (5) 

                                                …. (6) 

where  , .  

Then system (3) is globally asymptotically stable. 

Proof. We use the following Lyapunov function to derive the stability result 

,   

, 

, 

, 

By using Ito’s differential formula, the time derivative of  can be calculated as 

 

                            +trace [ ] 
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When , we have 

 

 

                  

                          

         

                 

        

 

       

      T        

                                                                                                      …. (7) 

where                       

Thus, for ensuring negativity of  for any possible state, it suffices to require be a negative definite matrix. From (7), 

. , if and only if . 

When , we have 

 

                                                                                                   

                                 

                                  

                                                                                

                                        

                                                                       

Based on the Lyapunov-krasovskii stability theorem, the impulsive neural network (3) is globally asymptotically stable.                                                                                                                      

Theorem 3.2 If there exists a positive scalar , positive definite matrices  and positive diagonal 

matrices  such that the following linear matrix inequalities hold: 

                                                                 …. (8) 

…. (9)  
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                                     …. (10) 

where , , 

, , . 

Then the dynamics of the delayed stochastic impulsive neural network (3) is globally asymptotically stable. 

Proof. Let us consider the Lyapunov function 

 

  , 

, 

By Ito’s formula, the derivatives of  is worked out as 

 

                                 +trace [ ] 

 

                                 +trace [ ] 

 

                 

    

Therefore, 
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                          …. (11) 

where     

From (11), . , if and only if . When , arguing similar to the proof of Theorem 1, we 

can show that the system (3) is globally asymptotically stable.                

4. NUMERICAL EXAMPLES 

Now, we give two numerical examples to illustrate the effectiveness of our main results. 

Example 4.1 Consider the following two-neuron stochastic recurrent neural networks with two time-varying delays and 

impulses: 

 

                        ,                     …. (12) 

        ,  ,  

where the activation function is described by , , , and the delayed feedback matrices 

 and  are 

                 , , , , 

 

                                                , 

 

Clearly the activation function satisfies the Assumption 1, with  
 

 
Solving the LMI in Theorem 3.1, a following feasible solution is obtained by using LMI toolbox 

 

, ,   , 

 

                                    ,     

 

The obtained result shows that the delayed stochastic recurrent neural network (12) with impulsive effect is globally 

asymptotically stable. 
 

Example 4.2 For the system (12) the delayed feedback matrices are described as: 

                 , ,  ,  , 

 

                                                        

Clearly the activation function satisfies the Assumption 1, with  are defined as in Example 4.1 and 

 

 

Solving the LMI in Theorem 3.2, a following feasible solution is obtained by using LMI toolbox 
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,     ,   , 

 

                , ,        14.6791 

The obtained result shows that the delayed stochastic recurrent neural network (12) with impulsive effect is globally 

asymptotically stable. 
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