
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

74

SPEEDITY-A Real Time Commit Protocol

ABSTRACT

This paper presents Shadow, Piggy bag, Elemental External

Dependency Inversion and in Time Yielding (SPEEDITY)

commit protocol for distributed real time database systems

(DRTDBS). Here, only abort dependent cohort having deadline

greater than a specific value (Tshadow_creation_time) needs to forks

off a replica of itself called a shadow, whenever it borrows dirty

value of a data item. Commit-on-Termination external

dependency between final commit of lender and shadow of its

borrower and Begin-on-Abort internal dependency between

shadow of borrower and borrower itself are defined. Due to

heavy delay in commitment of lender in the case of update-read

conflict, execution of borrower is started with its shadow by

sending YES-VOTE message piggy bagged with the before value

[11] to its coordinator after aborting it and abort dependency

created between lender and borrower is reversed to commit

dependency between shadow and lender with read-update

conflict and commit operation governed by Commit-on-

Termination dependency. The performance of SPEEDITY is

compared with shadow PROMPT, SWIFT and DSS-SWIFT

commit protocols [6, 22, 23] for both main memory resident and

disk resident databases with and without communication delay.

Simulation results show that the proposed protocol improves the

system performance up to 5% as transaction miss percentage.

Categories and Subject Descriptors

H.2.4 [Database Management System]: System---Transaction

Processing

General Terms

Algorithms, Performance, Design, Theory, Verification

Keywords

Distributed Real Time Database System, Commit Protocol,

Conflict Resolution, Dependency Inversion, Lender, Borrower.

1. INTRODUCTION
Database systems are currently being used as backbone to

thousands of applications. Some of these have very high demands

for high availability and fast real-time responses. Typically, these

systems generate a very large transaction workload against the

distributed real time database, and a large part of the workload

consists of read, write and update transactions. Unavailability of

real time or slow response in processing these transactions used

by business applications could, however, be financially

devastating and, in worst case, cause injuries or deaths.

Examples include telecommunication systems, trading systems,

online gaming, sensor networks etc. Typically, a sensor network

consists of a number of sensors (both wired and wireless) which

report on the status of some real-world conditions. The

conditions include sound, motion, temperature, pressure &

moisture, velocity etc. The sensors send their data to a central

system that makes decisions based on both present and past

inputs. To enable the networks to make better decisions, both the

number of sensors and the frequency of updates should be

increased. Thus, sensor networks must be able to tolerate an

increasing load. For applications such as health care in a

hospital, automatic car driving systems, space shuttle control,

etc., data is needed in real-time and must be extremely reliable

as any unavailability or extra delay could result in loss of human

lives [7]. Recent years have seen increasing interest in providing

support for warehouse-like systems that support fine-granularity

insertions of new data and even occasional updates of incorrect

or missing historical data; these modifications need to be

supported concurrently with traditional updates. Such systems

are useful for providing flexible load support in traditional

warehouse settings, for reducing the delay for real-time data

visibility, and for supporting other specialized domains such as

customer relationship management (CRM) and data mining

where there is a large quantity of data that is frequently added to

the database in addition to a substantial number of read-only

analytical queries to generate reports and to mine relationships.

These “updatable warehouses” have the same requirements of

high availability and disaster recovery as traditional warehouses

but also require some form of concurrency control, commit

protocol and recovery to ensure transactional semantics. Many

applications listed above using DRTDBS require distributed

transaction executed at more than one site. Traditional log-based

systems require sites force-write log records to disk at various

stages of commit processing in order to ensure atomicity. A

commit protocol ensures that either all the effects of the

transaction persist or none of them persist despite the failure of

site or communication link and loss of messages. The Commit

processing should add as little overhead as possible to

transaction processing. Therefore, the design of a better commit

protocol is very important for DRTDBS.

2. BACKGROUND
The two phase commit protocol (2PC) referred to as the

Presumed Nothing 2PC protocol (PrN) is the most commonly

used protocol in the study of DDBS [1, 2, 3]. It ensures that

sufficient information is force-written on the stable storage to

S. Agrawal
Dept of CSE

M. M. M. E. College
Gorakhpur, India

Udai Shanker
Dept of CSE

M. M. M. E. College
Gorakhpur, India

Abhay N. Singh
Dept of CSE

M. M. M. E. College
Gorakhpur, India

A. Anand
Dept of CSE

M. M. M. E. College
Gorakhpur, India

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

75

reach a consistent global decision about the transaction. A

number of 2PC variants [12] have been proposed and can be

classified into following four groups [8].

 Presumed Abort/Presumed Commit Protocols

 One Phase Commit Protocols

 Group Commit Protocols

 Pre Commit/Optimistic Commit Protocols

Presumed commit (PC) and presumed abort (PA) [13] are based

on 2PC. Soparkar et al. [24] have proposed a protocol that allows

individual site to unilaterally commit. Gupta et al. proposed

optimistic commit protocol and its variant in [4, 5]. Enhancement

has been made in PROMPT commit protocol, which allows

executing transactions to borrow data in a controlled manner only

from the healthy transactions in their commit phase. However, it

does not consider the type of dependencies between two

transactions. The impact of buffer space and admission control is

also not studied. In case of sequential transaction execution

model, the borrower is blocked for sending the WORKDONE

message and the next cohort can not be activated at other site for

its execution. It will be held up till the lender completes. If its

sibling is activated at another site anyway, the cohort at this new

site will not get the result of previous site because previous

cohort has been blocked for sending of WORKDONE message

due to being borrower. In shadow PROMPT, a cohort forks off a

replica of the transaction, called a shadow, without considering

the type of dependency whenever it borrows a data page.

Lam et al. proposed deadline-driven conflict resolution (DDCR)

protocol which integrates concurrency control and transaction

commitment protocol for firm real time transactions [11]. DDCR

resolves different transaction conflicts by maintaining three

copies of each modified data item (before, after and further)

according to the dependency relationship between the lock

requester and the lock holder. This not only creates additional

workload on the systems but also has priority inversion problem.

The serializability of the schedule is ensured by checking the

before set and the after sets when a transaction wants to enter the

decision phase. The protocol aims to reduce the impact of a

committing transaction on the executing transaction which

depends on it. The conflict resolution in DDCR is divided into

two parts (a) resolving conflicts at the conflict time; and (b)

reversing the commit dependency when a transaction, which

depends on a committing transaction, wants to enter in the

decision phase and its deadline is approaching.

If data conflict occurs between the executing and committing

transactions, system’s performance will be affected. Pang Chung-

leung and Lam K. Y. proposed an enhancement in DDCR called

the DDCR with similarity (DDCR-S) to resolve the executing-

committing conflicts in DRTDBS with mixed requirements of

criticality and consistency in transactions [14]. In DDCR-S,

conflicts involving transactions with looser consistency

requirement and the notion of similarity are adopted so that a

higher degree of concurrency can be achieved and at the same

time the consistency requirements of the transactions can still be

met. The simulation results show that the use of DDCR-S can

significantly improve the overall system performance as

compared with the original DDCR approach.

Based on PROMPT and DDCR protocols, Qin B. and Liu Y.

proposed double space commit (2SC) protocol [15]. They

analyzed and categorized all kind of dependencies that may occur

due to data access conflicts between the transactions into two

types commit dependency and abort dependency. The 2SC

protocol allows a non-healthy transaction to lend its held data to

the transactions in its commit dependency set. When the

prepared transaction aborts, only the transactions in its abort

dependency set are aborted and the transactions in its commit

dependency set execute as normal. These two properties of the

2SC reduce the data inaccessibility and the priority inversion that

is inherent in distributed real-time commit processing. 2SC

protocol uses blind write model. Extensive simulation

experiments have been performed to compare the performance of

2SC with that of other protocols such as PROMPT and DDCR.

The simulation results show that 2SC has the best performance.

Furthermore, it is easy to incorporate it in any current

concurrency control protocol.

Ramamritham et al. [17] have given three common types of

constraints for the execution history of concurrent transactions.

The paper [16] extends the constraints and gives a fourth type of

constraint. Then the weak commit dependency and abort

dependency between transactions, because of data access

conflicts, are analyzed. Based on the analysis, an optimistic

commit protocol Two-Level Commit (2LC) is proposed, which is

specially designed for the distributed real time domain. It allows

transactions to optimistically access the locked data in a

controlled manner, which reduces the data inaccessibility and

priority inversion inherent and undesirable in DRTDBS.

Furthermore, if the prepared transaction is aborted, the

transactions in its weak commit dependency set will execute as

normal according to 2LC. Extensive simulation experiments have

been performed to compare the performance of 2LC with that of

the base protocols PROMPT and DDCR. The simulation results

show that 2LC is effective in reducing the number of missed

transaction deadlines. Furthermore, it is easy to be incorporated

with the existing concurrency control protocols.

The SWIFT commit protocol is beneficial only if the database is

main memory resident. The unnecessary creation of shadow by

Shadow PROMPT is solved to some extent in DSS-SWIFT

commit protocol. However, DSS-SWIFT still creates the non

beneficial shadows in some cases.

The remainder of this paper is organized as follows. Section 3

introduces the distributed real time database system model with

assumptions. Section 4 presents SPEEDITY commit

protocol and its pseudo code. Section 5 discusses the

simulation results. Section 6 presents an outlook on future work.

Section 7 finally concludes the paper.

3. Distributed Real Time Database System

Model
In distributed database system model, the global database is

partitioned into a collection of local databases stored at different

sites. A communication network interconnects the sites. There is

no global shared memory in the system, and all sites

communicate via message exchange over the communication

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

76

network. We assume that the transactions are firm real time type.

Each transaction in this model exists in the form of a coordinator

that executes at the originating site of the transaction and a

collection of cohorts that execute at various sites, where the

required data items reside. If there is any local data in the access

list of the transaction, one cohort is executed locally also. Before

accessing a data item, the cohort needs to obtain lock on data

items. Sharing of the data items in conflicting modes creates

dependencies among the conflicting local transactions/cohorts,

and constraints their commit order. We also assume that:

 The processing of a transaction requires the use of CPU and

data items located at local site or remote site.

 Arrival of transactions at a site is independent of the arrivals

at other sites and uses Poisson distribution.

 Each cohort makes read and update accesses.

 Each transaction pre-declares its read-set (set of data items

that the transaction will only read) and write-set (set of data

items that the transaction will write).

 S2PL-HP is used for locking the data items.

 Cohorts are executed in parallel.

 A lending transaction cannot lend the same data item in

read/update mode to more than one cohort.

 The cohort already in the dependency set of another cohort

cannot permit another incoming cohort to read or update.

 A distributed real time transaction is said to commit, if the

coordinator has reached to the commit decision before the

expiry of the deadline at its site. This definition applies

irrespective of whether cohorts have also received and

recorded the commit decision by the deadlines or not.

 Studies have been made for both main memory resident and

disk resident database.

 Communication delay considered is either 0 or 100 ms.

 In case of disk resident database, buffer space is sufficiently

large to allow the retention of all data updates until commit

time.

 The updating of data items is made in transaction own

memory rather than in place updating.

4. SPEEDITY
In this sub section, we introduce our protocol which is combined

with SWIFT. The conflict resolution in DDCR is solved by

resolving the conflicts at the conflict time and reversing the

commit dependency when a transaction, which depends on a

committing transaction, wants to enter in its decision phase and

its deadline is approaching. Here, in case of Write-Read conflict,

the dependency can not be reversed if the lender has entered in

decision phase. In the following sub section, we will discuss how

the problem has been solved in SPEEDITY with help of concept

of shadowing and deferred commitment of the transaction.

4.1 Tshadow_creation_time Computation
The deadline of a transaction is controlled by the runtime

estimate of a transaction and the parameter slack factor, which is

the mean of an exponential distribution of slack time. We

allocate deadlines to arriving transactions using the method given

below. The deadlines of transactions (both global and local) are

calculated based on their expected execution times [22, 9, 11].

The deadline (Di) of transaction (Ti) is defined as:

Di = Ai + SF∗Ri

where, Ai is the arrival time of transaction (Ti) at a site; SF is the

slack factor; Ri is the minimum transaction response time. As

cohorts are executing in parallel, the Ri can be calculated as:

Ri = Rp + Rc

where, Rp, the time for execution phase and Rc, the time for

commitment phase are given as below. For global transaction

Rp = max. ((2∗Tlock + Tprocess)∗Noper local,(2∗Tlock +

Tprocess)∗Noper remote)

Rc = Ncomm∗Tcom

For local transaction

Rp = (2∗Tlock + Tprocess)∗Noper local

Rc = 0

Where, Tlock is the time required to lock/unlock a data item;

Tprocess is the time to process a data item (assuming read

operation takes same amount of time as write operation); Ncomm

is no. of messages; Tcom is communication delay i.e. the

constant time estimated for a message going from one site to

another; Noper local is the number of local operations; Noper

remote is maximum number of remote operations taken over by

all cohorts. If T2 is abort dependent on T1

Tshadow_creation_time = R1+R2

Where, R1=Deadline Time of T1 and R2 is minimum Time

required for T2 from sending Yes Vote response to finally

committing.

4.2 Types of Dependencies
Sharing of data items in conflicting mode creates dependencies

among conflicting transactions and constraints their commit

order. We assume that a cohort requests an update lock if it

wants to update a data item x. The prepared cohorts, called as

lenders. lend uncommitted data to concurrently executing

transactions known as borrower. If a cohort fork off a replica of

the transaction, it is called as shadow. The original incarnation of

the transaction continues its execution, while the shadow is

blocked after finishing its execution. If the lender finally

commits, the borrower continues its on-going execution and the

shadow is discarded; otherwise, borrower is aborted due to abort

of lender and shadow is activated. Two new dependencies are

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

77

defined apart from commit and abort dependencies. The modified

definitions of dependencies used in this paper are given below.

Commit dependency (CD). If a transaction T2 updates a data

items read by another transaction T1, a commit dependency is

created from T2 to T1. Here, T2 is called as commit dependent and

is not allowed to commit until T1 commits.

Abort dependency (AD). If T2 reads/updates an uncommitted data

item updated by T1, an abort dependency is created from T2 to T1.

Here, T2 is called as abort dependent. T2 aborts, if T1 aborts and

T2 is not allowed to commit before T1.

Begin-on-Abort Dependency (BAD). This dependency is created

between shadow and borrower who created it. Here, shadow of

cohort will be activated, only if borrower aborts due to abort of

its lender.

Commit-on-Termination Dependency (CTD). This dependency is

created between final commit operations of lender and shadow of

its borrower. The final commit operation by a lender is deferred

and resumed only after termination (i.e. commit or aborts) of

shadow.

Here, BAD is internal dependency while others are external

dependencies [27]. Each site maintains shadow set (DDDS) also,

which is the set of shadows of those cohorts that are abort

dependent on lender and deadline beyond Tshadow_creation_time .

DDDS (Si): Shadow of those cohorts which are in abort

dependency set of T1

Hence, if T2 is abort dependent on T1 and fulfills the shadow

creation criteria, then Shadow of T2, S2 is created in DDDS (T1).

Each transaction/cohort Ti, that lends its data while in prepared

state to an executing transaction/cohort Tj, maintains three/four

sets.

 Commit Dependency Set CDS (Ti): set of commit dependent

borrower Tj, that has borrowed dirty data from lender Ti.

 Abort Dependency Set ADS (Ti): set of abort dependent

borrower Tj that has borrowed dirty data from lender Ti.

 Begin-on-Abort Dependency Set BAD (Tj): set of shadow of

borrower Tj who has created it. Tj has borrowed dirty data

from lender Ti.

 Commit-on-Termination Dependency Set CTD (Tj): set of

shadow of a borrower attached with its lender whose

dependency has been reversed.

4.3 Type of Dependency in Different Cases of

Data Conflicts

Case 1: Read-Update Conflict

The lock manager processes the data item accesses in conflicting

mode as follows.

If (T2 CD T1)

{

 CDS (T1) =CDS (T1) {T2};

 T2 is granted Update lock;

}

else

{

 if ((T2 AD T1) AND (HF(T1) ≥ MinHF))

 {

 ADS (T1) =ADS (T1) {T2};

 T2 is granted the requested lock;

 If (deadline (T2)>Tshadow_creation_time)

 {

 Add shadow of T2 in DDDS (Si);

 BAD (T2) =BAD (T2) {T2’s

shadow};

 }

 }

 else if (T2 has read dirty value of T1 and received

VOTE-REQ message from its coordinator)

 {

CDS (shadow (T2)) =CDS (shadow

(T2)){T1};

 CTD (T1) = CTD (T1) {T2};

Shadow of T2 is activated and granted the

requested lock after aborting T2 and deleting

T2 from ADS (T1);

 }

 }

4.4 Mechanics of Interaction between Lender

and Borrower Cohorts

If T2 accesses a data item already locked by T1, one of the

following four scenarios may arise.

Scenario 1: T1 receives decision before T2 has completed its

local data processing:

If the global decision is to commit,

T1 commits. All cohorts in ADS (T1) & CDS (T1) will

execute as usual.

T2 completes its commit operation, if it has been deferred.

Sets of ADS (T1), BAD (T2), DDDS (Si) & CDS (T1) will be

deleted.

If the global decision is to abort,

T1 aborts. Cohorts in the dependency set of T1 will execute as

follows:

T2 completes its commit operation, if it has been deferred.

 Shadows of all cohorts Begin-on-Abort Dependent on T2 in

DDDS (Si) will be activated and sends YES-VOTE to their

coordinator, only if they can complete execution; otherwise,

discarded;

Transactions in CDS (T1) will execute normally.

 Delete Set ADS (T1), BAD (T2), DDDS (Si) and CDS (T1).

Scenario 2: T2 is about to start processing phase after getting all

its locks before T1 receives global decision.

T2 sends WORKSTARTED message to its master.

Scenario 3: T2 aborts before, T1 receives decision

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

78

In this situation, all works carried out by T2 are undone and T2 is

removed from the dependency set of T1.

Scenario 4: T2 has read dirty value of T1 and received VOTE-

REQ message from its coordinator before T1 receives commit

decision message.

Abort T2 and Delete T2 from ADS (T1).

Activate execution of T2 with its shadow.

Add T2 in CTD (T1).

Shadow sends YES-VOTE message piggy bagged with the new

result to its coordinator.

4.5 Algorithm
On the basis of above discussions, the complete pseudo code of

the protocol is given below.

if (T1 receives global decision before, T2 ends execution)

 {if (T1 is in Commit-on-Termination Dependency Set)

 Defer commit processing till termination of shadow.

 else

 {

 One: if (T1’s global decision is to commit)

 {

T1 enters in the decision phase;

T2 completes its commit operation, if it has been

deferred.

Delete sets of ADS (T1), BAD (T2), DDDS (Si) and

CDS (T1);

 }

 else //T1’s global decision is to abort

 {

T1 aborts;

T2 completes its commit operation, if it has been

deferred.

Transactions in CDS (T1) will execute as usual.

 For all the abort dependent cohorts

 {

 if (shadow)

 {

 IF (Shadow of cohort can complete its execution)

 Execute Cohorts Shadow in DDDS (Si) and

send YES-VOTE;

 else

 Discard shadow;

 }

 }

Delete sets of ADS (T1), BAD (T2), DDDS (Si) and

CDS (T1);

 }

 }

}

else

{

 if (T2 aborted by higher transaction before T1 receives

decision OR T2 expires its deadline)

 {

 Undo the computation of T2;

 Abort T2;

Delete T2 from CDS (T1) & ADS (T1);

 if (shadow)

Delete T2 from DDDS (Si);

 }

 else if (T2 ends executing phase before T1 receives global

decision)

 T2 sends WORKSTARTED message;

 else if (T2 has read dirty value of T1 and received

VOTE-REQ message from its coordinator)

 {

Shadow of T2 is activated and granted the

requested lock after aborting T2 and deleting

T2 from ADS (T1);

Shadow sends YES-VOTE message piggy

bagged with the new result;

 }

 }

4.6 Main Contributions

1. Abort dependent cohort having deadline beyond a

specific value (Tshadow_creation_time) can only forks off a

replica of itself called a shadow

2. Two new dependencies Begin-on-Abort and Commit-

on-Termination are defined.

3. Reversing of abort dependency created between lender

and borrower due to Update-Read conflict to commit

dependency between shadow of borrower and lender.

The final commit operations of lender and shadow is

governed by Commit-on-Termination Dependency.

4. On activation of borrower transaction with help of

shadow, it sends YES-VOTE message piggy bagged

with the new result to its coordinator in case of abort of

lender & borrower

To maintain consistency of database, cohort sends the YES-

VOTE in response to its coordinator’s VOTE-REQ message only

when its dependencies are removed & it has finished its

processing, and, in case of reversal of dependency, final commit

operation by a lender is deferred and resumed only after

termination (i.e. commit or aborts) of shadow [18].

5. PERFORMANCE EVALUATION
The default values of different parameters for simulation

experiments are given below and same as taken in [9, 19]. The

concurrency control scheme used is static two phase locking with

higher priority [10]. Miss Percentage (MP) is the primary

performance measure used in the experiments and is defined as

the percentage of input transactions that the system is unable to

complete on or before their deadlines [26]. Since, there were no

practical benchmark programs available in the market or with

research communities to evaluate the performance of protocols

and algorithms, an event driven based simulator was written in C

language [25]. In our simulation, a small database (200 data

items per site) is used to create high data contention

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

79

environment. For each set of experiment, the final results are

calculated as an average of 10 independents runs. In each run,

100000 transactions are initiated.

5.1 Simulation Results
Simulation was done for both the main memory resident and the

disk resident databases at communication delay of 0ms and

100ms. We compared SPEEDITY with shadow PROMPT,

SWIFT and DSS-SWIFT in this experiment. Figure 1 to Figure 5

show the Miss Percent behaviour under normal and heavy load

conditions with/without communication delay. In these graphs,

we first observe that there is a noticeable difference between the

performances of the various commit protocols throughout loading

range. Let us consider the case of update-read conflict. If there is

serious problem in commitment of lender, the final commit

decision can be delayed for an indefinite time. Meanwhile, it is

possible that borrower has received VOTE-REQ message from

its coordinator. Now, the execution of transaction can be started

with borrower’s shadow after aborting borrower itself and abort

dependency created between lender and borrower due to update-

read conflict is reversed to commit dependency between shadow

and lender with read-update conflict. Now, the shadow sends

YES-VOTE message piggy bagged with the new result (initial

value of data item) to its coordinator In this way, shadow and

lender can proceed for their execution without any further much

delay and interferences. Only, the final commit operations of

lender will be deferred till termination of shadow. Again, let us

take the case of update-update or update-read conflicts. If the

lender and, in turn, its borrower have been aborted, the execution

of borrower transaction can be started with its shadow in case of

any chance of completion. Here, the shadow sends YES-VOTE

message piggy bagged with the new result (initial value of data

item) to its coordinator because it has completed all the activities

parallel with borrower’s execution. In both the above cases, the

survival of transaction with borrower’s shadow utilizes the

concept of single phase commit protocol but sends YES-VOTE

message as compared to WORKDONE Message. Due to this

reason, it is free from disadvantage of single phase commit

protocol of long duration data item locking. Here the work done

by borrower is never wasted in most of the cases even if a wrong

borrowing decision is made. Due to aforementioned reason,

SPEEDITY minimizes the number of messages needed for

execution and commit of cohort, and is also free from long

duration locking of data items. Hence, the SPEEDITY commit

protocol provides a performance that is significantly better than

other commit protocols.

Main Memory Resident Database

Figure 1: Miss % with (RC+DC) at Communication delay=0 ms

Normal and Heavy Load

Transaction Arrival Rate (no. per second)

10 20 30 40 50

M
is

s
%

0

20

40

60

80

Shadow PROMPT

SWIFT

DSS-SWIFT

SPEEDITY

Figure 2 : Miss % with (RC+DC) at Communication delay=100 ms

Normal and Heavy Load

Transaction Arrival Rate (no. per second)

2 4 6 8 10 12 14

M
is

s
%

0

20

40

60

80

100

Shadow PROMPT

SWIFT

DSS-SWIFT

SPEEDITY

Disk Resident Database

Figure 3: Miss % with (RC+DC) at Communication delay=0 ms

Normal Load

Transaction Arrival Rate (no. per second)

3.0 3.5 4.0 4.5 5.0 5.5 6.0

M
is

s
%

0

5

10

15

20

25

Shadow PROMPT

SWIFT

DSS-SWIFT

SPEEDITY

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

80

Figure 4: Miss % with (RC+DC) at Communication delay=0 ms

Heavy Load

Transaction Arrival Rate (no. per second)

6 8 10 12 14

M
is

s
%

0

20

40

60

80

100

Shadow PROMPT

SWIFT

DSS-SWIFT

SPEEDITY

Figure 5: Miss % with (RC+DC) at Communication delay=100 ms

Normal and Heavy Load

Transaction Arrival Rate (no. per second)

2 4 6 8 10 12 14

M
is

s
%

0

20

40

60

80

100

Shadow PROMPT

SWIFT

DSS-SWIFT

SPEEDITY

6. FUTURE RESEARCH DIRECTIONS
Following are some suggestions to extend this work [20, 21].

 Our performance studies are based on the assumption that

there is no replication. Hence, a study of relative

performance of the topic discussed here deserves a further

look under assumption of replicated data.

 The work can be extended for Mobile DRTDBS, pear-to-pear

database systems, grid database systems etc. where memory

space, power and communication bandwidth are bottleneck.

There is a need to design various protocols for different

purposes that may suit to the specific need of hand held

devices.

 The integration and the performance evaluation of proposed

commit protocol with 1PC and 3PC protocols.

 Although tremendous research efforts have been reported in

the hard real time systems in dealing with hard real time

constraints, very little work has been reported in hard real

time database systems. So, the performance of SPEEDITY

can be evaluated for hard real time constrained transactions.

 Biomedical Informatics is quickly evolving into a research

field that encompasses the use of all kinds of biomedical

information, from genetic and proteomic data to image data

associated with particular patients in clinical settings.

Biomedical Informatics comprises the fields of

Bioinformatics (e.g., genomics and proteomics) and Medical

Informatics (e.g., medical image analysis), and deals with

issues related to the access to information in medicine, the

analysis of genomics data, security, interoperability and

integration of data-intensive biomedical applications. Main

issues in this field is provision of large computing power

such that researchers have access to high performance

distributed computational resources for computationally

demanding data analysis, e.g., medical image processing and

simulation of medical treatment or surgery and large storage

capacity and distributed databases for efficient retrieval,

annotation and archiving of biomedical data. What is missing

today is full integration of methods and technologies to

enhance all phases of biomedical informatics and health care,

including research, diagnosis, prognosis, etc. and

dissemination of such methods in the clinical practice,

whenever they are developed, deployed and maintained.

Hence it is another topic of research interest.

7. CONCLUSION
This paper presented a new commit protocol SPEEDITY with

help of Commit-on-Termination dependency between final

commit operations of lender and shadow of its borrower, and

Begin-on-Abort dependency between shadow of borrower and

borrower itself. In case of delay in commitment of lender due to

some serious problem, the execution of transaction is started via

reversing the abort dependency with commit dependency in

between borrower’s shadow and lender with read-update

conflict. Only, the final commit operation of lender has been

permitted to resume only after the termination of shadow. Also,

the shadow has been allowed to send YES-VOTE message piggy

bagged with the new result to its coordinator in case of abort of

lender & borrower and activation of execution of transaction with

help of borrower’s shadow. In this way, the S3 improves the

system performance up to 5% by minimizes long duration

locking of data items and reducing the number of messages

needed for commit of cohort. It is very much beneficial in abort

oriented systems. It ensures the survival of transactions with

shadowing approach.

8. REFERENCES
[1] Attaluri, Gopi K., and Salem, K. 2002. The Presumed-

Either Two-Phase Commit Protocol. IEEE Transactions on

Knowledge and Data Engineering, 14, 5(Sep. 2000), 1190-

1196.

[2] Gray, J., and Reuter, A. 1993 Transaction Processing:

Concepts and Technique. San Mateo, CA, USA: Morgan

Kaufman.

[3] Gray, J. 1978. Notes on Database Operating Systems.

Operating Systems: an Advanced Course, Lecture Notes in

Computer Science, Springer Verlag, 60, 393-481.

[4] Gupta, R., Haritsa, J. R., and Ramamritham, K. 1997 More

Optimism About Real-Time Distributed Commit

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

81

Processing. Technical Report. Database System Lab,

Supercomputer Education and Research Centre, I.I.Sc.

Bangalore, India

[5] Gupta, R., Haritsa, J. R., Ramamritham, K., and Seshadri,

S. 1996. Commit processing in distributed real time

database systems. In Proceedings of the Real-time Systems

Symposium, Washington DC, San Francisco.

[6] Haritsa, J. R., Ramamritham, K., and Gupta, R. 2000. The

PROMPT real time commit protocol. IEEE Transaction on

Parallel and Distributed Systems, 11, 2(Feb. 2000), 160-

181.

[7] Huang, J. 1991 Real Time Transaction Processing: Design,

Implementation and Performance Evaluation. Doctoral

Thesis, University of Massachusetts, USA.

[8] Inseon, L., and Yeom H. Y. 2002. A Single Phase

Distributed Commit Protocol for Main Memory Database

Systems. In Proceedings of the 16th International Parallel &

Distributed Processing Symposium (IPDPS 2002), Ft.

Lauderdale, Florida, USA.

[9] Lam, K. Y. 1994 Concurrency Control in Distributed Real-

Time Database Systems. Doctoral Thesis, City University

of Hong Kong, Hong Kong.

[10] Lam, K. Y., Hung, S. L., and Son, S. H. 1997. On Using

Real-Time Static Locking Protocols for Distributed Real-

Time Databases. Real - Time Systems, 13, 2(Sep. 1997),

141-166.

[11] Lam, K. Y., Pang, C., Son, S. H., and Cao, J. 1999.

Resolving Executing-Committing Conflicts in Distributed

Real - time Database Systems. Journals of Computer, 42, 8,

674-692.

[12] Misikangas, P. 1997. 2PL and Its Variants. Seminar on

Real - Time Systems, Department of Computer Science,

University of Helsinki.

[13] Mohan, C., Lindsay, B., and Obermarck, R. 1986.

Transaction management in the R* distributed database

Management System. ACM transaction on Database

Systems, 11, 4(Dec. 1986), 378-396.

[14] Pang, C. L., and Lam K. Y. 1998. On Using Similarity for

Resolving Conflicts at Commit in Mixed Distributed Real-

time Databases. In Proceedings of the 5th International

Conference on Real-Time Computing Systems and

Applications.

[15] Qin, B., and Liu, Y. 2003. High Performance Distributed

Real-time Commit Protocol. Journal of Systems and

Software, Elsevier Science Inc., 68, 2(Nov. 2003), 145-152.

[16] Qin, B., Liu, Y., and Yang, J. C. 2003. A Commit Strategy

for Distributed Real-Time Transaction. Journal of Computer

Science and Technology, 18, 5, 626-631.

[17] Ramamritham, K., and Chrysanthis, P. K. 1996. A

Taxonomy of Correctness Criteria in Database Applications.

Journal of the VLDB, 5, 1(Jan. 1996), 85-97.

[18] Shanker, U, Misra, M., and Sarje, Anil K. 2005.

Dependency Sensitive Distributed Commit Protocol. In

Proceedings of the 8
th

International Conference on

Information Technology, Bhubaneswar, India, 41-46.

[19] Shanker, U. 2006 Some Performance Issues in Distributed

Real Time Database Systems. Doctoral Thesis, Department

of Electronics & Computer Engineering, Indian Institute of

Technology Roorkee, India.

[20] Shanker, U., Misra, M., and Sarje, Anil K. 2001. Hard

Real-Time Distributed Database Systems: Future

Directions. In Proceedings of the All India Seminar on

Recent Trends in Computer Communication Networks,

Department of Electronics & Computer Engineering, Indian

Institute of Technology Roorkee, India, 172-177.

[21] Shanker, U., Misra, M., and Sarje, Anil K. 2008.

Distributed Real Time Database Systems: Background and

Literature Review. International Journal of Distributed and

Parallel Databases, Springer Verlag, 23, 2(April 2008), 127-

149.

[22] Shanker, U., Misra, M., and Sarje, Anil K. 2006. SWIFT-

A New Real Time Commit Protocol. International Journal of

Distributed and Parallel Databases, Springer Verlag, 20,

1(July 2006), 29-56.

[23] Shanker, U., Misra, M., Sarje, Anil K., and Shisondia, R.

2006. .Dependency Sensitive Shadow SWIFT. In

Proceedings of the 10
th

International Database Applications

and Engineering Symposium, Delhi, India, 373-376.

[24] Soparkar, N., Levy, E., Korth, H. F., and Silberschatz, A.

1994. Adaptive Commitment for Real - Time Distributed

Transaction. In Proceedings of the 3rd International

Conference on Information and Knowledge Management,

Gaithersburg, Maryland, United States, 187-204.

[25] Taina, J., and Son, S. H. 1999. Towards a General Real-

Time Database Simulator Software Library. In Proceedings

of the Active and Real-Time Database Systems.

[26] Ulusoy, O. 1992 Concurrency Control in Real-time

Database Systems. Doctoral Thesis, Department of

Computer Science, University of Illinois, Urbana-

Champaign, USA.

[27] Xin, T. 2006 A Framework for Processing Generalized

Advanced Transactions. Doctoral Thesis, Department of

Computer Science, Colorado State University, USA.

file:///F:\Technical%20Papers\229.TOWARDS%20A%20GENERAL%20REAL-TIME%20DATABASE%20SIMULATOR%20SOFTWARE%20LIBRARY.pdf
file:///F:\Technical%20Papers\229.TOWARDS%20A%20GENERAL%20REAL-TIME%20DATABASE%20SIMULATOR%20SOFTWARE%20LIBRARY.pdf

