
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 5

102

Fault Detection Multipliers in Polynomial and Normal
Basis

Siddharth Shelly
ECE Department

Viswajyothi College of Engineering and
Technology

Vazhakulam, Muvattupuzha, Ernakulam, Kerala,
India.

Babu T Chacko
EEE Department

Viswajyothi College of Engineering and
Technology

Vazhakulam, Muvattupuzha, Ernakulam, Kerala,
India.

ABSTRACT
With significant advances in wired and wireless technologies and
also increased shrinking in the size of VLSI circuits, many

devices have become very large because they need to contain
several large units. This large number of gates and in turn large
number of transistors causes the devices to be more prone to
faults. These faults especially in sensitive and critical applications
may cause serious failures and hence should be avoided. In many
cryptographic schemes, the most time consuming basic arithmetic
operation is the finite field multiplication and its hardware
implementation for bit parallel operation may require millions of
logic gates. Some of these gates may become faulty in the field

due to natural causes or malicious attacks, which may lead to the
generation of erroneous outputs by the multiplier. New
architectures are developed to detect erroneous outputs caused by
certain types of faults in bit-serial polynomial basis multipliers
and digit-serial normal basis multipliers over finite fields of
characteristic two. In particular, parity prediction schemes are
developed for detecting errors due to single and certain multiple
stuck-at faults.

Keywords
 Finite fields, Polynomial basis, Normal basis, Error detection

1. INTRODUCTION

With the rapid expansion of the Internet and wireless
communications, more and more digital systems are becoming
increasingly equipped with some form of cryptosystems to
provide various kinds of data security. Many such cryptosystems
rely on computations in very large finite fields and require fast
computations in the fields. Finite field arithmetic operations are

also used in error control coding, VLSI testing, and digital signal
processing. To satisfy the high speed requirements of many such
applications, there is a need to develop an efficient architecture
for finite field multiplication which is suitable for VLSI
implementation.
A fault-tolerant system is one that can continue the correct
performance of its specified tasks in the presence of hardware
and/or software faults. Fault detection is the process of

recognizing that a fault has occurred. Fault detection is often
required before any recovery procedure can be implemented.
Recently a number of schemes have been developed for the
detection of errors in hardware implementation of some
arithmetic operations, which have applications in cryptography.
Among the basic arithmetic operations over finite fields GF(2m),
multiplication is the one which has received the most attention in
the literature. This is mainly because the implementation of a
multiplier is much more complex compared to a finite field adder

and, by using a multiplication operation repeatedly one can
perform other difficult field operations, such as inversion and

exponentiation, which are extensively used in cryptographic
systems. Finite field multiplication is quite different from its
counterparts in integer and floating-point number systems. For
today’s cryptographic applications, the field size can be very
large and each input of the multiplier can be 160 to 2,048 bits

long. Such a multiplier may require millions of logic gates and it
is possible that errors will occur in the computation due to faults
in the field. If one can have a multiplier which is capable of
detecting error online at the presence of certain faults,
cryptographic schemes can be operated more reliably.
Additionally, a number of schemes for detecting errors in
arithmetic operations of the symmetric block ciphers are there.
These schemes are mostly based on parity and/or residue codes.
Here error detection of the arithmetic operations over binary

extension fields are based on parity prediction technique. These
schemes are more generic in the sense that they can be applied to
different implementations, e.g., bit-serial, bit-parallel and/or
digit-serial, and also they can be applied to different bases for the
field representation such as polynomial, dual and optimal normal
bases. Additionally, the schemes presented here have high error
detection capability, e.g., based on our simulations, the majority
of them have a percentage of error detection higher than 99%

with a moderate amount of redundancies.

2. TRADITIONAL MULTIPLIER

Bit-Parallel Polynomial Basis Multipliers
Let the monic irreducible binary polynomial that defines the field
GF(2m) be

F(z) = zm + fiz
i

of degree m, where fi € GF(2m) for i = 0, 1, …..m - 1. Let α €
GF(2m) be a root of F(z), i.e., F(α) = 0. Then the set {1, α,
α2, ……αm-1} is known as the polynomial (or standard) basis and
each element of GF(2m) can be written with respect to this basis,
i.e., if A is an element of GF(2m), then

A = ai α
i , α € {0,1},

where ais are the coordinates of A with respect to polynomial
basis (PB). For convenience, these coordinates will be denoted in
vector notation as

a =[a0, a1, a2, ……. am-1] T
where T denotes the transposition of a vector.

Let C be the product of any two elements A and B of GF(2m).
Then, C can be obtained with respect to the PB using two steps of
polynomial multiplication and modular reduction as follows:

S = A . B = A. biα
i = bi.(Aαi),

 C = S mod F(α) = bi . ((Aαi)mod F(α))

 = bi . X
(i)

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 5

103

 Where
 X(i)=α . X(i-1) mod F(α), 1 ≤ i ≤ m-1
 And X(0)=A
A traditional bit-parallel architecture for GF(2m) multiplication
using above equation is shown in Fig. 1. It mainly consists of

three types of modules, namely, the sum, pass-thru, and α
modules. The sum module (denoted as a double circle with a plus
inside) is to simply add two GF(2m) elements and it can be
realized in hardware using m two-input XOR gates. The pass-thru
module (denoted as a double circle with a dot inside) is to
multiply a GF(2m) element by a GF(2) element, i.e., if X(i) €
GF(2m) and bi € GF(2) are two inputs to a pass-thru module, then
its output is

bi X
(i)=

In hardware, each pass-thru module consists of m two input AND
gates. In Fig. 1, the third module (i.e., the rectangular shape α
module) multiplies its input, which is an element of GF(2m), by α
and reduces the result modulo F(α). Thus, this module is to
essentially realize in hardware. Since α is a root of F(z).

Fig.1 Multiplication of two elements in GF(2
m
) in polynomial

basis

4.1. FAULT DETECTION STRATEGY
The fault detection strategy is done by parity prediction technique.
This method is shown in Fig. 2, where the CUT (circuit under test)
block can be either a complete finite field multiplier or a part of it,

with A and B as inputs and Y as output, where A,B € GF(2m). In
this figure, the parity generation (PG) block produces the actual

parity of Y, i.e. ,Py= where yi are the coordinates of

Y . The actual parity PG is then compared with the predicted
parity PP using a single XOR gate, as shown in the figure. This

comparison is monitored by an error indicator flag eCUT, where
eCUT = 0 indicates that no error has been detected and eCUT = 1
flags the detection of errors. The parity prediction (PP) block
predicts the parity of the output Y using a function which
depends only on the inputs of the CUT as PP = FCUT(A,B).

Fig 2:Parity prediction technique

The parities of A and B (i.e., pA and pB, respectively) are
available or they can be reliably computed while loading the

coordinates of A and B into the multiplier. Here we assume that
the PP and PG blocks can be made fault-free or any fault in them
can be detected using a suitable mechanism since these blocks are
simple and/or regular. The basic assumptions for the fault model
that we use in the entire paper are: 1) a fault in a logical gate (i.e.,

XOR, AND, etc.) results in one of its inputs or the output being
fixed to either a logic 0 (stuck-at-0 or s-a-0 in short) or a logic 1
(stuck-at-1 or s-a-1), respectively, and 2) a fault can be either
permanent or transient.

3. FAULT DETECTION IN TRADITIONAL

BIT PARALLEL MULTIPLIER

The traditional bit parallel multiplier can be divided in to three
modules namely α module, sum modules and pass through
modules. So we need to develop parity prediction technique for
these three modules.

4.2. Parity Prediction In α Module
Let ω be the Hamming weight of the irreducible polynomial F(z).
Then, f(z) can be written as

F(z)= 1 + zρj + zm

where ρjs are powers of z with fρj = 1, 1 ≤ j ≤ ω-2.Then, we
have 1 ≤ρ1 < ρ2 < ρ3 < ……..ρ ω-2 and above equation can be

written as
Xi = aρj-1 + am-1 i =ρj, 1≤ j ≤ ω-2

 ai-1 mod m otherwise

Using the above equation the α module diagram is shown in fig 3.

Fig 3: The α module

Let X = A . modF(α) and PA = ∑ ai is the parity bit of A then the
predicted parity bit of X is given by

^Px = pa + am-1 € GF(2)

4.3. Parity Prediction In Sum And Pass-Thru

Module
The sum module is a finite field adder which produces the sum of
the two elements of GF(2m) at its output. Let A = (am-1 , a1,
a0) and B=(bm-1,……. b1, b0) be two inputs to this module. Then,
the output is D=(A + B)= (dm-1,…….. d1, d0) where di= ai + bi
for 0 ≤ i ≤ m-1. Then, the parity bit of the output pd =

 di is predicted by

 Pd = Pa + Pb

The pass-thru module of Fig. 1 multiplies an element A € GF(2m)
by a single bit b € GF(2) which can be implemented using m
two-input AND gates. Let G € GF(2m) be the output of such a
module with inputs of A and b. Thus, the output of this module G

is zero when b = 0 and A when b = 1.Then the parity of the
output is predicted by

 Pg = b . Pa

m m

α

A X

x

1
aρ

1-1

x

0
a

0

aρω-2

am-1
xm-

1

X
(m-1)

bm

-1

m

b1 b2
b(

0)

X(

0)

X(

1)

X(2

)
 α α α

*

*

*

*

+

+

+

C=A

B

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 5

104

Thus combining the above two results ie parity prediction of
the α module and the parity prediction technique used in the sum
and the pass-through modules the architecture of the bit parallel
multiplier is modified as shown below.

Fig 4: Multiplication of two elements using fault detection

capability.
Since the output of any gate of the shaded pass-thru and sum
modules in the fig 4 is connected to only one gate, the single
stuck fault at any gate of these modules changes only one
coordinate of the output of this multiplier. Therefore, a circuit
that compares the actual parity PC with the predicted ^PC to
generate ^e, which is shown at the bottom end of the figure, is
capable of detecting any single fault in the shaded sum and pass-

thru modules of the figure. Also, it is clear that any single fault in
any XOR gate in the parity generation circuit PC and the very last
XOR gate can be detected by ^e. It is noted that such a
comparison circuit is implemented using a binary tree of XOR
gates which is done by the last three XOR gates at the bottom end
of the figure.

5. FAULT DETECTION IN BIT SERIAL

MULTIPLICATION

There are two types of bit-serial, namely, LSB-first and MSB-
first, multipliers. Below, we consider these multipliers and

present their fault detection architectures.

5.1 LSB First multiplier
The PB multiplier of can be realized in a bit-serial fashion as
shown in fig 5. In this multiplier structure, both X = (xm-1 ….. x1,
x0) and Y = (ym-1 …… y1, y0) are m bit registers. Let X(n) and
Y(n) denote the contents of X and Y at the nth, 0 ≤ n≤ m, clock
cycle, respectively. Suppose the X register is initialized with A,
i.e., X(0) = A, then the content of this register at the nth clock
cycle is X(n) = X(n), where X(n) € GF(2m). Also, suppose that the
register Y is initially cleared, i.e., Y (0) = 0. Then, one can obtain

the content of Y at the first clock cycle as Y(1) = b0A and, in

general, at the nth clock cycle as Y(n) = b0A + biX(i), 1 <

n ≤ m .Noting the fact that X(n) = X(n), one can determine that,
after m clock cycles, Y contains C = AB € GF(2m), i.e., Y(m) = C.
Since the coordinates of B enter the multiplier from the least
significant bit (LSB), i.e., b0, this multiplier is referred to as the

LSB first bit-serial multiplier.

Fig 5: Multiplication of two elements in LSB multiplier

In order to detect fault two m-bit registers X = (xm-1,….. x1 ,x0)
and Y = (ym-1, …… y1, y0) are replaced with (m + 1) -bit

registers X’ = (xm, xm-1…. x1, x0) and Y’=(ym, ym-1,… y1,
y0).Now we initialize X’ and Y’ with X’(0) =(pA,am-
1,……,a1,a0) and Y’(0)=(0,0,…..,0,0).After m clock cycles and
in fault-free situation, the output of Y’ will be Y’(m)=(pC, cm-

1,…..,c1,c0) and e = ci + Pc = 0

If a single fault (permanent or transient) occurs in the α’ module
and the register X’ (except the xm bit and the XOR gate
connected to it) in then, in each clock cycle, the number of
erroneous bits of Y’ may increase. This is because, in the α’
module , there is a cyclic shift with addition operation and it may
increase the number of errors. Thus, at the end of the mth clock
cycle, there is a 50 percent chance that this fault is detected. If the

single fault occurs in other parts of (including input and output of
xm, the output of the shaded pass-thru, and the sum modules as
well as Y’ and the PG circuit), then, at the end of the mth clock
cycle, at most one bit of the register Y’ will be in error and, thus,
it will be detected by ^e. As a result, the total fault coverage is
greater than 50 percent.
The probability of fault detection in the bit-serial multiplier can
be increased by checking the contents of two registers in every

clock cycle. Consider the above fig 5 before the triggering of the
(n+1)th clock cycle. At this time ,the input and output of the X
register are X(n+1) and X(n), respectively and using the above
theorem the α module we have

Px(n+1) = Px(n) + xm-1(n) = xi(n)

where xi(n) € GF(2) is the ith coordinate of X(n). In order to
compare ^pX(n) with the actual value of pX(n), we need to store
^pX(n+1) into a 1-bit register DX. Then, after the nth clock cycle,

X(n) appears at the output of register X and the actual value of
pX(n) is evaluated and compared with the value of DX, i.e.,
^pX(n), using the last XOR gate of figure that generates ^eX(n). a
similar expression can be obtained for the Y register.Since Y(n+1)
=Y(n)+ bnX(n), then

Py(n+1) = Py(n) + bnPx(n)

This can be implemented and it is delayed by a 1-bit register DY

to obtain ^pY (n). Then it is compared with the actual value.pY(n).
If no fault occurs, after the first clock cycle, both ^e x(n) = ^px(n) +
p x(n) and ^ey(n) = ^py(n) + Py(n) should be 0 and remain until the
last clock cycle, ie ^eX(n) = 0.and ^eY (n)= 0 for 1 ≤ n≤ m the
existence of a fault is detected. For the cryptographic applications
where m is a large number, it is most likely that either ^eX(n) or
^eY(n) is 1 in at least one clock cycle if a single permanent fault
occurs. It can be seen that the probability of fault coverage here is

more.

5.2 MSB FIRST MULTIPLIER
The PB multiplication of A and B in can also be written as
 C=(((bm-1Aα + bm-2A)α +bm-3A) +……+b1A)α+b0A.
This equation can be realized by the below architecture, which is
known as the most significant bit (MSB) first bit-serial multiplier,

e

PPx(m-1)

Px(m-1)

X(m-1)

b1 bm-2
bm-1 b0

PC

e
-1

C PC

PA
m+

1

A

+

*

α

’

α

’

α

’

*

*

*

+

+

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 5

105

the registers U and V are initialized with A=(am-1,…..,a1,a0) and
0=(0,…..0), respectively.

Fig 6: Multiplication of two elements in MSB multiplier

Let V(n) denotes the content of V=(vm-1,…….,v1,v0) at the nth, 0
≤ n ≤ m, clock cycle. Then we can see that V(0)=0,V(1)=bm-

1A,V(2)=bm-1Aα+bm-2A,…
 V(n+1)=V(n)α + bm-n-1A, 0 ≤ n ≤ m-1

Thus after the mth clock cycle,V(m)=C,ie the register contains the
coordinates of C. Now to detect the fault its α modules, sum and
pass through modules are replaced with the fault detecting

corresponding modules we used for the bit parallel and LSB

multiplier.

6. DIGIT-SERIAL NORMAL BASIS

MULTIPLIERS

Consider an element B which belongs to the Normal Basis in
GF(2m), where B = (b0,b1,b2....bm-1). Then the register B in the

architecture diagram shown below contains
Bi = B2^(-di) = (boα,b1α

2,.....bm-1α
2^(m-1))

Consider an element A be a normal basis element in GF(2m). Let
n = [m/d], where d is the selected digit size. Then the field
element can be represented by

 A = Ai
2^(id)

Where

 Ai = aid+jα
2^j

Here the partial multiplier can be found by two ways. One by
using Sunar and Koc multiplier method and other by Redundant

basis method.

6.1 Sunar And Koc Multiplier Method
Here the multiplication takes place by three steps.

1) Convert the elements represented in the basis M to the
the basis N using the permutation.

2) Multiply the elements in the basis N.

3) Convert the result back to the basis M using the inverse
permutation.

Conversion of M basis elements to N basis elements.

Assume that the element A belongs to the basis M and its going
to be converted to basis N and A in basis M is given as A=
a’1β+a’2β

2+a’3β
4+……a’mβ2^(m-1). After the conversion A will be

given as A=a1β+a2β2+a3β3+…..amβm. So the elements are
converted as aj=a’i as

j = k if k € [1,m]
 (2m+1) if k € [m+1, 2m]

where k=2i-1 mod (2m+1) for i=1,2,….m

Multiply the elements in the basis N

The conversion does not requires any gate. But the

multiplication requires the gate. So the elements represented in N
basis are

A = aiβi = ai (∂
i + ∂-i)

B = biβi = bi (∂
i + ∂-i)

Now C=A.B given by

C = A . B = (ai(∂i + ∂-i)) (bj(∂i + ∂-i))

Here it is divided in to three parts C1,D1,D2 where C1

contains elements of ∂i-j and D1,D2 contains elements of ∂i+j. So
C1,D1 and D2 can be calculated and represented in table format
by
Table 1. Contents of C1

Table 2. Contents of D1

β1 β2 β3 βm-2 βm-1 βm

a1b1

a1b2

a2b1

…

…

a1bm-3

a2bm-3

..

..

 am-3b1

a1bm-1

a2bm-3

..

..

am-3b2

am-2b1

a1bm-1

a2bm-2

..

..

am-3b3

am-2b2

am-1b1

Table 3. Contents of D2

β1 β2 β3 ... βm-2 βm-1 βm

ambm am-1bm

ambm-1

am-2bm

am-1bm-1

am bm-2

...

...

...

a3bm

a4bm-1

a5bm-2

. . .

am-1b4

am b3

a2bm

a3bm-1

a4bm-2

. . .

am-2b4

am-1b3

amb2

a1bm

a2bm-1

a3bm-2

. . .

am-3b4

am-2b3

amb1

So the final product can be obtained as C = C1+ D1+ D2. Now
we want to reconvert this which is in N basis to M basis using the
same permutations.

6.2 REDUNDANT BASIS MULTIPLIER

METHOD.
Let define Ci = AiBi then the product of Ci can be computed as

 Ci =aid αBi + (a(1+id)αBi

2^-1)2 +(a(d-1+id) α Bi
2^-(d-1)

)
2^(d-1)

Now the αB is found by converting the B to redundant basis.

β1 β2 . . βm-2 βm-1 βm

a1b2 + a2b1

a2b3 + a3b2

. . .

am-2bm-1+am-

1bm-1

am-1bm+ ambm-1

a1b3 + a3b1

a2b4 +a4b2

. . .

am-

2bm+ambm-2

. .

. .

a1bm-1 + am-

1b1

a2bm + amb2

a1bm +

amb1

m+1

U

m+1

A
*

PA

bm-1, . . . ,b1, b0

V
pC

pC
α

’

+

e

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 5

106

αB = (b0, F(2^j) + b0, F(0) α
2^j)

Where
b0,F(j) = bF(j-1) + bF(j-2m) + . . . + bF(j-2^(m(t-1)))

Here the bF() is the representation of B in redundant basis. If

A=(a0,a1,a2……am-1) indicate a normal basis elements in GF(2m),
then the redundant basis can be obtained by F(2i2mj mod p)=i
where 0≤ I ≤ m-1 and 0≤ j ≤t-1. For eg. If m=5 then p=2m+1=11

and if t=2 then the redundant basis representation becomes

aF(1)=a0 aF(2)=a1
aF(3)=a3 aF(4)=a2
aF(5)=a4 aF(6)=a4
aF(7)=a2 aF(8)=a3
aF(9)=a1 aF(10)=a0

In the initial step, both NB elements A and B2^(-d(n-1)) are stored in
registers A and B, respectively. During first round an-1 and Bn-1 is
computed and then corresponding cn-1 is calculated and stored in

register C. In next cycle both registers B and C must be cyclically
shifted to the left and the right by d digits, respectively. The
result produced is added to the register C in just before cycle.
After n iteration, the final register c can obtain the whole normal
basis multiplication. The architecture is shown in the fig 8.

7. PARITY PREDICTION IN DIGIT-

SERIAL NORMAL BASIS

MULTIPLIER
The digit-serial normal basis multiplier shown in the fig. 7
mainly consists of a partial multiplier and a sum module. So the
parity prediction of both this partial multiplier and the sum

modules should be found out.
1) Parity prediction of partial multiplier for computing

AiBi
The partial multiplier consist of a α module and computes the
value of αB. Depending upon this computation the calculation of
parity also changes. Here we can compute this by using
multiplication of Gaussian Normal basis of type t. Ie if the value

of t=1 it becomes optimal normal basis of type I and if the value
of t=2 it becomes optimal normal basis of type II. So the parity is
different for both the type. If its value is computed by t=1 ie
optimal normal basis of type I then the parity is given by

 PαB^i = Pb + bm/2 + i
 If its value of t=2 ie optimal normal basis of type II then the

parity is given by

 PαB^i = b i { if ai = 1}

Thus depending upon the type of computation that is used to
perform the parity must be calculated.

2) Parity prediction of the sum module
The main functions taking place in this modules is the addition

and the shifting. Here the shifting will not cause any change in
the parity. So the parity is caused only due to addition. So the
parity of this module is calculated by

Pc = (((pcn-1) + pcn-2) + ...) + Pc0 So when the parity
prediction is incorporated the new architecture

becomes

Fig 8: Parity prediction in Digit-Serial normal basis

multiplier

8. RESEARCH WORK PROPOSED

The time and area overhead required for the additional parity
prediction is less. The parity predictions used in these multipliers
are capable of detecting error online at the presence of
certain faults, which make cryptographic schemes more reliable.
These parity prediction schemes predict errors due to single and
certain multiple faults during the multiplication operation in the
field. But in case of multiple faults due to malicious attacks or

natural causes that result in an even number of errors at the
output, the proposed structures are unable to detect these faults.
The parity Prediction also cannot be used for detecting soft errors.
So some other technique can be used to detect errors and which is
more reliable like cyclic redundancy check (CRC), Hamming
codes etc. We can also relay on the some of the algorithms that
are using in the VLSI testing field like the fan algorithm. Apart
from that these techniques can also be implemented in different

kind of multipliers in both the normal and polynomial basis.

9. CONCLUSION
The proposed parity prediction technique will make the
cryptographic systems more reliable as they are checking whether
there is an error while the entire system is working. So works are
going on to implement some error detection techniques in all
types of cryptographic multipliers

10. REFERENCES

[1] S. Fenn, M. Gossel, M Benaissa, and D. Taylor, “On Line
Error Detection for Bit Serial Multipliers in GF(2m).”
Journal of electronic Testing: Theory and Applications,
vol.13, pp.29-40, 1998

[2] B. Sunar and C. K. Koc “An Efficient Optimal Normal

Basis Type II Multiplier.” IEEE Trans.Computers,50(1),
83-87,Jan.2001

[3] Siavash Bayat-Sarmadi and M. Anwar Hasan “On
Concurrent Detection of Errors in Polynomial Basis
Multiplication” IEEE transactions on very large scale
integration (vlsi) systems, vol. 15, no. 4, April 2007

[4] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri,
“Error Analysis and Detection Procedures for a Hardware

Implementation of the Advanced Encryption Standard,”
IEEE Trans. Computers, special issue on cryptographic
hardware and embedded systems, vol. 52, no. 4, pp. 492-
505, Apr. 2003

[5] Arash Reyhani-Masoleh and M. Anwar Hasan “Low
complexity bit parallel architectures for polynomial basis
multipliers over GF(2m).”IEEE
Trans.Computers,vol.53,no.8,pp.945-959,AUG.2004

