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ABSTRACT 

Moments of the impulse response are widely used for 

interconnect delay analysis, from the explicit Elmore delay (the 

first moment of the impulse response) expression, to moment 

matching methods which creates reduced order trans-impedance 

and transfer function approximations. However, the Elmore delay 

is fast becoming ineffective for deep submicron technologies, and 

reduced order transfer function delays are impractical for use as 

early-phase design metrics or as design optimization cost 

functions. This paper describes an approach for fitting moments 

of the impulse response to probability density functions so that 

delay can be estimated accurately at an early physical design 

stage. For RC trees it is demonstrated that the incomplete gamma 

function provides a provably stable approximation. The accuracy 

of our model is justified with the results compared with that of 

SPICE simulations. 
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1. INTRODUCTION 
The advent of sub-quarter-micron IC technologies has forced 

dramatic changes in the design and manufacturing methodologies 

for integrated circuits and systems. The paradigm shift for 

interconnect which was once considered just a parasitic but can 

now be the dominant factor to determine the integrated circuit 

performances. It results the greatest impetus for change of 

existing methodologies. Over the past decade there have been a 

number of advances in modeling and analysis of interconnect that 

have facilitated the continual advances in design automation for 

systems of increasing frequency and downsizing. As integrated 

circuit feature sizes continue to scale well below 0.18 microns, 

active device counts are reaching hundreds of millions [3]. The 

amount of interconnect among the devices tends to grow super 

linearly with the transistor counts, and the chip area is often 

limited by the physical interconnect area. Due to these  

 

interconnect area limitations, the interconnect dimensions are 

scaled with the devices whenever possible. In addition, to 

provide more wiring resources, IC’s now accommodate numerous 

metallization layers, with more to come in the future. These 

advances in technology that result in scaled, multi-level 

interconnects may address the wire-ability problem, but in the 

process creates problems with signal integrity and interconnect 

delay. This paper proposes an extension of Elmore’s 

approximation [1] to include matching of higher order moments 

of the probability density function. Specifically, using a time-

shifted incomplete Gamma function approximation [2] for the 

impulse responses of RC trees, the three parameters of this 

model are fitted by matching the first three central moments 

(mean, variance, skewness), which is equivalent to matching the 

first two moments of the circuit response (m1, m2,). Importantly, 

it is proven that such a gamma fit is guaranteed to be realizable 

and stable for the moments of an RC tree [4]. Once the moments 

are fitted to characterize the Gamma function, the step response 

delay is obtained as a closed form expression thereby providing 

the same explicitness as the Elmore approximation. This work is 

simple yet accurate  compared to the model proposed in [4] in 

respect that our approach provides a closed form expression and 

does not require any look up table to calculate the delay for RC 

interconnect as required in [4]. 

2. BASIC THEORY 

2.1 Moments of a Linear Circuit Response  
Let h (t) be a circuit impulse response in the time domain and let 

H(s) be the corresponding transfer function. By definition, H(s) 

is the Laplace transform of h (t) [12], 

                (1) 

Applying a Taylor series expansion of 
ste

about s = 0 yields, 

                (2) 

The ith circuit-response moment, im~  is defined as [5]: 
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From (2) and (3), the transfer function H (s) can be expressed as:

  

  (4) 

2.2 Central Moments  
It is straightforward to show that the first few central 

moments can be expressed in terms of circuit moments as 

follows [6]: 
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Unlike the moments of the impulse response, the central 

moments have geometrical interpretations: 

0  is the area under the curve. It is generally unity, or else 

a simple scaling factor is applied. 

2    is the variance of the distribution which measures the 

spread or the dispersion of the curve from the center. A larger 

variance reflects a larger spread of the curve. 

3  is a measure of the skewness of the distribution; for a 

unimodel function, its sign determines whether the mode (global 

maximum) is to the left or to the right of the expected value 

(mean). Its magnitude is a measure of the distance between the 

mode and the mean. 

2.3 Higher Central Moments in RC Tress  
The second and third central moments are always positive for RC 

tree impulse responses [6]. The positiveness of the second order 

central moment is obvious from its definition 
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The impulse response, h (t), at any node in an RC tree is always 

positive. Hence the second central moment 2  is always 

positive. 

3. PROPOSED MODEL 
Elmore’s original delay approximation is based on the analogy 

between non-negative impulse responses and probability density 

functions. In theory, Elmore’s distribution interpretation can be 

extended beyond simply estimating the median by the mean if 

higher order moments can be used to characterize a 

representative distribution function. Once characterized, the 

delay can be approximated via closed form expression or table 

lookup of the median value for the representative distribution 

family. One proposal was to use a gamma distribution function 

[4]. Although [4] is not an explicit one. The gamma distribution 

is a reasonably good representation of RC tree impulse responses 

since it provides good “coverage” of bell shaped curves which 

are bounded on the left and exponentially decaying to the right 

[10]. The Gamma distribution is depicted in Figure (1) [11]. The 

probability density function of gamma distribution g λ, n (t), is a 

function of one variable t and two parameters λ and n (positive 

real numbers) [11]  
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Where, Γ(x) is the gamma function defined as: 
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Now consider an impulse response h (t) and assume that it is 

approximated with a gamma probability density function 
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Then the transfer function is given by: 
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The s-domain model denoted by (10) may be interpreted as a 

unique pole with a real number order. Notice that when n=1, the 

gamma distribution model naturally degrades to the dominant 

pole model. However, the existence of the parameter n increases 

the degree of freedom of the model. The first few moments of the 

transfer function can be expressed easily in terms of the 

parameters n and λ [2]. 
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Since the gamma function has only two variables, it can be 

uniquely characterized by fitting it with two moments [2], [11].  

For example, using the second and third equations, the 

parameters λ and n can be obtained from the first and second 

order circuit moments as: 
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In terms of the second central moment becomes 
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Recall that both −m1 the Elmore delay) and μ2 are positive 

numbers for RC trees. Therefore the impulse response 

approximation with the parameters is always stable. 

 

Figure 1. The Gamma Distribution Function 
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In the approximation above, we have used the first two moments. 

However, at least three moments are generally required to 

capture essential waveform response characteristics. Therefore, 

to match the third moment and capture the skewness of the 

distribution, we add a third variable ∆, to include one more 

degree of freedom. We shift the gamma function ∆ by to 

approximate the impulse response: 

                      (14) 

Thus the transfer function becomes 

    (15) 

And, its moments are given by, 
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With m0=1. We now have three unknowns, λ, n and ∆ in three 

equations. It can be shown that this equation system can also be 

expressed in terms of m1 and second and third central moments, 

μ2 and μ3. 
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Note that the second and third order central moments μ2 and μ3 

are independent of the shift ∆. λ and n are the measures of 

variance and skewness of the waveform, respectively, and they 

are not affected by the time shift.  

This result,  
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We now find an expression for the step response, y (t), which is 

the integral of the impulse response, 

     (19) 

After some algebraic manipulation we obtain, 

   (20) 

Where P (n, x) is the incomplete gamma function [7-8]. 
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Where Γ(n) is the gamma function. Note that P (n, t) is zero at t 

= 0 and monotonically increases to one. Hence, to calculate the 

delay at a particular percentage point we only need to find the 

value of x such that 

),( xnP  

Where x=λ (t-∆). Then with a simple scaling and shifting, the 

delay is obtained: 
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3.1 Calculation of Median of the Gamma 

Distribution Function 
Since gamma has only two parameters λ and n matching two 

moments would completely characterize this model. Hence Mean 

of the Gamma function is given by 

1m
n
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Variance of the Gamma function is given by 

       (24)             

From (23) and (24),  
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Now Mode of the Gamma function is given by


1n . 

Median of Gamma function is given by [9] 

Mode=3*Median-2* Mean  
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From (25) and (26), 
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From the above derived Formula for the Median of Gamma 

function we see that the Delay function is a simple function of 

the two first circuit moments. This is our proposed closed form 

delay model. 

4. EXPERIMENTAL RESULTS 
We have implemented the proposed delay estimation method 

using  Gamma Distribution and applied it to widely used actual 

interconnect RC networks as shown  in Figure 2. For each RC 

network source we put a driver, where the driver is a voltage 

source followed by a resister. 
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Note that the difference between the Gamma Delay and the 

SPICE delay at the leaf nodes is about 1%.The worst case delay 

obtained for the nodes that are closest to the node 2. These nodes 

correspond to the responses with the highest frequency element, 

therefore one would expect the largest moment matching error. 

This technique requires a bell-shaped distribution for the 

impulse response, over damped and critically damped RC circuit 

responses. The impulse response at the driving point node does 

not follow the bell shape, but rather starts out with a non-zero 

value and asymptotically approach zero in a multi-exponential 

decay form. Other distribution families may permit matching 

higher order moments, or more naturally capture these driving 

point response shapes. But as with all moment matching 

problems, the greatest challenge is to find a model that is 

provably stable and realizable. 

5. CONCLUSION 
In this paper we have proposed an efficient and accurate 

interconnect delay metric for high speed VLSI designs. We have 

used Gamma probability distribution function to derive our 

metric. Our model has Elmore delay as upper bound but with 

significantly less error. The novelty of our approach is justified 

by the calculated the comparison made with that of the results 

obtained by SPICE simulations.   
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Table 1. Comparison of the 50% delays between SPICE 

and the Proposed Delay Metric (time in ns). 

Node SPICE 

(ns) 

Proposed Model 

(ns) 

1 0.196 0.234 

2 0.477 0.493 

3 0.700 0.697 

4 0.845 0.828 

5 0.919 0.923 

6 0.375 0.373 

7 0.452 0.451 

 

Figure 2. An RC Tree Example 
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