
International Journal of Computer Applications (0975 – 8887)
Volume 1– No.4

81

Load Balancing in Structured P2P Systems using
Server Reassignment Technique

S.S.Patil

Rajarambapu Institute of Technology Rajaramnagar/CSE
Sangli, India

S.K.Shirgave

Dattajirao Kadam College of Textile Engineering Inchalkaranji/CSE
Sangli, India

ABSTRACT
Load balancing among application layer peer-to-peer (P2P)
networks is critical for its effectiveness but, is considered to be
the most important development for next-generation internet
infrastructure. Most structured P2P systems rely on ID-space
partitioning schemes to solve the load imbalance problem and

have been known to result in an imbalance factor of θ (log N)
in the zone sizes.

Two important contributions to minimize the same are proposed
in [1]. First, the virtual-server-based load balancing problem
using an optimization-based approach and deriving proposal in
general and its advantages over previous strategies. Second,
characterizing the effect of heterogeneity on load balancing
algorithm performance and the conditions in which
heterogeneity may be easy or hard to deal with based on an

extensive study of a wide spectrum of load and capacity
scenarios.

Keywords: Distributed Hash Table, Load Balance, Local

Search, Structured Peer-To-Peer System, Generalized
Assignment Problem.

I. INTRODUCTION

P2P system harnesses the resources of large populations -
networked computers in a cost-effective manner such as the
storage, bandwidth, and computing power. In structured P2P
systems, data items are spread across distributed computers
(nodes), and the location of each item is determined in a

decentralized manner using a distributed hash lookup table
(DHT) [2], but there are several problems in it. Following [4],
let N be the number of nodes in the system and fmax be the
ratio of the largest zone size to the average zone size. It is
known that fmax is θ (log N) with high probability [4] and this
could result in a θ (log N) load imbalance factor in the number
of objects even when nodes have homogeneous capacities. But
in practice, the resources of P2P systems are most likely

overlaid on top of peer nodes with extreme heterogeneity in
hardware and software capabilities. So they cannot adapt to
dynamic workload changes in real networking conditions. To
resolve the above problems, approach on the virtual server (VS)
i.e. called as a migration-based approach to load balancing is
focused in [1], which helps to under load the overloaded
physical node by moving portions of the load dynamically. A
VS acts as a peer in the original DHT architecture which is
responsible for a zone, but each physical node may be
associated with several VS’s.

Some noteworthy points in the VS concept are:

 The transfer of VS from one physical node to another is

equivalent to a leave - followed by a join operation to
the underlying DHT which is supported by the DHT
framework.

 The concept is applicable to many types of resources
such as storage, CPU processing time, bandwidth, etc.

The major contribution in [1] is to derive an effective server
reassignment algorithm for the solution of the load balance
problem and address issues as:

 Node registration policies.

 Effect of the number of directories - vital to success of
the framework.

Other major contribution is to systematically investigate the
effect of forms of heterogeneity on the difficulty of the server
reassignment problem.

II. OVERVIEW OF RELATED WORK

Recently there is dynamic interest for “The load balance
problem for heterogeneous overlay” in the research community.
In [1] focus on the notion of VS’s is mostly based on [3], whose
explicit definition and use for load balance were first proposed
by Rao et al. [5]. In [5] author introduce several load balancing
algorithms, including many-to-many with dislodge (called
M2M in this paper) and M2M without dislodge (called DM2M),

based on the assistance of a new type of peer node, called
directory. M2M is shown to be superior to DM2M in
performance.

Both algorithms are intuitively appealing, but there are several
important issues with the general M2M approach:

 The algorithms are unable to find feasible assignments

in certain very simple situations, such as starting from a
set of VSs S, the M2M strategy searches only in the
direction of decreasing total load in S. Presumably, this
strategy guarantees algorithm termination.

 A number of design issues, such as how nodes should

register with directory nodes, are not adequately
addressed.

Fisher et al. [6] proved that the generalized assignment problem
is NP complete. Lourenco and Serra proposed a general
framework whose strategy is adopted in [1] algorithms, albeit
with much modification due to the much larger search space for
problem.

The formulation of the integer programming GAP is shown as
follows:

International Journal of Computer Applications (0975 – 8887)
Volume 1– No.4

82

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 f x = 𝑐𝑖𝑗 𝑥𝑖𝑗

𝑗∈𝐽

𝑖∈𝐼

 1

 s.t.

 𝑙𝑖 𝑥𝑖𝑗 ≤ 𝑡𝑗∀jєJ

𝑖∈𝐼

 (2)

 𝑥𝑖𝑗 = 1, ∀iєI

𝑗∈𝐽

 (3)

𝑥𝑖𝑗 =
1, if task i is assigned to agent j,

0, otherwise
 (4)

Figure 1. Gap formulation

The objective of GAP is to find a solution that minimizes the
total cost, as defined in (1). Equation (2) enforces the resource
capacity constraints of the agents. Equation (3) guarantees that
each task is assigned to one and only one agent.

The general strategy in the GAP proposals is the creation of a
solution and local searching in the “vicinity” of the created
solution before moving on to the next iteration. The notion of
neighborhoods and moves for conducting a local search with
respect to a created solution are needed. A shift move consists

of removing a task (i.e. VS) from one agent (node) and
assigning it to another, whereas a shift neighborhood is a set of
such moves.

 Simple shift neighborhood and a restricted ejection

chain of length 2 neighborhood were first employed by
Lourenco and Serra [7]. Both neighborhoods are
searched using a single cost function, making no
distinction between feasible and infeasible solutions.

 The fundamental insight in [1] is on need of more

focused definition of the neighborhood search spaces for
the local search.

 The authors in [1] proposes to classify the search spaces

into two types using dual-pace local search algorithm
and develop a corresponding search strategy as an
effective approach to tackle the problem.

III. PROPOSED ALGORITHM

The overall algorithm proposed in [1] is called dual space local

search (DSLS) and is based on the framework by Lourenco and
Serra [7], is discussed below:

 Construction The algorithm invokes the ant system
heuristic (ASH) algorithm to construct an initial solution
x for the current iteration.

 Improvement The algorithm then invokes the DLS
procedure to derive a local minimum solution based on
the initial solution. DLS is another iterative loop

comprising two main phases for searching in the two
ejections-chain neighborhoods:

a) First, if the initial solution generated in the first
step is not a feasible solution, the algorithm
performs a local search procedure in a feasibility-
improving ejection-chain neighborhood N(x) to
adjust the solution to a feasible one x’.

b) Second, based on the feasible x’, the algorithm
performs another local search in a cost-reducing

ejection-chain neighborhood N’(x) to adjust x’ to a
lower cost one x’’.

 Pheromone trail update The current best solution will be

replaced by x if it is the one. The pheromone trails will
be updated to reflect the effect of x’’.

The rationale for the design is that, even though ASH is an
effective randomized restart procedure that can construct a good
initial solution in reinforcement style of learning using the
pheromone trails, it is not as effective for finding nearby local
optima solutions several steps away from the generated
solution. A local search algorithm must be used to improve the
constructed solution to enhance the search in terms of earlier
detection of high-quality solutions.

DLS algorithm is the local search component that finds the local

optima solution in the neighborhood of a given initial solution.
In addition, distinguish between the search spaces by the
purpose they are to achieve and thus can search in significantly
smaller search spaces.

A. The Ant System Heuristic :

The algorithm is as follows:
The tasks are assigned to the agents in a greedy way, where the
assignment is done biased by the tij . A task i is assigned to a
particular agent j in the following way:

1. With probability p0 , choose the agent j* with
maximal value of tij .

2. With probability 1- p0 , choose the agent j* according
to the following probability distribution:

𝑝𝑖𝑗 =
𝑖𝑗

 𝑖𝑙𝑙є𝐿𝑖
 if j є 𝐿𝑖 , or 0 otherwise

This assignment constitutes the first step in the general
framework, followed by a local search that tries to improve this
initial solution.

3. The pheromone trails are updated in the following
way:

 tij
new

=

tij

old
+ ∆ij , where r , 0 < r <1,

is the persistence of the trail, i.e. 1 - r , represents the
evaporation.

Also, the updated amount is:

∆𝑖𝑗 =
max∗ Q , if task i is assign to agent j in the solution,

0, OTHERWISE

𝑊ℎ𝑒𝑟𝑒 𝑄 =
0.01, if the solution is infeasible,

0.05, if the solution is feasible

4. Note that, if the solution is feasible, the pheromone

trail has a bigger increment, trying to give greater
probability to feasible assignments.

B. Two-Stage Descent Local Search Procedure :

DLS is itself an iterative loop whose body consists of two main
phases for searching in two ejection-chain neighborhood search

International Journal of Computer Applications (0975 – 8887)
Volume 1– No.4

83

spaces. First, a feasibility-improving neighborhood N(x) is
generated to search for a feasible solution in the vicinity of x.

Second, a cost-reducing neighborhood N’(x) is generated to find
lower cost solutions in the vicinity of a feasible solution. Next,
the two ejectionchain neighborhoods and their search strategies
are presented.

C. Dual Neighborhood Search Spaces :

The ejection chain neighborhood can be obtained by the
application of the following two types of moves:

Move A: Remove a task i from an agent (agent j), then
insert this task i in a different agent (agent w).

 Move B: Remove a task i from an agent (agent j),

 then insert this task i in a different agent (agent w).

 After, remove a task k from agent w (w different

 from j) and insert task k in another agent (different

 from w, but it can equal of j).

The ejection chain neighborhood of a solution can be obtained

in a similar way as it was done for the shift neighborhood, but
move of type B is only applied if the move of type A was not
successful. Note also that the number of neighbors is of order
O(n2m2), a larger number than the shift neighborhood.

The simple overflow function f’(x), is used to define the search
spaces. The definitions of i, j, I, J, tj, lij, and xij are the same as
those in (2), (3), (4), and (5). This function measures the extent
of capacity violation and is zero for a solution x if it is feasible:

f ′(x) = max 0, 𝑙𝑖𝑗 𝑥𝑖𝑗 − 𝑡𝑗
𝑖є𝐼

𝑗є𝐽

 If an initial solution x is not feasible, that is, f’(x) > 0, the
feasibility-improving ejection-chain neighborhood N(x) is
defined to be the tuples or moves (i, j, i’; j’; j’’):

N x

= 𝑖, 𝑗, 𝑖′ , 𝑗 ′ , 𝑗 ′′ 𝑥𝑖𝑗 = 1,𝑥𝑖 ′ 𝑗 ′ = 1, 𝑠𝑗 > 𝑡𝑗 , 𝑠𝑗 ′ < 𝑡𝑗 ′ , i ≠ i′ , j ≠ j′

where 𝑠𝑗 = x𝑖′′ 𝑗
i′′ єI

, 𝑠𝑗′

= x𝑖′′ 𝑗 ′
i′′ єI

, i, i′єI, and j, j′ , j′′ єJ

The main steps of the descent local search are:

 1. Obtain an initial solution x (using the ASH).

 2. Let flag=false;

 3. Neighborhood(x);

 4. If flag=false, stop (a local optimum was found),

 otherwise repeat step 3.

D. Update the Current Best Solution and Pheromone

Trail Variables :

The current best solution x* will be replaced by the solution x
produced in the iteration, if it is found to be better. A solution is
considered to be better if it satisfies one of the following two
conditions:

 f’(x) = 0, f’(x*) = 0, and f(x) < f(x*): Both the new
solution x and the current best solution x* are feasible

(f’(x) = 0; f’(x*) = 0) and the cost of the new solution
is lower than that of the current best solution.

 f’(x) < f’(x*): The overflow amount in the new solution
is smaller than that of current best solution.

At last, the pheromone trail variables will be updated using the
following:

𝜏𝑖𝑗
𝑛𝑒𝑤 = max 𝜏𝑚𝑖𝑛 , min 𝜏𝑚𝑎𝑥 ,𝜌𝜏𝑖𝑗

𝑜𝑙𝑑 + 𝛿 ∗ 𝜏𝑚𝑎𝑥 ∗ 𝑥𝑖𝑗
′ , ∀𝑖

∈ 𝐼, 𝑗 ∈ 𝐽

IV. CONCLUSION AND FUTURE

APPLICATIONS

This paper studied the VS framework for solving the load
balance problem in a structured P2P system. The first main
contribution is an effective and efficient DSLS algorithm, which
leverages work in GAP. The second contribution is an in-depth
analysis of the effect of capacity and workload heterogeneity on
algorithm performance in both static and dynamic environments
and the qualitative relationship between static and dynamic
environments. We plan to investigate the following important
issues in the future: We intend to explore other cost-reducing

neighborhoods to further improve the DSLS algorithm. As the
variance of a VS workload has a significant impact on the
success ratio performance, we plan to investigate VS merging
and splitting strategies to enhance the performance of the
algorithms. We also plan to investigate distributed protocols to
implement the proposed node registration policies.

V. REFERENCES

[1] C. Chyouhwa, T. Kun-Cheng, “The Server Reassignment
Problem for Load Balancing In Structured P2P Systems,
“IEEE Trans. Parallel and Distributed Systems, vol. 19, no.
2, Feb. 2008.

[2] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.
Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications,” Proc. ACM SIGCOMM
’01, pp. 149-160, 2001.

[3] F. Dabek, M. Kaashoek, D. Karger, D. Morris, and I.

Stoica, “Wide- Area Cooperative Storage with CFS, ”
Proc.18th ACM Symp. Operating Systems Principles
(SOSP ’01), pp. 202-215, Oct. 2001.

[4] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I.
Stoica, “Load Balancing in Structured P2P Systems, ”
Proc. Second Int’l Workshop Peer-to-Peer Systems (IPTPS
’03), Feb. 2003.

[5] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I.
Stoica, “Load Balancing in Structured P2P Systems, ”
Proc. Second Int’l Workshop Peer-to-Peer Systems (IPTPS
’03), Feb. 2003.

[6] M.L. Fisher, R. Jaikumar, and L.N. Van Wassenhove, “A

Multiplier Adjustment Method for the Generalized
Assignment Problem,” Management Science, vol. 32, no.
9.

[7] H.R. Lourenco and D. Serra, “Adaptive Search Heuristics
for the Generalized Assignment Problem,” Mathware and
Soft Computing, vol. 9, pp. 209-234, 2002.

