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ABSTRACT 
Load balancing among application layer peer-to-peer (P2P) 
networks is critical for its effectiveness but, is considered to be 
the most important development for next-generation internet 
infrastructure. Most structured P2P systems rely on ID-space 
partitioning schemes to solve the load imbalance problem and 

have been known to result in an imbalance factor of  θ (log N) 
in the zone sizes.  

Two important contributions to minimize the same are proposed 
in [1]. First, the virtual-server-based load balancing problem 
using an optimization-based approach and deriving proposal in 
general and its advantages over previous strategies. Second, 
characterizing the effect of heterogeneity on load balancing 
algorithm performance and the conditions in which 
heterogeneity may be easy or hard to deal with based on an 

extensive study of a wide spectrum of load and capacity 
scenarios. 
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Search, Structured Peer-To-Peer System, Generalized 
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I.  INTRODUCTION 

P2P system harnesses the resources of large populations - 
networked computers in a cost-effective manner such as the 
storage, bandwidth, and computing power. In structured P2P 
systems, data items are spread across distributed computers 
(nodes), and the location of each item is determined in a 

decentralized manner using a distributed hash lookup table 
(DHT) [2], but there are several problems in it. Following [4], 
let N be the number of nodes in the system and fmax be the 
ratio of the largest zone size to the average zone size. It is 
known that fmax is θ (log N) with high probability [4] and this 
could result in a θ (log N) load imbalance factor in the number 
of objects even when nodes have homogeneous capacities. But 
in practice, the resources of P2P systems are most likely 

overlaid on top of peer nodes with extreme heterogeneity in 
hardware and software capabilities. So they cannot adapt to 
dynamic workload changes in real networking conditions. To 
resolve the above problems, approach on the virtual server (VS) 
i.e. called as a migration-based approach to load balancing is 
focused in [1], which helps to under load the overloaded 
physical node by moving portions of the load dynamically. A 
VS acts as a peer in the original DHT architecture which is 
responsible for a zone, but each physical node may be 
associated with several VS’s. 

Some noteworthy points in the VS concept are: 

 The transfer of VS from one physical node to another is 

equivalent to a leave - followed by a join operation to 
the underlying DHT which is supported by the DHT 
framework.  

 The concept is applicable to many types of resources 
such as storage, CPU processing time, bandwidth, etc. 

The major contribution in [1] is to derive an effective server 
reassignment algorithm for the solution of the load balance 
problem and address issues as:  

 Node registration policies.  

 Effect of the number of directories - vital to success of 
the framework.  

Other major contribution is to systematically investigate the 
effect of forms of heterogeneity on the difficulty of the server 
reassignment problem. 

II. OVERVIEW OF RELATED WORK 

Recently there is dynamic interest for “The load balance 
problem for heterogeneous overlay” in the research community. 
In [1] focus on the notion of VS’s is mostly based on [3], whose 
explicit definition and use for load balance were first proposed 
by Rao et al. [5]. In [5] author introduce several load balancing 
algorithms, including many-to-many with dislodge (called 
M2M in this paper) and M2M without dislodge (called DM2M), 

based on the assistance of a new type of peer node, called 
directory. M2M is shown to be superior to DM2M in 
performance. 

Both algorithms are intuitively appealing, but there are several 
important issues with the general M2M approach: 

 The algorithms are unable to find feasible assignments 

in certain very simple situations, such as starting from a 
set of VSs S, the M2M strategy searches only in the 
direction of decreasing total load in S. Presumably, this 
strategy guarantees algorithm termination. 

 A number of design issues, such as how nodes should 

register with directory nodes, are not adequately 
addressed. 

Fisher et al. [6] proved that the generalized assignment problem 
is NP complete. Lourenco and Serra proposed a general 
framework whose strategy is adopted in [1] algorithms, albeit 
with much modification due to the much larger search space for 
problem.  

The formulation of the integer programming GAP is shown as 
follows: 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 f x =    𝑐𝑖𝑗 𝑥𝑖𝑗  

𝑗∈𝐽

𝑖∈𝐼

     1  

                   s.t. 
 

 𝑙𝑖 𝑥𝑖𝑗 ≤ 𝑡𝑗∀jєJ

𝑖∈𝐼

       (2) 

 

 𝑥𝑖𝑗 = 1, ∀iєI

𝑗∈𝐽

         (3) 

 

𝑥𝑖𝑗 =   
1,   if task i is assigned to agent j,

0, otherwise  
 (4) 

 

Figure 1.  Gap formulation 

The objective of GAP is to find a solution that minimizes the 
total cost, as defined in (1). Equation (2) enforces the resource 
capacity constraints of the agents.  Equation (3) guarantees that 
each task is assigned to one and only one agent. 

The general strategy in the GAP proposals is the creation of a 
solution and local searching in the “vicinity” of the created 
solution before moving on to the next iteration. The notion of 
neighborhoods and moves for conducting a local search with 
respect to a created solution are needed. A shift move consists 

of removing a task (i.e. VS) from one agent (node) and 
assigning it to another, whereas a shift neighborhood is a set of 
such moves. 

 Simple shift neighborhood and a restricted ejection 

chain of length 2 neighborhood were first employed by 
Lourenco and Serra [7]. Both neighborhoods are 
searched using a single cost function, making no 
distinction between feasible and infeasible solutions.  

 The fundamental insight in [1] is on need of more 

focused definition of the neighborhood search spaces for 
the local search.  

 The authors in [1] proposes to classify the search spaces 

into two types using dual-pace local search algorithm 
and develop a corresponding search strategy as an 
effective approach to tackle the problem.  

III.   PROPOSED ALGORITHM 

The overall algorithm proposed in [1] is called dual space local 

search (DSLS) and is based on the framework by Lourenco and 
Serra [7], is discussed below: 

 Construction The algorithm invokes the ant system 
heuristic (ASH) algorithm to construct an initial solution 
x for the current iteration. 

 Improvement The algorithm then invokes the DLS 
procedure to derive a local minimum solution based on 
the initial solution. DLS is another iterative loop 

comprising two main phases for searching in the two 
ejections-chain neighborhoods: 

a) First, if the initial solution generated in the first 
step is not a feasible solution, the algorithm 
performs a local search procedure in a feasibility-
improving ejection-chain neighborhood N(x) to 
adjust the solution to a feasible one x’. 

b) Second, based on the feasible x’, the algorithm 
performs another local search in a cost-reducing 

ejection-chain neighborhood N’(x) to adjust x’ to a 
lower cost one x’’. 

 Pheromone trail update The current best solution will be 

replaced by x if it is the one. The pheromone trails will 
be updated to reflect the effect of x’’. 

The rationale for the design is that, even though ASH is an 
effective randomized restart procedure that can construct a good 
initial solution in reinforcement style of learning using the 
pheromone trails, it is not as effective for finding nearby local 
optima solutions several steps away from the generated 
solution. A local search algorithm must be used to improve the 
constructed solution to enhance the search in terms of earlier 
detection of high-quality solutions. 

DLS algorithm is the local search component that finds the local 

optima solution in the neighborhood of a given initial solution. 
In addition, distinguish between the search spaces by the 
purpose they are to achieve and thus can search in significantly 
smaller search spaces.  

A.  The Ant System Heuristic : 

The algorithm is as follows: 
The tasks are assigned to the agents in a greedy way, where the 
assignment is done biased by the tij . A task i is assigned to a 
particular agent j in the following way: 

1. With probability p0 , choose the agent j* with   
maximal value of tij . 

2. With probability 1- p0 , choose the agent j* according 
to the following probability distribution: 

 

𝑝𝑖𝑗 =
𝑖𝑗

 𝑖𝑙𝑙є𝐿𝑖
 if j є 𝐿𝑖 , or 0 otherwise 

 

This assignment constitutes the first step in the general 
framework, followed by a local search that tries to improve this 
initial solution.  

3. The pheromone trails are updated in the following 
way: 

         tij
new 

=
 
tij

old 
+ ∆ij , where r , 0 < r <1,  

 

is the persistence of the trail, i.e. 1 - r , represents the 
evaporation. 

 
Also, the updated amount is: 
 

∆𝑖𝑗 =  
max∗ Q ,   if task i is assign to agent j in the solution,

0, OTHERWISE  
  

 

𝑊ℎ𝑒𝑟𝑒 𝑄 =   
0.01,   if the solution is infeasible,

0.05, if the solution is feasible  
  

 

 
4. Note that, if the solution is feasible, the pheromone 

trail has a bigger increment, trying to give greater 
probability to feasible assignments. 

B.  Two-Stage Descent Local Search Procedure : 

DLS is itself an iterative loop whose body consists of two main 
phases for searching in two ejection-chain neighborhood search 
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spaces. First, a feasibility-improving neighborhood N(x) is 
generated to search for a feasible solution in the vicinity of x. 

Second, a cost-reducing neighborhood N’(x) is generated to find 
lower cost solutions in the vicinity of a feasible solution. Next, 
the two ejectionchain neighborhoods and their search strategies 
are presented. 

C. Dual Neighborhood Search Spaces : 

The ejection chain neighborhood can be obtained by the 
application of the following two types of moves: 

Move A: Remove a task i from an agent (agent j), then 
insert this task i in a different agent (agent w). 

   Move B: Remove a task i from an agent (agent j),  

   then insert this task i in a different  agent (agent w).  

   After, remove a task k from agent w (w different  

   from j) and insert task k in another agent (different  

   from w, but it can equal of j). 

The ejection chain neighborhood of a solution can be obtained 

in a similar way as it was done for the shift neighborhood, but 
move of type B is only applied if the move of type A was not 
successful. Note also that the number of neighbors is of order 
O(n2m2), a larger number than the shift neighborhood. 

The simple overflow function f’(x), is used to define the search 
spaces. The definitions of i, j, I, J, tj, lij, and xij are the same as 
those in (2), (3), (4), and (5). This function measures the extent 
of capacity violation and is zero for a solution x if it is feasible: 

 

f ′(x) =  max 0, 𝑙𝑖𝑗 𝑥𝑖𝑗 − 𝑡𝑗
𝑖є𝐼

 

𝑗є𝐽

 

 If an initial solution x is not feasible, that is, f’(x) > 0, the 
feasibility-improving ejection-chain neighborhood N(x) is 
defined to be the tuples or moves (i, j, i’; j’; j’’): 

 
N x 

=    𝑖, 𝑗, 𝑖′ , 𝑗 ′ , 𝑗 ′′   𝑥𝑖𝑗 = 1,𝑥𝑖 ′ 𝑗 ′ = 1, 𝑠𝑗 >  𝑡𝑗 , 𝑠𝑗 ′ <  𝑡𝑗 ′ , i ≠ i′ , j ≠ j′    

where 𝑠𝑗 =  x𝑖′′ 𝑗
i′′ єI

, 𝑠𝑗′

=  x𝑖′′ 𝑗 ′
i′′ єI

, i, i′єI, and j, j′ , j′′ єJ   

 
The main steps of the descent local search are: 

      1. Obtain an initial solution x (using the ASH). 

            2. Let flag=false; 

            3. Neighborhood(x); 

            4. If flag=false, stop (a local optimum was found),  

                otherwise repeat step 3. 

D. Update the Current Best Solution and Pheromone 

Trail Variables : 

The current best solution x* will be replaced by the solution x 
produced in the iteration, if it is found to be better. A solution is 
considered to be better if it satisfies one of the following two 
conditions: 

 f’(x) = 0, f’(x*) = 0, and f(x) < f(x*): Both the new 
solution x and the current best solution x* are feasible 

(f’(x) = 0; f’(x*) = 0) and the cost of the new solution 
is lower than that of the current best solution. 

 f’(x) < f’(x*): The overflow amount in the new solution 
is smaller than that of current best solution. 

At last, the pheromone trail variables will be updated using the 
following: 

𝜏𝑖𝑗
𝑛𝑒𝑤 = max 𝜏𝑚𝑖𝑛 , min 𝜏𝑚𝑎𝑥 ,𝜌𝜏𝑖𝑗

𝑜𝑙𝑑 +  𝛿 ∗ 𝜏𝑚𝑎𝑥 ∗ 𝑥𝑖𝑗
′   , ∀𝑖

∈ 𝐼, 𝑗 ∈ 𝐽 

  
IV. CONCLUSION AND FUTURE 

APPLICATIONS 

This paper studied the VS framework for solving the load 
balance problem in a structured P2P system. The first main 
contribution is an effective and efficient DSLS algorithm, which 
leverages work in GAP. The second contribution is an in-depth 
analysis of the effect of capacity and workload heterogeneity on 
algorithm performance in both static and dynamic environments 
and the qualitative relationship between static and dynamic 
environments. We plan to investigate the following important 
issues in the future: We intend to explore other cost-reducing 

neighborhoods to further improve the DSLS algorithm. As the 
variance of a VS workload has a significant impact on the 
success ratio performance, we plan to investigate VS merging 
and splitting strategies to enhance the performance of the 
algorithms. We also plan to investigate distributed protocols to 
implement the proposed node registration policies. 
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