
International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 4

38

Improvements in Shadow SWIFT using Selective Commit

and Delayed Creation of Shadows

Alok Kumar
IIM

ABSTRACT
In normal shadow SWIFT commit protocol shadow of all the

borrower transactions which satisfy a given criteria are

created when the lock manager processes the request. This

creates heavy overhead on the system and degrades its

performance. In this paper, we have presented a new method

of handling the requests by the borrower transactions. We

create the shadow only when the borrower aborts due to abort

of lender and can complete its execution in the remaining

time. Further, the shadow uses the work already done by

borrower transaction .We also propose the use of selective

commit depending on Lender’s commitment. Thus it prevents

any overhead associated with the maintenance of the shadow

as was the case in earlier shadow based protocols.

Keywords
Distributed database

1. INTRODUCTION
Database systems serve as a backbone to thousands of

systems and applications. Some of the systems have very high

demands for availability and very fast real-time responses are

required. Usually, such systems keep generating workload of

very large transactions for the distributed real time database,

and a substantial part of the workload consists of write, read

and also update kind of transactions. Poor availability of real

time systems and/or slow responses in processing such

transactions used by real time business applications could

infact be financially devastating and also in worst cases, cause

deaths or damages. For example: tele-communication

systems, trading applications, online gaming systems, sensor

network applications etc. Typically, a sensor network system

consists of a large number of sensors (both wireless and

wired) which give reports on the status of some real-life

situations. The situations include motion, sound, pressure,

temperature, moisture and velocity etc. Such sensors send

their data to a central application which makes such decisions

based on both past and present inputs. For enabling such

networks for making better quality outputs, both the number

of sensors and the frequency of their updates need to be

increased. Hence, such sensor networks systems should be

able to withstand an increasing amount of load. For systems

like health care in hospitals, auto car driving applications,

space shuttle control systems etc., data is required in real-time

scenario, and should be extremely reliable since any such poor

availability or extra time taken by delays can lead to

significant loss of human lives.

Most of the systems listed above using Distributed Real Time

Databases require a distributed transaction to be executed at

multiple sites. A commit protocol is made to ensure that either

all the effects of the transaction should persist or none of them

persist at all even in case of failure of a site or communication

link and the resulting loss of messages. Hence, it is required

that the Commit processing transactions should add as little

overhead as possible to the transaction processing. Hence, it

shows that the design of a much better commit protocol is

very important for Distributed Real Time Databases.

2. DISTRIBUTED REAL TIME

DATABASE SYSTEM MODEL
In the distributed database system model, the global or central

database is sub-divided into a group of local databases stored

at various different- different sites and locations. A

communication network is required which interconnects the

various sites. There is nothing as such global shared memory

in the system, and all the sitesneed to communicate through

message exchanges over the communication network. We

assume that all the transactions are firm and real time. Each of

these transactions in the present model exists in the form of a

coordinator that executes at the site of origination of the

transaction and a group of cohorts which execute at various

other sites, where the required data items are located. If there

are any local data which are in the access list of the

transactions, then in those cases one of the cohort is executed

locally. Before accessing any data item, the cohort needs to

obtain lock on the data items. Sharing of such data items in

conflicting modes creates dependencies among the group of

conflicting local transactions and cohorts, which constraints

their commit order. We also assume that:

 The processing of a transaction needs the use of

CPU and the data items which are located at a local

site or remote site.

 Arrival of any transactions at a site is independent

of the arrivals at any other site and uses Poisson

distribution.

 Each cohort can make read and update accesses.

 Each transaction has to pre-declare its read-set (set

of data items that the transaction will read) and the

update-set (data items that the transaction will

update).

 S2PL-HP is used for locking the data items.

 Cohorts are executed in parallel order.

 Any lending transaction can not lend the same data

item in read/update mode to more than a cohort.

 Any cohort already in the dependency set of any

other cohort can not permit another incoming cohort

to read or update.

 A distributed real time transaction is said to commit,

if the coordinator has reached commit decision

before the expiry of the deadline at its site location.

This definition applies ir-respective of whether all

the cohorts have also received and recorded the

commit decision within the deadlines or not.

International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 4

39

 Studies have been made earlier for both main

memory resident and disk resident database.

 Communication delays considered here is either 0

or 100 ms.

 For disk resident database, buffer space is

considered sufficiently large to allow the retention

of data updates until commit time.

 The updating of various data items is made in

transactions own memory, not in place updating.

3. THE MODIFIED PROTOCOL
In this modified protocol, we propose that the creation of

shadow be deferred until the abort of borrower due to

Lender’s abort, only if the shadow can complete its execution

in the remaining time.

We note that shadow will be activated only when the

borrower has to abort due to Lender’s abort. So, we can

remove the overhead of creating and storing of shadow at the

time of its processing by the lock manager. Since, we don’t

already know whether the shadow will ever be used or not.

We propose the introduction of a new dependency: create-

onabort.

This dependency is used to create the shadow if borrower

aborts due to abort of Lender. This is applicable to all the

cohort present in the Abort Dependency Set(ADS) of the

Lender transaction.

Shadows will use the previous work done by the Borrower

transaction, so it won’t be required to repeat the work already

done by the Borrower transaction. Shadows will only be

required to place the old values of data items in place of the

new values in the borrower transaction log and perform

computations.

Since it does not require reading the data values again it saves

time. The locks applied by the borrower can also be used by

its shadow, so it saves time because the shadow is not

required to apply the locks again.

The abort dependencies are created in cases of write-read and

write-write conflicts. However, when the deadline time of

borrower is approaching while lender is still deferring its

commitment we can break the dependency so that the

borrower is able to meet its deadline. We selectively run the

borrower or its shadow if the lender has high chances of

committing or we run its shadow if it has more chances of

aborting respectively.

Obviously, in both cases we get an optimal result. Thus, we

are able to remove all the overhead associated with the

creation and storage of the shadows if the Borrower does not

aborts or aborts after a time when the shadow cannot complete

its execution. Since, in both these cases , there is no need to

create a shadow because in first case the borrower transaction

itself commits, not requiring the use of shadows. While in the

second case, if the borrower aborts after a time such that the

shadow cannot complete its execution there is no need to

create a shadow. Thus, these improvements greatly increase

system performance.

4. REFERENCES
[1] Abbott Robert and Garcia - Molina H., “Scheduling Real

- time Transactions with Disk Resident Data,”

Proceedings of the 15th International Conference on Very

Large Databases, Amsterdam, The Netherlands, pp. 385 -

395, 1989.

[2] Abbott Robert and Garcia - Monila H., “Scheduling Real

- Time Transaction: a Performance Evaluation,”

Proceedings of the 14th International Conference on Very

Large Databases, pp. 1 - 12, August 1988.

[3] Abdallah Maha, Guerraoui R. and Pucheral P., “One -

Phase Commit: Does It Make Sense,” Proceedings of the

International Conference on Parallel and Distributed

Systems (ICPADS'98), Tainan, Taiwan, Dec. 14 - 16,

1998.

[4] Agrawal Divyakant, Abbadi A. El and Jeffers R., “Using

Delayed Commitment in Locking Protocols for Real -

Time Databases,” Proceedings of the ACM International

Conference on Management of Data (SIGMOD), San

Diego, California, pp. 104 -113, June 2 - 5, 1992.

[5] Agrawal Divyakant, Abbadi A. El, Jeffers R. and Lin L.,

“Ordered Shared Locks for Real - time Databases,”

International Journals of Very Large Data Bases (VLDB

Journal), Vol. 4, Issue 1, pp. 87 - 126, January 1995.

[6] Aldarmi Saud A. and Burns A., “Dynamic CPU

Scheduling with Imprecise Knowledge of Computation

Time,” Technical Report YCS - 314, Department of

Computer Science, University of York, U. K., 1999.

[7] Aldarmi Saud A., “Real - Time Database Systems:

Concepts and Design,” Department of Computer

Science, University of York, April 1998.

[8] Al - Houmaily Yousef J. and Chrysanthis P. K.,

“Atomicity with Incompatible Presumptions,”

Proceedings of the 18th ACM Symposium on Principles

of Database Systems (PODS), Philadelphia, June 1999.

[9] Al - Houmaily Yousef J. and Chrysanthis P. K., “In

Search for An Efficient Real - Time Atomic Commit

Protocol,”

[10] Url = citeseer.nj.nec.com/47189.html.

[11] Al - Houmaily Yousef J., Chrysanthis P. K. and Levitan

Steven P., “Enhancing the Performance of Presumed

Commit Protocol,” Proceedings of the ACM Symposium

on Applied Computing, San Jose, CA, USA, February 28

- March 1, 1997.

[12] Al - Houmaily Yousef J., Chrysanthis P. K. and Levitan

Steven P., “An Argument in Favor of the Presumed

Commit Protocol,” Proceedings of the IEEE International

Conference on Data Engineering, Birmingham, April

1997.

[13] Arahna Rohan F. M., Ganti Venkatesh, Narayanan

Srinivasa, Muthukrishnan C. R., Prasad S. T. S. and

Ramamritham K., “Implementation of a Real - time

Database System,” Information Systems, Vol. 21 , Issue

1, pp. 55 - 74, March 1996.

[14] Attaluri Gopi K. and Salem Kenneth, “The Presumed -

Either Two - Phase Commit Protocol,” IEEE

Transactions on Knowledge and Data Engineering, Vol.

14, No. 5, pp. 1190 - 1196, Sept. - Oct. 2002.

http://portal.acm.org/results.cfm?query=author%3AP290394&querydisp=author%3AVenkatesh%20%20Ganti&coll=GUIDE&dl=ACM&CFID=32545246&CFTOKEN=47056542#_blank
http://portal.acm.org/results.cfm?query=author%3AP266606&querydisp=author%3ASrinivasa%20%20Narayanan&coll=GUIDE&dl=ACM&CFID=32545246&CFTOKEN=47056542#_blank

International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 4

40

[15] Audsley Neil C., Burns A., Richardson M. F. and

Wellings A. J., “Data Consistency in Hard Real - Time

Systems”, YCS 203, Department of Computer Science,

University of York, June 1993.

[16] Audsley Neil C., Burns A., Richardson M. F. and

Wellings A. J., “Absolute and Relative Temporal

Constraints in Hard Real Time Databases,” Proceedings

of the 4th Euromicro Workshop on Real - time Systems,

IEEE Computer Society Press, Athens, pp. 148 – 153,

June 1992.

[17] Bestavros Azer, “Advances in Real - Time Database

Systems Research,” ACM SIGMOD Record, Vol. 24,

No. 1, pp. 3 - 8, 1996.

IJCATM : www.ijcaonline.org

