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ABSTRACT 

The global IT industry has now matured. As more and more 

systems grow old and enter into the maintenance stage, software 

maintenance (SM) is becoming one of the most carried out and 

challenging tasks. Besides, the industry is also facing a shift in 

traditional technical environment by way of use of newer tools 

and approaches of software development, migration from legacy 

software to current software and dynamic changes in the SM 

environment. The challenge then lies in accurately modeling and 

predicting the SM effort, schedule and risk involved, under the 

above circumstances. This work employs a neural network (NN) 

approach to model and predict the software maintenance effort 

based on an available real life dataset of outsourced maintenance 

projects (Rao and Sarda, 36 projects of 14 drivers). A 

comparison between results obtained by NN and regression 

modeling is also presented. It is concluded that NN is able to 

successfully model the complex, non-linear relationship between 

a large number of effort drivers and the software maintenance 

effort, with results closely matching the effort estimated by 

experts. 

Categories and Subject Descriptors 

General Terms 

Keywords 

Software maintenance, Effort estimation, Neural network, 

Regression. 

1. INTRODUCTION 
Software is typically delivered with undiscovered flaws. As per 

the IEEE standard for software maintenance (SM) the definition 

of SM is as follows: “The modification of a software product 

after delivery, to correct faults, to improve performance or other 

attributes, or to adapt the product to a modified environment” 

[1]. SM today is the most expensive and time consuming phase 

especially in case of legacy, large and complex systems. Due to 

architectural modifications their original design no longer 

matches the new business goals and requirements [2]. SM is a 

dynamic process and its planning involves estimating size, effort, 

duration, staff and costs. Problems of maintainer‟s job 

switchover, recruitment of experienced maintainers, costing and 

total project duration while submitting a maintenance bid,  

 

optimum resource allocation and vast variety of projects have 

made accurate estimation of maintenance cost a fairly 

challenging problem for the maintenance organizations.  

2. LITERATURE REVIEW 
International Software Benchmarking Standards Group – ISBSG 

- 2005 (http://www.isbsg.org) provides an initial analysis of the 

ISBSG maintenance and support data. The other popular datasets 

include - COCOCMO 81 and COCOCMO II, COSMIC, IFPUG, 

Rao and Sarda, Desharnais, Kemerer etc. ([3], [4]). Recent 

research has focused on the use of function points (FPs) in effort 

estimation. However, a precise estimation should not only 

consider the FPs, representing the software size, but should also 

include different elements of the development environment. 

Reference [5] proposed a SM project effort estimation model 

based on function points. It used FPs to calculate the volume of 

maintenance function. Ten value adjustment factors were 

considered and grouped into three categories of maintenance 

characteristics, i.e. the people domain, product domain and the 

process domain.  

 

Various mathematical and machine learning or artificial 

intelligence (AI) based techniques like regression analysis, 

artificial neural networks (ANN), genetic algorithms (GA), fuzzy 

logic (FL), case based reasoning etc. are being used for accurate 

prediction and estimation of SM effort ([6]-[8]). Most of these 

studies are based on the hard to estimate maintained code size 

metric „lines of code‟ (LOC) or the FP metrics. Reference [9] 

presented a review of studies on estimation of software 

development effort. The unit effort expended on maintenance of 

a system was dependent on many external factors and was not a 

linear relation with respect to time [10]. Reference [11] 

compared the prediction accuracy of different models using 

regression, neural networks and pattern recognition approaches. 

Reference [12] listed the following four groups of factors 

affecting the outsourced maintenance effort: system baseline, 

customer attitude, maintenance team and organizational climate; 

and described how a system dynamics model could be build.  

 

However, till date no single estimation model has been 

successfully applied across a wide variety of projects. Although, 

there are many likely benefits of using more than one technique, 
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there is no way to decide beforehand, which techniques can be 

applied for SM effort estimation. Often, adequate information of 

real life SM projects regarding size, maintenance history, human 

and management factors (management focus, client attitude, need 

for multi-location support teams etc.) is unavailable. This makes 

the problem of objectively estimating SM effort almost in-

tractable. 

 

Artificial intelligence combines the elements of learning, 

adaptation and evolution e.g. NN and FL that are able to learn 

from experimental data, represent highly non-linear and multi-

variate relationships, and are expertise or rule based. These have 

been successfully applied to an environment typically present in 

a modern day SM company ([13]-[17]). Many AI based hybrid 

schemes have also been investigated for SM effort estimation 

including neuro-GA, grey-GA, neuro-fuzzy, etc. ([18]-[20]). 

Hence, a soft computing approach based on ANN is preferred in 

the present work. 

3. PROPOSED WORK  
The objective of the present work is to develop a multilayer feed 

forward NN with back-propagation and Bayesian regularization 

training. The choice of neural networks as the estimation tool 

was governed by the fact that a properly trained NN gives 

matching outputs when presented with unseen inputs, as is the 

case in SM effort estimation. The present work is based on the 

open literature effort data of 36 outsourced SM projects of 14 

effort drivers as shown in Table 1 and Appendix 1 [4]. No NN 

based SM effort estimation studies using this dataset are 

available in the literature. 

 

Table 1. Effort Drivers. 

 

Sl. Effort Drivers 

A.  Existence of restart/recovery logic in batch programs 

B.  Percentage of the online programs to the total number of 

programs 

C.  Complexity of the file system being used 

D.  Average number of lines per program 

E.  Number of files (input, output, sort) used by the system 

F.  Number of database objects used by the system 

G.  Consistency and centralization of exceptional handling in 

programs 

H.  Whether structured programming concepts have been 

followed in the program 

I.  Percentage of commented lines of code to the total lines of 

code of the system 

J.  Number of programs executed as part of a batch job 

K.  Number of database structures used by a typical program 

L.  % of the update programs to the total number of programs 

M.  Nature of service level agreement (SLA) 

N.  Whether structured programming concepts have been 

followed in the program 

The organization of rest of the paper is as follows: Section 4 

presents the results of statistical analysis and regression 

modeling. Section 5 deals with the neural network modeling 

approach adopted in the present work. Section 6 presents the 

analysis and validation of results obtained while Section 7 

presents the concluding remarks.  

4. STATISTICAL ANALYSIS AND 

REGRESSION MODELING 
Before conducting regression analysis we proceed to check if the 

data was normally distributed. Fig. 1 shows a histogram plot of a 

normally distributed dataset. From the data of effort drivers as 

input and estimated effort as output, we ranked the 14 effort 

drivers based on the Taguchi signal-to-noise ratio concept, for the 

„smaller-is-better‟ optimization criterion. A linear regression 

model (Eq. 1) was obtained using the commercial package 

Minitab, by conducting S/N ratio based ANOVA (Analysis of 

Variance), as shown in Table [2]. The obtained P (probability) 

values gave the relative importance of each variable.  
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Table 2. ANOVA Analysis. 

 

Predictor        Coef         SE Coef         T             P 

Constant       6.6309       0.5142       12.90       0.000 

A                  0.3111       0.1414         2.20        0.039 

B                  0.029167     0.004329     6.74        0.000 

C                  0.46667      0.08658       5.39        0.000 

D                  0.00040556   0.0000577   7.03        0.000 

E                  0.0016500    0.0003463   4.76        0.000 

F                  0.028611    0.005772    4.96         0.000 

G                  0.004167     0.004329    0.96         0.347  

H                  0.03490      0.01920      1.82         0.083 

I                   0.03264     0.01443      2.26         0.034 

J                  0.05556      0.01443      3.85         0.001 

K                 0.04375      0.01443      3.03         0.006 

L                 0.019928     0.003764    5.29         0.000 

M                0.10867      0.01920      5.66         0.000 

N                 0.39792      0.04329      9.19         0.000 

 

Fig. 1.  Histogram showing normal distribution of data. 
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S = 0.424139   R-Sq = 94.4%   R-Sq(adj) = 90.7% 

EFFORT_AVE = 6.63 + 0.311 A + 0.029 B + 0.467 C + 0.0004 

D + 0.0016 E + 0.028 F + 0.0041 G +  0.0349 H + 0.0326 I + 

0.0556 J + 0.0437 K + 0.019 L+ 0.109 M + 0.398 N              (1) 

 

The parameter N (whether structured programming concepts 

have been followed in the program) is found to have a 

considerably dominant effect on the effort and is ranked at no. 1, 

while the parameter G (consistency and centralization of 

exceptional handling in programs) has the least significant effect. 

A high value of 0.944 of the square of correlation coefficient (R-

Sq) shows an excellent agreement between the linear model 

predicted and experimental values, further indicating the 

consistency of data. Thereafter the main effect plot (Fig. 2) was 

drawn to evaluate the change in mean effort at different level 

settings of each variable. It is evident that almost all the drivers 

except G and H had an increasing effect on the predicted effort 

with increased level settings. 
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Fig. 2. Main effects plot. 

However, the same may not be true beyond the present range of 

parameters and more so when there is a non-linear relationship 

between the effort drivers and response. Hence, the neural 

network based approach has also been attempted as an alternate 

method and a comparison is made between the two approaches.  

5. NEURAL NETWORK MODELING 
ANN is a class of flexible non-linear model inspired by the way 

in which the human brain processes information. Given an 

appropriate number of hidden layer units, it is well established 

that ANN can approximate any non-linear function, to a 

reasonable degree of accuracy [23]. The flexibility and 

generalization ability of ANN have made them a popular 

modeling tool across different research areas in recent years. 

ANN trained using an algorithm learns stagewise, progressing 

from fairly simple to more complex mapping functions. The 

mean-square error decreases with an increasing number of 

iterations during training.  

The NN architecture chosen in our case was the 3 layer back-

propagation, with 14 inputs, 14 hidden neurons and 1 output (14-

11-1), as shown in Figure 3. The uni-modal sigmoid activation 

function in hidden layer and output layer was used in the present 

study. We initially kept only one hidden layer with hidden nodes 

equal to the inputs i.e. 14. The number of hidden nodes was 

gradually increased from 14 and the reduction in SSE observed. 

During trials, the minimum MSE did not change significantly 

with increased hidden nodes. Hence, a simplified NN 

architecture with only one hidden layer and minimum number of 

hidden neurons was finalized. The network was trained using 27 

samples (50% of input data set) and rest 25% each were used for 

validation and testing. In this work, we have used the Matlab NN 

toolbox functions ([24], [25]). This toolbox provides utility 

functions for creating and training NNs, and verification and 

validation of NNs by simulation and visualization. 
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6. ANALYSIS AND VALIDATION OF 

RESULTS 
A comparison of the 14-14-1 NN output with measured 

experimental values of effort shows the % error varying from 

+4.32 to -38.56, +18.72 to -5.87 and +6.12 to -2.31 for the 

training dataset (18 nos.), testing dataset (9 nos.) and validation 

dataset (9 nos.), respectively. The average % error though is 

significantly small at -1.93, 2.40 and 0.46, respectively. The next 

step was to perform analysis of the network response. The results 

of training of available data with a 14-14-1 architecture are 

shown in Figure 4. The obtained trends were as expected since 

the test set error and the validation set error have similar 

characteristics and tend to converge very fast (40 epochs). 

Further, any significant overfitting does not seem to have 

occurred. The sum of squared errors SSE for training (10.31), 

testing (0.99) and validation (0.64) as against a target of 0.0 are 

on expected lines and similar to that given in literature.  

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linear regression analysis between the network outputs and the 

corresponding targets was performed as shown in Fig 5. The two 

outliers of smallest effort (9.8) and largest effort (19.2) show 

larger errors of -38.56% and 18.72%. Hence, a log 

transformation (i.e. log(inputs) and log(output effort) has also 

been attempted, significantly reducing the above errors to            

-13.98% and 7.28%. For all the above details reference may be 

made to Appendix 2. A much simplified NN architecture was 

able to effectively and successfully model the highly non-linear 

relationship between the 14 variables and a single output 

parameter, as is evident from the high correlation coefficient „R‟ 

value (around 0.9), for multiple runs of the code (Fig. 5). 

The predicted effort (based on uncoded inputs / actual values) 

using the regression equation (Eq. 1) has been shown in the last 

column of Appendix 1. It can be inferred from the predicted 

values that the Taguchi approach based predicted effort models 

the effort with high accuracy validating the proposed approach. 

However, a single model will be insufficient to deal with vastly 

varying nature of projects. 

7. CONCLUSIONS 
In this paper, effectiveness of NN modeling approach of effort 

estimation for outsourced software maintenance projects was 

presented. The NN model trained using experimental data was 

found to have good generalization capabilities and is able to 

successfully predict the effort closely matching the experimental 

observations. Since the effect of various cost drivers on effort is 

often quite complex, ANN can be used as an effective tool to 

model and predict the SM effort. However, the models should 

also be evaluated by exploring the model sensitivity and 

scalability on a variety of historical and unseen input data [26].  

8. REFERENCES 
[1] IEEE Standard 1219: 1998. Standard for software 

maintenance, IEEE Computer Society Press.  

[2] Boehm, B., Abts, C. and Chulani, S. 2000. Software 

development cost estimation approaches – a survey, Ann. 

Software Eng., 10, 177–205.   

[3] Shukla, R and Misra, A. K. 2009. AI Based Framework for 

Dynamic Modeling of Software Maintenance Effort 

Estimation, Proceedings of International Conference on 

Computer and Automation Engineering, 313-317. 

[4] Rao, B. S. and Sarda, N. L. 2003. Effort drivers in 

maintenance outsourcing - an experiment using Taguchi‟s 

methodology, Proceedings of Seventh IEEE European 

Conference on Software Maintenance and Reengineering, 1-

10. 

[5] Ahn, Y., Suh, J., Kim, S. and Kim, H. 2003. The software 

maintenance project effort estimation model based on 

function points, J. Software Maint. and Evol.: Res. and 

Practice, 15, 2, 71-78. 

[6] Tronto, I. F. B., Silva, J. D. S. and Anna, N. S. 2008. An 

investigation of artificial neural networks based prediction 

systems in software project management, J. Syst. 

Software, 81, 356-367. 

[7] Martín, C. L., Márquez, C. Y. and Tornés, A. G. 2008. 

Predictive accuracy comparison of fuzzy models for software 

development effort of small programs, J. Syst. Software, 81, Fig. 5. Regression plot showing the target and 

actual values as predicted by NN. 

8 10 12 14 16 18 20
8

10

12

14

16

18

20

T

A

Best Linear Fit:  A = (0.268) T + (10.7)

R = 0.913

Data Points

Best Linear Fit

A = T

Fig. 4. NN simulation plot. 

10
0

10
2

 

T
r-

B
lu

e
  

V
a
l-
G

re
e
n
  

T
s
t-

R
e
d

Training SSE = 10.3154    Test SSE = 0.998453    Validation SSE = 8.64801

10
0

10
2

 

S
S

W

Squared Weights = 0.716878

0 5 10 15 20 25 30 35 40
0

10

20

Epoch

S
q
u
a
re

d
 E

rr
o
r

Training

Validation

Test



©2010 International Journal of Computer Applications (0975 - 8887) 

Volume 1 – No. 29 

78 

 

6, 949-960. 

[8] Park, H. and Baek, S. 2008. An empirical validation of a 

neural network model for software effort estimation, Exp. 

Syst. Applic., 35, 3, 929-937. 

[9] Jorgensen, M. 2004. A review of studies on expert 

estimation of software development effort, J. Syst. 

Software, 70, 1-2, 37-60. 

[10] Jorgensen, M. 1995. Experience with accuracy of software 

maintenance task effort prediction models, IEEE Trans. 

Software Eng., 674-681. 

[11] Grimstad, S. and Jørgensen, M. 2007. Inconsistency of 

expert judgment-based estimates of software development 

effort, J. Syst. Software, 80, 11, 1770-1777. 

[12] Bhatt, P., Shroff, G., Anantram, C. and Misra, A. K.  2006. 

An nfluence model for factors in outsourced software 

maintenance, J. Software Maint. and Evol.: Res. and 

Practice, 18, 385-423. 

[13] Shukla, R. and Misra, A. K. 2008. Estimating software 

maintenance effort - A neural network approach, 

Proceedings of the 1st India Software Engineering 

Conference - ISEC, Hyderabad, India, 107-112. 

[14] Khoshgoftaar, T. M. I. and Abran, A. 2002. Can neural 

networks be easily interpreted in software cost estimation, 

IEEE Trans. Software Eng., 1162-1167. 

[15] Pendharkar, P. C., Subramanian, G. H. and Rodger, J. A. 

2005. A probabilistic model for predicting software 

development effort, IEEE Trans. Software Eng., 31, 7, 615-

624. 

[16] Witting, G. and. Finnie, G. 1994. Using artificial neural 

networks and function points to estimate 4GL software 

development effort. J. Inform. Systems, 1, 2, 87–94. 

[17] Srinivazan, K. and Fisher, D. 1995. Machine learning 

approaches to estimating software development effort. IEEE 

Trans. Software Eng., 21, 2, 126–137. 

[18] Boetticher, G. D. 2001. An assessment of metric 

contribution in the construction of a neural network-based 

effort estimator, Proceedings of Second Int. Workshop on 

Soft Computing Applied to Software Engineering. 

[19] Shukla, K. K. 2000. Neuro-genetic prediction of software 

development effort, Inform. Software Tech., 42, 701-713. 

[20] Huang, S. J., Chiu, N. H. and Chen, L. W. 2008. Integration 

of the grey relational analysis with genetic algorithm for 

software effort estimation, European J. Oper. Research, 188, 

3, 898-909.  

[21] Phadke, M. S. 1989. Quality Engineering Using Robust 

Design, Eaglewood cliffs, NJ: Prentice Hall. 

[22] www.minitab.com 

[23] Haykin, S. 1999. Neural networks: A comprehensive 

foundation, Prentice Hall. 

[24] Shukla, M. and Tambe, P. B. 2010. Predictive modeling of 

surface roughness and kerf widths in abrasive water jet 

cutting of kevlar composites using artificial neural network, 

Int. J. Mach. Machin. of Mater., In press. 

[25] www.mathworks.com 

[26] Aggarwal, K. K., Singh, Y., Chandra, P. and Puri, M. 2004. 

Sensitivity analysis of fuzzy and neural network models, 

ACM SIGSOFT Software Eng. Notes, 29, 5, 1-5.

 



©2010 International Journal of Computer Applications (0975 - 8887) 

Volume 1 – No. 29 

79 

 

Appendix 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sl. 

No 
A B C D E F G H J K L M N O Effort_Ave 

Predicted 

Effort  

1.  1 10 1 750 125 5 20 1 2 2 2 7 1 1 9.8 9.5528 

2.  1 10 2 2250 375 20 40 5 8 8 8 30 5 3 14.1 13.8528 

3.  1 10 3 3750 625 35 60 10 14 14 14 53 10 5 19.2 18.9528 

4.  1 10 1 750 125 5 40 5 8 8 14 53 10 5 14.5 14.5194 

5.  1 10 2 2250 375 20 60 10 14 14 2 7 1 1 12.7 12.7194 

6.  1 10 3 3750 625 35 20 1 2 2 8 30 5 3 15.1 15.1194 

7.  2 10 1 750 375 35 20 5 14 14 2 30 5 5 14.7 14.7639 

8.  2 10 2 2250 625 5 40 10 2 2 8 53 10 1 14.0 14.0639 

9.  2 10 3 3750 125 20 60 1 8 8 14 7 1 3 14.4 14.4639 

10.  2 10 1 750 625 20 20 10 8 14 8 7 10 3 14.2 14.3639 

11.  2 10 2 2250 125 35 40 1 14 2 14 30 1 5 14.4 14.5639 

12.  2 10 3 3750 375 5 60 5 2 8 2 53 5 1 14.2 14.3639 

13.  1 30 1 2250 625 5 60 5 2 14 14 30 1 3 13.9 14.1944 

14.  1 30 2 3750 125 20 20 10 8 2 2 53 5 5 15.1 15.3944 

15.  1 30 3 750 375 35 40 1 14 8 8 7 10 1 13.6 13.8944 

16.  1 30 1 2250 625 20 20 1 14 8 14 53 5 1 14.0 14.2611 

17.  1 30 2 3750 125 35 40 5 2 14 2 7 10 3 15.1 15.3611 

18.  1 30 3 750 375 5 60 10 8 2 8 30 1 5 13.6 13.8611 

19.  2 30 1 2250 125 35 60 10 2 8 8 7 5 5 14.8 14.4722 

20.  2 30 2 3750 375 5 20 1 8 14 14 30 10 1 15.0 14.6722 

21.  2 30 3 750 625 20 40 5 14 2 2 53 1 3 15.6 15.2722 

22.  2 30 1 2250 375 35 60 1 8 2 2 53 10 3 15.1 14.8722 

23.  2 30 2 3750 625 5 20 5 14 8 8 7 1 5 15.6 15.3722 

24.  2 30 3 750 125 20 40 10 2 14 14 30 5 1 14.4 14.1722 

25.  1 50 1 3750 375 5 40 10 14 2 14 7 5 3 15.1 14.8194 

26.  1 50 2 750 625 20 60 1 2 8 2 30 10 5 16.0 15.7194 

27.  1 50 3 2250 125 35 20 5 8 14 8 53 1 1 15.6 15.3194 

28.  1 50 1 3750 375 20 40 1 2 14 8 53 1 5 16.3 16.2528 

29.  1 50 2 750 625 35 60 5 8 2 14 7 5 1 14.4 14.3528 

30.  1 50 3 2250 125 5 20 10 14 8 2 30 10 3 15.3 15.2528 

31.  2 50 1 3750 625 35 40 10 8 8 2 30 1 1 14.8 15.1639 

32.  2 50 2 750 125 5 60 1 14 14 8 53 5 3 14.5 14.8639 

33.  2 50 3 2250 375 20 20 5 2 2 14 7 10 5 16.4 16.7639 

34.  2 50 1 3750 125 20 60 5 14 2 8 30 10 1 15.3 15.2639 

35.  2 50 2 750 375 35 20 10 2 8 14 53 1 3 15.3 15.2639 

36.  2 50 3 2250 625 5 40 1 8 14 2 7 5 5 16.3 16.2639 
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Appendix 2 

 

 

Sl. 

No. 

Actual 

Effort 

NN 

Predicted 

Effort 

% 

error 

% error 

(log transformation) 

TRAINING SET 

1 9.8 13.61 -38.56 -13.98 

2 14.1 14.24 -0.70 -1.10 

5 12.7 13.88 -8.59 -3.19 

6 15.1 14.72 1.85 0.84 

9 14.4 14.49 -0.51 -0.11 

10 14.2 14.41 -1.25 -0.48 

13 13.9 14.35 -2.95 -1.41 

14 15.1 14.85 0.74 0.58 

17 15.1 14.82 1.29 0.60 

18 13.6 14.45 -6.34 -2.20 

21 15.6 14.99 3.41 1.24 

22 15.1 14.82 1.46 0.15 

25 15.1 14.71 2.28 0.92 

26 16.0 15.16 4.32 1.93 

29 14.4 14.48 -0.48 -0.05 

30 15.3 14.91 1.84 1.21 

33 16.4 15.53 4.32 1.87 

34 15.3 14.79 3.12 1.42 

  
Average 

Error 
-1.93 -0.65 

TESTING SET 

3 19.2 15.55 18.72 7.28 

7 14.7 14.52 1.14 0.68 

11 14.4 14.59 -1.50 -0.25 

15 13.6 14.43 -5.87 -2.12 

19 14.8 14.79 -0.40 -0.54 

23 15.6 15.05 2.74 1.47 

27 15.6 14.68 5.63 2.93 

31 14.8 14.80 -0.29 0.55 

35 15.3 14.97 1.47 0.84 

  
Average 

Error 
+2.40 +1.20 

VALIDATION SET 

4 14.5 14.53 -0.18 0.31 

8 14.0 14.33 -2.08 -0.63 

12 14.2 14.34 -0.73 -0.08 

16 14.0 14.36 -2.31 -1.07 

20 15.0 14.87 0.54 0.47 

24 14.4 14.41 0.21 -0.06 

28 16.3 15.16 6.12 2.82 

32 14.5 14.78 -2.01 -0.78 

36 16.3 15.40 4.64 2.12 

  
Average 

Error 
+0.46 +0.34 


