
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

74

Software Maintenance Effort Estimation –

Neural Network Vs Regression Modeling Approach

Ruchi Shukla

Department of Computer Science and Engineering
Motilal Nehru National Institute of Technology

Allahabad, India – 211004

A K Misra
Department of Computer Science and Engineering

Motilal Nehru National Institute of Technology
Allahabad, India – 211004

ABSTRACT

The global IT industry has now matured. As more and more

systems grow old and enter into the maintenance stage, software

maintenance (SM) is becoming one of the most carried out and

challenging tasks. Besides, the industry is also facing a shift in

traditional technical environment by way of use of newer tools

and approaches of software development, migration from legacy

software to current software and dynamic changes in the SM

environment. The challenge then lies in accurately modeling and

predicting the SM effort, schedule and risk involved, under the

above circumstances. This work employs a neural network (NN)

approach to model and predict the software maintenance effort

based on an available real life dataset of outsourced maintenance

projects (Rao and Sarda, 36 projects of 14 drivers). A

comparison between results obtained by NN and regression

modeling is also presented. It is concluded that NN is able to

successfully model the complex, non-linear relationship between

a large number of effort drivers and the software maintenance

effort, with results closely matching the effort estimated by

experts.

Categories and Subject Descriptors

General Terms

Keywords

Software maintenance, Effort estimation, Neural network,

Regression.

1. INTRODUCTION
Software is typically delivered with undiscovered flaws. As per

the IEEE standard for software maintenance (SM) the definition

of SM is as follows: “The modification of a software product

after delivery, to correct faults, to improve performance or other

attributes, or to adapt the product to a modified environment”

[1]. SM today is the most expensive and time consuming phase

especially in case of legacy, large and complex systems. Due to

architectural modifications their original design no longer

matches the new business goals and requirements [2]. SM is a

dynamic process and its planning involves estimating size, effort,

duration, staff and costs. Problems of maintainer‟s job

switchover, recruitment of experienced maintainers, costing and

total project duration while submitting a maintenance bid,

optimum resource allocation and vast variety of projects have

made accurate estimation of maintenance cost a fairly

challenging problem for the maintenance organizations.

2. LITERATURE REVIEW
International Software Benchmarking Standards Group – ISBSG

- 2005 (http://www.isbsg.org) provides an initial analysis of the

ISBSG maintenance and support data. The other popular datasets

include - COCOCMO 81 and COCOCMO II, COSMIC, IFPUG,

Rao and Sarda, Desharnais, Kemerer etc. ([3], [4]). Recent

research has focused on the use of function points (FPs) in effort

estimation. However, a precise estimation should not only

consider the FPs, representing the software size, but should also

include different elements of the development environment.

Reference [5] proposed a SM project effort estimation model

based on function points. It used FPs to calculate the volume of

maintenance function. Ten value adjustment factors were

considered and grouped into three categories of maintenance

characteristics, i.e. the people domain, product domain and the

process domain.

Various mathematical and machine learning or artificial

intelligence (AI) based techniques like regression analysis,

artificial neural networks (ANN), genetic algorithms (GA), fuzzy

logic (FL), case based reasoning etc. are being used for accurate

prediction and estimation of SM effort ([6]-[8]). Most of these

studies are based on the hard to estimate maintained code size

metric „lines of code‟ (LOC) or the FP metrics. Reference [9]

presented a review of studies on estimation of software

development effort. The unit effort expended on maintenance of

a system was dependent on many external factors and was not a

linear relation with respect to time [10]. Reference [11]

compared the prediction accuracy of different models using

regression, neural networks and pattern recognition approaches.

Reference [12] listed the following four groups of factors

affecting the outsourced maintenance effort: system baseline,

customer attitude, maintenance team and organizational climate;

and described how a system dynamics model could be build.

However, till date no single estimation model has been

successfully applied across a wide variety of projects. Although,

there are many likely benefits of using more than one technique,

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

75

there is no way to decide beforehand, which techniques can be

applied for SM effort estimation. Often, adequate information of

real life SM projects regarding size, maintenance history, human

and management factors (management focus, client attitude, need

for multi-location support teams etc.) is unavailable. This makes

the problem of objectively estimating SM effort almost in-

tractable.

Artificial intelligence combines the elements of learning,

adaptation and evolution e.g. NN and FL that are able to learn

from experimental data, represent highly non-linear and multi-

variate relationships, and are expertise or rule based. These have

been successfully applied to an environment typically present in

a modern day SM company ([13]-[17]). Many AI based hybrid

schemes have also been investigated for SM effort estimation

including neuro-GA, grey-GA, neuro-fuzzy, etc. ([18]-[20]).

Hence, a soft computing approach based on ANN is preferred in

the present work.

3. PROPOSED WORK
The objective of the present work is to develop a multilayer feed

forward NN with back-propagation and Bayesian regularization

training. The choice of neural networks as the estimation tool

was governed by the fact that a properly trained NN gives

matching outputs when presented with unseen inputs, as is the

case in SM effort estimation. The present work is based on the

open literature effort data of 36 outsourced SM projects of 14

effort drivers as shown in Table 1 and Appendix 1 [4]. No NN

based SM effort estimation studies using this dataset are

available in the literature.

Table 1. Effort Drivers.

Sl. Effort Drivers

A. Existence of restart/recovery logic in batch programs

B. Percentage of the online programs to the total number of

programs

C. Complexity of the file system being used

D. Average number of lines per program

E. Number of files (input, output, sort) used by the system

F. Number of database objects used by the system

G. Consistency and centralization of exceptional handling in

programs

H. Whether structured programming concepts have been

followed in the program

I. Percentage of commented lines of code to the total lines of

code of the system

J. Number of programs executed as part of a batch job

K. Number of database structures used by a typical program

L. % of the update programs to the total number of programs

M. Nature of service level agreement (SLA)

N. Whether structured programming concepts have been

followed in the program

The organization of rest of the paper is as follows: Section 4

presents the results of statistical analysis and regression

modeling. Section 5 deals with the neural network modeling

approach adopted in the present work. Section 6 presents the

analysis and validation of results obtained while Section 7

presents the concluding remarks.

4. STATISTICAL ANALYSIS AND

REGRESSION MODELING
Before conducting regression analysis we proceed to check if the

data was normally distributed. Fig. 1 shows a histogram plot of a

normally distributed dataset. From the data of effort drivers as

input and estimated effort as output, we ranked the 14 effort

drivers based on the Taguchi signal-to-noise ratio concept, for the

„smaller-is-better‟ optimization criterion. A linear regression

model (Eq. 1) was obtained using the commercial package

Minitab, by conducting S/N ratio based ANOVA (Analysis of

Variance), as shown in Table [2]. The obtained P (probability)

values gave the relative importance of each variable.

19181716151413121110

14

12

10

8

6

4

2

0

EFFORT_AVE

Fr
e

q
u

e
n

c
y

Mean 14.79

StDev 1.388

N 36

Histogram of EFFORT_AVE
Normal

Table 2. ANOVA Analysis.

Predictor Coef SE Coef T P

Constant 6.6309 0.5142 12.90 0.000

A 0.3111 0.1414 2.20 0.039

B 0.029167 0.004329 6.74 0.000

C 0.46667 0.08658 5.39 0.000

D 0.00040556 0.0000577 7.03 0.000

E 0.0016500 0.0003463 4.76 0.000

F 0.028611 0.005772 4.96 0.000

G 0.004167 0.004329 0.96 0.347

H 0.03490 0.01920 1.82 0.083

I 0.03264 0.01443 2.26 0.034

J 0.05556 0.01443 3.85 0.001

K 0.04375 0.01443 3.03 0.006

L 0.019928 0.003764 5.29 0.000

M 0.10867 0.01920 5.66 0.000

N 0.39792 0.04329 9.19 0.000

Fig. 1. Histogram showing normal distribution of data.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

76

S = 0.424139 R-Sq = 94.4% R-Sq(adj) = 90.7%

EFFORT_AVE = 6.63 + 0.311 A + 0.029 B + 0.467 C + 0.0004

D + 0.0016 E + 0.028 F + 0.0041 G + 0.0349 H + 0.0326 I +

0.0556 J + 0.0437 K + 0.019 L+ 0.109 M + 0.398 N (1)

The parameter N (whether structured programming concepts

have been followed in the program) is found to have a

considerably dominant effect on the effort and is ranked at no. 1,

while the parameter G (consistency and centralization of

exceptional handling in programs) has the least significant effect.

A high value of 0.944 of the square of correlation coefficient (R-

Sq) shows an excellent agreement between the linear model

predicted and experimental values, further indicating the

consistency of data. Thereafter the main effect plot (Fig. 2) was

drawn to evaluate the change in mean effort at different level

settings of each variable. It is evident that almost all the drivers

except G and H had an increasing effect on the predicted effort

with increased level settings.

21

15.6

15.0

14.4

503010 321 37502250750

625375125

15.6

15.0

14.4

35205 604020 1051

1482

15.6

15.0

14.4

1482 1482 53307

1051

15.6

15.0

14.4

531

A

M
e

a
n

 o
f

M
e

a
n

s

B C D

E F G H

J K L M

N O

Main Effects Plot for Means
Data Means

21

15.6

15.0

14.4

503010 321 37502250750

625375125

15.6

15.0

14.4

35205 604020 1051

1482

15.6

15.0

14.4

1482 1482 53307

1051

15.6

15.0

14.4

531

A

M
e

a
n

 o
f

M
e

a
n

s

B C D

E F G H

J K L M

N O

Main Effects Plot for Means
Data Means

Fig. 2. Main effects plot.

However, the same may not be true beyond the present range of

parameters and more so when there is a non-linear relationship

between the effort drivers and response. Hence, the neural

network based approach has also been attempted as an alternate

method and a comparison is made between the two approaches.

5. NEURAL NETWORK MODELING
ANN is a class of flexible non-linear model inspired by the way

in which the human brain processes information. Given an

appropriate number of hidden layer units, it is well established

that ANN can approximate any non-linear function, to a

reasonable degree of accuracy [23]. The flexibility and

generalization ability of ANN have made them a popular

modeling tool across different research areas in recent years.

ANN trained using an algorithm learns stagewise, progressing

from fairly simple to more complex mapping functions. The

mean-square error decreases with an increasing number of

iterations during training.

The NN architecture chosen in our case was the 3 layer back-

propagation, with 14 inputs, 14 hidden neurons and 1 output (14-

11-1), as shown in Figure 3. The uni-modal sigmoid activation

function in hidden layer and output layer was used in the present

study. We initially kept only one hidden layer with hidden nodes

equal to the inputs i.e. 14. The number of hidden nodes was

gradually increased from 14 and the reduction in SSE observed.

During trials, the minimum MSE did not change significantly

with increased hidden nodes. Hence, a simplified NN

architecture with only one hidden layer and minimum number of

hidden neurons was finalized. The network was trained using 27

samples (50% of input data set) and rest 25% each were used for

validation and testing. In this work, we have used the Matlab NN

toolbox functions ([24], [25]). This toolbox provides utility

functions for creating and training NNs, and verification and

validation of NNs by simulation and visualization.

J I

W144

B141

W11

W1414

W214

W12

Effort

Hidden

Layer
Input

Layer

1.

Laye

r
Effort driver 1

Effort driver 2

.

.

.

Effort driver 14

Output

Layer
1

2

3

4

14

2

1

14

1

B11

B21

Fig. 3. NN architecture.

M N

K L

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

77

6. ANALYSIS AND VALIDATION OF

RESULTS
A comparison of the 14-14-1 NN output with measured

experimental values of effort shows the % error varying from

+4.32 to -38.56, +18.72 to -5.87 and +6.12 to -2.31 for the

training dataset (18 nos.), testing dataset (9 nos.) and validation

dataset (9 nos.), respectively. The average % error though is

significantly small at -1.93, 2.40 and 0.46, respectively. The next

step was to perform analysis of the network response. The results

of training of available data with a 14-14-1 architecture are

shown in Figure 4. The obtained trends were as expected since

the test set error and the validation set error have similar

characteristics and tend to converge very fast (40 epochs).

Further, any significant overfitting does not seem to have

occurred. The sum of squared errors SSE for training (10.31),

testing (0.99) and validation (0.64) as against a target of 0.0 are

on expected lines and similar to that given in literature.

Linear regression analysis between the network outputs and the

corresponding targets was performed as shown in Fig 5. The two

outliers of smallest effort (9.8) and largest effort (19.2) show

larger errors of -38.56% and 18.72%. Hence, a log

transformation (i.e. log(inputs) and log(output effort) has also

been attempted, significantly reducing the above errors to

-13.98% and 7.28%. For all the above details reference may be

made to Appendix 2. A much simplified NN architecture was

able to effectively and successfully model the highly non-linear

relationship between the 14 variables and a single output

parameter, as is evident from the high correlation coefficient „R‟

value (around 0.9), for multiple runs of the code (Fig. 5).

The predicted effort (based on uncoded inputs / actual values)

using the regression equation (Eq. 1) has been shown in the last

column of Appendix 1. It can be inferred from the predicted

values that the Taguchi approach based predicted effort models

the effort with high accuracy validating the proposed approach.

However, a single model will be insufficient to deal with vastly

varying nature of projects.

7. CONCLUSIONS
In this paper, effectiveness of NN modeling approach of effort

estimation for outsourced software maintenance projects was

presented. The NN model trained using experimental data was

found to have good generalization capabilities and is able to

successfully predict the effort closely matching the experimental

observations. Since the effect of various cost drivers on effort is

often quite complex, ANN can be used as an effective tool to

model and predict the SM effort. However, the models should

also be evaluated by exploring the model sensitivity and

scalability on a variety of historical and unseen input data [26].

8. REFERENCES
[1] IEEE Standard 1219: 1998. Standard for software

maintenance, IEEE Computer Society Press.

[2] Boehm, B., Abts, C. and Chulani, S. 2000. Software

development cost estimation approaches – a survey, Ann.

Software Eng., 10, 177–205.

[3] Shukla, R and Misra, A. K. 2009. AI Based Framework for

Dynamic Modeling of Software Maintenance Effort

Estimation, Proceedings of International Conference on

Computer and Automation Engineering, 313-317.

[4] Rao, B. S. and Sarda, N. L. 2003. Effort drivers in

maintenance outsourcing - an experiment using Taguchi‟s

methodology, Proceedings of Seventh IEEE European

Conference on Software Maintenance and Reengineering, 1-

10.

[5] Ahn, Y., Suh, J., Kim, S. and Kim, H. 2003. The software

maintenance project effort estimation model based on

function points, J. Software Maint. and Evol.: Res. and

Practice, 15, 2, 71-78.

[6] Tronto, I. F. B., Silva, J. D. S. and Anna, N. S. 2008. An

investigation of artificial neural networks based prediction

systems in software project management, J. Syst.

Software, 81, 356-367.

[7] Martín, C. L., Márquez, C. Y. and Tornés, A. G. 2008.

Predictive accuracy comparison of fuzzy models for software

development effort of small programs, J. Syst. Software, 81, Fig. 5. Regression plot showing the target and

actual values as predicted by NN.

8 10 12 14 16 18 20
8

10

12

14

16

18

20

T

A

Best Linear Fit: A = (0.268) T + (10.7)

R = 0.913

Data Points

Best Linear Fit

A = T

Fig. 4. NN simulation plot.

10
0

10
2

T
r-

B
lu

e

V
a
l-
G

re
e
n

T
s
t-

R
e
d

Training SSE = 10.3154 Test SSE = 0.998453 Validation SSE = 8.64801

10
0

10
2

S
S

W

Squared Weights = 0.716878

0 5 10 15 20 25 30 35 40
0

10

20

Epoch

S
q
u
a
re

d
 E

rr
o
r

Training

Validation

Test

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

78

6, 949-960.

[8] Park, H. and Baek, S. 2008. An empirical validation of a

neural network model for software effort estimation, Exp.

Syst. Applic., 35, 3, 929-937.

[9] Jorgensen, M. 2004. A review of studies on expert

estimation of software development effort, J. Syst.

Software, 70, 1-2, 37-60.

[10] Jorgensen, M. 1995. Experience with accuracy of software

maintenance task effort prediction models, IEEE Trans.

Software Eng., 674-681.

[11] Grimstad, S. and Jørgensen, M. 2007. Inconsistency of

expert judgment-based estimates of software development

effort, J. Syst. Software, 80, 11, 1770-1777.

[12] Bhatt, P., Shroff, G., Anantram, C. and Misra, A. K. 2006.

An nfluence model for factors in outsourced software

maintenance, J. Software Maint. and Evol.: Res. and

Practice, 18, 385-423.

[13] Shukla, R. and Misra, A. K. 2008. Estimating software

maintenance effort - A neural network approach,

Proceedings of the 1st India Software Engineering

Conference - ISEC, Hyderabad, India, 107-112.

[14] Khoshgoftaar, T. M. I. and Abran, A. 2002. Can neural

networks be easily interpreted in software cost estimation,

IEEE Trans. Software Eng., 1162-1167.

[15] Pendharkar, P. C., Subramanian, G. H. and Rodger, J. A.

2005. A probabilistic model for predicting software

development effort, IEEE Trans. Software Eng., 31, 7, 615-

624.

[16] Witting, G. and. Finnie, G. 1994. Using artificial neural

networks and function points to estimate 4GL software

development effort. J. Inform. Systems, 1, 2, 87–94.

[17] Srinivazan, K. and Fisher, D. 1995. Machine learning

approaches to estimating software development effort. IEEE

Trans. Software Eng., 21, 2, 126–137.

[18] Boetticher, G. D. 2001. An assessment of metric

contribution in the construction of a neural network-based

effort estimator, Proceedings of Second Int. Workshop on

Soft Computing Applied to Software Engineering.

[19] Shukla, K. K. 2000. Neuro-genetic prediction of software

development effort, Inform. Software Tech., 42, 701-713.

[20] Huang, S. J., Chiu, N. H. and Chen, L. W. 2008. Integration

of the grey relational analysis with genetic algorithm for

software effort estimation, European J. Oper. Research, 188,

3, 898-909.

[21] Phadke, M. S. 1989. Quality Engineering Using Robust

Design, Eaglewood cliffs, NJ: Prentice Hall.

[22] www.minitab.com

[23] Haykin, S. 1999. Neural networks: A comprehensive

foundation, Prentice Hall.

[24] Shukla, M. and Tambe, P. B. 2010. Predictive modeling of

surface roughness and kerf widths in abrasive water jet

cutting of kevlar composites using artificial neural network,

Int. J. Mach. Machin. of Mater., In press.

[25] www.mathworks.com

[26] Aggarwal, K. K., Singh, Y., Chandra, P. and Puri, M. 2004.

Sensitivity analysis of fuzzy and neural network models,

ACM SIGSOFT Software Eng. Notes, 29, 5, 1-5.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

79

Appendix 1

Sl.

No
A B C D E F G H J K L M N O Effort_Ave

Predicted

Effort

1. 1 10 1 750 125 5 20 1 2 2 2 7 1 1 9.8 9.5528

2. 1 10 2 2250 375 20 40 5 8 8 8 30 5 3 14.1 13.8528

3. 1 10 3 3750 625 35 60 10 14 14 14 53 10 5 19.2 18.9528

4. 1 10 1 750 125 5 40 5 8 8 14 53 10 5 14.5 14.5194

5. 1 10 2 2250 375 20 60 10 14 14 2 7 1 1 12.7 12.7194

6. 1 10 3 3750 625 35 20 1 2 2 8 30 5 3 15.1 15.1194

7. 2 10 1 750 375 35 20 5 14 14 2 30 5 5 14.7 14.7639

8. 2 10 2 2250 625 5 40 10 2 2 8 53 10 1 14.0 14.0639

9. 2 10 3 3750 125 20 60 1 8 8 14 7 1 3 14.4 14.4639

10. 2 10 1 750 625 20 20 10 8 14 8 7 10 3 14.2 14.3639

11. 2 10 2 2250 125 35 40 1 14 2 14 30 1 5 14.4 14.5639

12. 2 10 3 3750 375 5 60 5 2 8 2 53 5 1 14.2 14.3639

13. 1 30 1 2250 625 5 60 5 2 14 14 30 1 3 13.9 14.1944

14. 1 30 2 3750 125 20 20 10 8 2 2 53 5 5 15.1 15.3944

15. 1 30 3 750 375 35 40 1 14 8 8 7 10 1 13.6 13.8944

16. 1 30 1 2250 625 20 20 1 14 8 14 53 5 1 14.0 14.2611

17. 1 30 2 3750 125 35 40 5 2 14 2 7 10 3 15.1 15.3611

18. 1 30 3 750 375 5 60 10 8 2 8 30 1 5 13.6 13.8611

19. 2 30 1 2250 125 35 60 10 2 8 8 7 5 5 14.8 14.4722

20. 2 30 2 3750 375 5 20 1 8 14 14 30 10 1 15.0 14.6722

21. 2 30 3 750 625 20 40 5 14 2 2 53 1 3 15.6 15.2722

22. 2 30 1 2250 375 35 60 1 8 2 2 53 10 3 15.1 14.8722

23. 2 30 2 3750 625 5 20 5 14 8 8 7 1 5 15.6 15.3722

24. 2 30 3 750 125 20 40 10 2 14 14 30 5 1 14.4 14.1722

25. 1 50 1 3750 375 5 40 10 14 2 14 7 5 3 15.1 14.8194

26. 1 50 2 750 625 20 60 1 2 8 2 30 10 5 16.0 15.7194

27. 1 50 3 2250 125 35 20 5 8 14 8 53 1 1 15.6 15.3194

28. 1 50 1 3750 375 20 40 1 2 14 8 53 1 5 16.3 16.2528

29. 1 50 2 750 625 35 60 5 8 2 14 7 5 1 14.4 14.3528

30. 1 50 3 2250 125 5 20 10 14 8 2 30 10 3 15.3 15.2528

31. 2 50 1 3750 625 35 40 10 8 8 2 30 1 1 14.8 15.1639

32. 2 50 2 750 125 5 60 1 14 14 8 53 5 3 14.5 14.8639

33. 2 50 3 2250 375 20 20 5 2 2 14 7 10 5 16.4 16.7639

34. 2 50 1 3750 125 20 60 5 14 2 8 30 10 1 15.3 15.2639

35. 2 50 2 750 375 35 20 10 2 8 14 53 1 3 15.3 15.2639

36. 2 50 3 2250 625 5 40 1 8 14 2 7 5 5 16.3 16.2639

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

80

Appendix 2

Sl.

No.

Actual

Effort

NN

Predicted

Effort

%

error

% error

(log transformation)

TRAINING SET

1 9.8 13.61 -38.56 -13.98

2 14.1 14.24 -0.70 -1.10

5 12.7 13.88 -8.59 -3.19

6 15.1 14.72 1.85 0.84

9 14.4 14.49 -0.51 -0.11

10 14.2 14.41 -1.25 -0.48

13 13.9 14.35 -2.95 -1.41

14 15.1 14.85 0.74 0.58

17 15.1 14.82 1.29 0.60

18 13.6 14.45 -6.34 -2.20

21 15.6 14.99 3.41 1.24

22 15.1 14.82 1.46 0.15

25 15.1 14.71 2.28 0.92

26 16.0 15.16 4.32 1.93

29 14.4 14.48 -0.48 -0.05

30 15.3 14.91 1.84 1.21

33 16.4 15.53 4.32 1.87

34 15.3 14.79 3.12 1.42

Average

Error
-1.93 -0.65

TESTING SET

3 19.2 15.55 18.72 7.28

7 14.7 14.52 1.14 0.68

11 14.4 14.59 -1.50 -0.25

15 13.6 14.43 -5.87 -2.12

19 14.8 14.79 -0.40 -0.54

23 15.6 15.05 2.74 1.47

27 15.6 14.68 5.63 2.93

31 14.8 14.80 -0.29 0.55

35 15.3 14.97 1.47 0.84

Average

Error
+2.40 +1.20

VALIDATION SET

4 14.5 14.53 -0.18 0.31

8 14.0 14.33 -2.08 -0.63

12 14.2 14.34 -0.73 -0.08

16 14.0 14.36 -2.31 -1.07

20 15.0 14.87 0.54 0.47

24 14.4 14.41 0.21 -0.06

28 16.3 15.16 6.12 2.82

32 14.5 14.78 -2.01 -0.78

36 16.3 15.40 4.64 2.12

Average

Error
+0.46 +0.34

