
International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 4

90

Dynamic Priority Assignment and Conflict Resolution in

Real Time Databases

Alok Kumar
Indian Institute of Management

ABSTRACT
The conflict resolution technique normally used in Real Time

Systems is EDF(Earliest Deadline First).However ,this

technique is found to be biased towards the shorter

transactions. No technique has been Reported in the literature

to remove this biasing. This paper presents a new technique

of dynamic priority assignment in real time transactions that is

based on the ratio of time left to the time required to complete

the transaction. The transaction which has the minimum

fraction of time leftover as compared to the time taken for

completion of that transaction is executed first. Thus it is free

from any short of biasing.

Keywords
Real Time Systems, EDF, Dynamic Priority Assignment,

Distributed Database

1. INTRODUCTION
Database systems serve as a backbone to thousands of

systems and applications. Some of the systems have very high

demands for availability and very fast real-time responses are

required. Usually, such systems keep generating workload of

very large transactions for the distributed real time database,

and a substantial part of the workload consists of write, read

and also update kind of transactions. Poor availability of real

time systems and/or slow responses in processing such

transactions used by real time business applications could

infact be financially devastating and also in worst cases, cause

deaths or damages. For example: tele-communication

systems, trading applications, online gaming systems, sensor

network applications etc. Typically, a sensor network system

consists of a large number of sensors (both wireless and

wired) which give reports on the status of some real-life

situations. The situations include motion, sound, pressure,

temperature, moisture and velocity etc. Such sensors send

their data to a central application which makes such decisions

based on both past and present inputs. For enabling such

networks for making better quality outputs, both the number

of sensors and the frequency of their updates need to be

increased. Hence, such sensor networks systems should be

able to withstand an increasing amount of load. For systems

like health care in hospitals, auto car driving applications,

space shuttle control systems etc., data is required in real-time

scenario, and should be extremely reliable since any such poor

availability or extra time taken by delays can lead to

significant loss of human lives.

Most of the systems listed above using Distributed Real Time

Databases require a distributed transaction to be executed at

multiple sites. A commit protocol is made to ensure that either

all the effects of the transaction should persist or none of them

persist at all even in case of failure of a site or communication

link and the resulting loss of messages. Hence, it is required

that the Commit processing transactions should add as little

overhead as possible to the transaction processing. Hence, it

shows that the design of a much better commit protocol is

very important for Distributed Real Time Databases.

2. DISTRIBUTED REAL TIME

DATABASE SYSTEM MODEL
In the distributed database system model, the global or central

database is sub-divided into a group of local databases stored

at various different- different sites and locations. A

communication network is required which interconnects the

various sites. There is nothing as such global shared memory

in the system, and all the sitesneed to communicate through

message exchanges over the communication network. We

assume that all the transactions are firm and real time. Each of

these transactions in the present model exists in the form of a

coordinator that executes at the site of origination of the

transaction and a group of cohorts which execute at various

other sites, where the required data items are located. If there

are any local data which are in the access list of the

transactions, then in those cases one of the cohort is executed

locally. Before accessing any data item, the cohort needs to

obtain lock on the data items. Sharing of such data items in

conflicting modes creates dependencies among the group of

conflicting local transactions and cohorts, which constraints

their commit order. We also assume that:

 The processing of a transaction needs the use of

CPU and the data items which are located at a local

site or remote site.

 Arrival of any transactions at a site is independent

of the arrivals at any other site and uses Poisson

distribution.

 Each cohort can make read and update accesses.

 Each transaction has to pre-declare its read-set (set

of data items that the transaction will read) and the

update-set (data items that the transaction will

update).

 S2PL-HP is used for locking the data items.

 Cohorts are executed in parallel order.

 Any lending transaction can not lend the same data

item in read/update mode to more than a cohort.

 Any cohort already in the dependency set of any

other cohort can not permit another incoming cohort

to read or update.

 A distributed real time transaction is said to commit,

if the coordinator has reached commit decision

before the expiry of the deadline at its site location.

This definition applies ir-respective of whether all

International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 4

91

the cohorts have also received and recorded the

commit decision within the deadlines or not.

 Studies have been made earlier for both main

memory resident and disk resident database.

 Communication delays considered here is either 0

or 100 ms.

 For disk resident database, buffer space is

considered sufficiently large to allow the retention

of data updates until commit time.

 The updating of various data items is made in

transactions own memory, not in place updating.

3. THE PROTOCOL
Let System time be Ts at the time of submission of the request

for a Transaction to execute.

Let, Time required to execute the transaction(Ti) be= Tic

Deadline time for transaction completion(Time before which

the transaction should be completed or aborted otherwise) =

Tid .

We calculate the value of the ratio

Ri = (Tid - Ts)/ Tic

This ratio gives the fraction of time left for completion of the

transaction as compared to the time required for the execution

of the transaction. We calculate this ratio for all the

transactions and execute them in increasing order of their Ri

values. Thus the transaction with the least value of Ri value

gets executed first.

It eliminates any biasing towards transactions having smaller

completion time.

If two or more transactions have the same value of the ratio

,then we execute the transaction with lower execution time

first to allow more number of transactions to complete within

deadline time.

If some transactions have the same value of completion time

,then execute the transaction with lower number of write

operations first.

It means transaction with higher number of read operations

are performed first to allow more number of transactions to

execute concurrently.

If the same data item is accessed for both Read and Write

operations then we perform the Write operation first ,so that

the Read operation reads the new(updated) value and not the

older value. This is applicable to operations within a

transaction.

Since,Read operations takes less time than Write operation we

perform them earlier.

4. ALGORITHM
For each transaction compute the Ratio

If(Ri <1)

Then (/*abort the transaction since it cannot complete */)

Else /* execute the transactions in increasing value of Ri */

If(/* two or more transactions have the

same value of Ri */)

Then(/* execute the transaction with lower execution time

first */)

If(/* some transactions have the same completion time */)

Then(/*execute the transaction with larger number of read

operations first */)

If(/* same data is accessed for both read and write */)

Then(/*perform the write operation first*/)

Here, we note that we can execute the write operation first on

a data if it is going to be read later so that the read operation

reads the updated value only when it does not cause any

consistency problems.

5. CONCLUSION
This paper presents a new technique of dynamic priority

assignment in real time transactions that is based on the ratio

of time left to the time required to complete the transaction.

The transaction which has the minimum fraction of time

leftover as compared to the time taken for completion of that

transaction is executed first. Thus it is free from any short of

biasing. This creates optimum schedule of transactions as per

their possibility of completion and vastly improves the

efficiency and success of the transactions.

6. REFERENCES
[1] Abbott Robert and Garcia - Molina H., “Scheduling Real

- time Transactions with Disk Resident Data,”

Proceedings of the 15th International Conference on Very

Large Databases, Amsterdam, The Netherlands, pp. 385 -

395, 1989.

[2] Abbott Robert and Garcia - Monila H., “Scheduling Real

- Time Transaction: a Performance Evaluation,”

Proceedings of the 14th International Conference on

Very Large Databases, pp. 1 - 12, August 1988.

[3] Abdallah Maha, Guerraoui R. and Pucheral P., “one -

Phase Commit: Does It Make Sense,” Proceedings of the

International Conference on Parallel and Distributed

Systems (ICPADS'98), Tainan, Taiwan, Dec. 14 - 16,

1998.

[4] Agrawal Divyakant, Abbadi A. El and Jeffers R., “Using

Delayed Commitment in Locking Protocols for Real -

Time Databases,” Proceedings of the ACM International

Conference on Management of Data (SIGMOD), San

Diego, California, pp. 104 -113, June 2 - 5, 1992.

[5] Agrawal Divyakant, Abbadi A. El, Jeffers R. and Lin L.,

“Ordered Shared Locks for Real - time Databases,”

International Journals of Very Large Data Bases (VLDB

Journal), Vol. 4, Issue 1, pp. 87 - 126, January 1995.

[6] Aldarmi Saud A. and Burns A., “Dynamic CPU

Scheduling with Imprecise Knowledge of Computation

Time,” Technical Report YCS - 314, Department of

Computer Science, University of York, U. K., 1999.

[7] Aldarmi Saud A., “Real - Time Database Systems:

Concepts and Design,” Department of Computer

Science, University of York, April 1998.

[8] Al - Houmaily Yousef J. and Chrysanthis P. K.,

“Atomicity with Incompatible Presumptions,”

Proceedings of the 18th ACM Symposium on Principles

of Database Systems (PODS), Philadelphia, June 1999.

International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 4

92

[9] Al - Houmaily Yousef J. and Chrysanthis P. K., “In

Search for An Efficient Real - Time Atomic Commit

Protocol,”

[10] Url = citeseer.nj.nec.com/47189.html.

[11] Al - Houmaily Yousef J., Chrysanthis P. K. and Levitan

Steven P., “Enhancing the Performance of Presumed

Commit Protocol,” Proceedings of the ACM Symposium

on Applied Computing, San Jose, CA, USA, February 28

- March 1, 1997.

[12] Al - Houmaily Yousef J., Chrysanthis P. K. and Levitan

Steven P., “An Argument in Favor of the Presumed

Commit Protocol,” Proceedings of the IEEE

International Conference on Data Engineering,

Birmingham, April 1997.

[13] Arahna Rohan F. M., Ganti Venkatesh, Narayanan

Srinivasa, Muthukrishnan C. R., Prasad S. T. S. and

Ramamritham K., “Implementation of a real - time

database system,” Information Systems, Vol. 21 , Issue

1, pp. 55 - 74, March 1996.

[14] Attaluri Gopi K. and Salem Kenneth, “The Presumed -

Either Two - Phase Commit Protocol,” IEEE

Transactions on Knowledge and Data Engineering, Vol.

14, No. 5, pp. 1190 - 1196, Sept. - Oct. 2002.

[15] Audsley Neil C., Burns A., Richardson M. F. and

Wellings A. J., “Data Consistency in Hard Real - Time

Systems”, YCS 203, Department of Computer Science,

University of York, June 1993.

[16] Audsley Neil C., Burns A., Richardson M. F. and

Wellings A. J., “Absolute and Relative Temporal

Constraints in Hard Real Time Databases,” Proceedings

of the 4th Euromicro Workshop on Real - time Systems,

IEEE Computer Society Press, Athens, pp. 148 – 153,

June 1992.

[17] Bestavros Azer, “Advances in Real - Time Database

Systems Research,” ACM SIGMOD Record, Vol. 24,

No. 1, pp. 3 - 8, 1996.

[18] Bestavros Azer, Lin K. J. and Son S. H., “Real - Time

Database Systems: Issues and Applications,” Kluwer

Academic Publishers, 1997.

[19] Bowers David S., “Directions in Databases,” Lecture

Notes in Computer Science, 826, Springer - Verlag, pp.

23 - 54.

http://portal.acm.org/results.cfm?query=author%3AP290394&querydisp=author%3AVenkatesh%20%20Ganti&coll=GUIDE&dl=ACM&CFID=32545246&CFTOKEN=47056542
http://portal.acm.org/results.cfm?query=author%3AP266606&querydisp=author%3ASrinivasa%20%20Narayanan&coll=GUIDE&dl=ACM&CFID=32545246&CFTOKEN=47056542

