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ABSTRACT 
With significant advances in wired and wireless technologies and 
also increased shrinking in the size of VLSI circuits, many 

devices have become very large because they need to contain 
several large units. This large number of gates and in turn large 
number of transistors causes the devices to be more prone to 
faults. These faults especially in sensitive and critical applications 
may cause serious failures and hence should be avoided. In many 
cryptographic schemes, the most time consuming basic arithmetic 
operation is the finite field multiplication and its hardware 
implementation for bit parallel operation may require millions of 
logic gates. Some of these gates may become faulty in the field 

due to natural causes or malicious attacks, which may lead to the 
generation of erroneous outputs by the multiplier. New 
architectures are developed to detect erroneous outputs caused by 
certain types of faults in bit-serial polynomial basis multipliers 
and digit-serial normal basis multipliers over finite fields of 
characteristic two. In particular, parity prediction schemes are 
developed for detecting errors due to single and certain multiple 
stuck-at faults. 
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1. INTRODUCTION 

With the rapid expansion of the Internet and wireless 
communications, more and more digital systems are becoming 
increasingly equipped with some form of cryptosystems to 
provide various kinds of data security. Many such cryptosystems 
rely on computations in very large finite fields and require fast 
computations in the fields. Finite field arithmetic operations are 

also used in error control coding, VLSI testing, and digital signal 
processing. To satisfy the high speed requirements of many such 
applications, there is a need to develop an efficient architecture 
for finite field multiplication which is suitable for VLSI 
implementation. 
A fault-tolerant system is one that can continue the correct 
performance of its specified tasks in the presence of hardware 
and/or software faults. Fault detection is the process of 

recognizing that a fault has occurred. Fault detection is often 
required before any recovery procedure can be implemented. 
Recently a number of schemes have been developed for the 
detection of errors in hardware implementation of some 
arithmetic operations, which have applications in cryptography. 
Among the basic arithmetic operations over finite fields GF(2m), 
multiplication is the one which has received the most attention in 
the literature. This is mainly because the implementation of a 
multiplier is much more complex compared to a finite field adder 

and, by using a multiplication operation repeatedly one can 
perform other difficult field operations, such as inversion and  

 
exponentiation, which are extensively used in cryptographic 
systems. Finite field multiplication is quite different from its 
counterparts in integer and floating-point number systems. For 
today’s cryptographic applications, the field size can be very 
large and each input of the multiplier can be 160 to 2,048 bits 

long. Such a multiplier may require millions of logic gates and it 
is possible that errors will occur in the computation due to faults 
in the field. If one can have a multiplier which is capable of 
detecting error online at the presence of certain faults, 
cryptographic schemes can be operated more reliably. 
Additionally, a number of schemes for detecting errors in 
arithmetic operations of the symmetric block ciphers are there. 
These schemes are mostly based on parity and/or residue codes. 
Here error detection of the arithmetic operations over binary 

extension fields are based on parity prediction technique. These 
schemes are more generic in the sense that they can be applied to 
different implementations, e.g., bit-serial, bit-parallel and/or 
digit-serial, and also they can be applied to different bases for the 
field representation such as polynomial, dual and optimal normal 
bases. Additionally, the schemes presented here have high error 
detection capability, e.g., based on our simulations, the majority 
of them have a percentage of error detection higher than 99% 

with a moderate amount of redundancies. 

2. TRADITIONAL MULTIPLIER 

Bit-Parallel Polynomial Basis Multipliers 
Let the monic irreducible binary polynomial that defines the field 
GF(2m) be 

F(z) =  zm  + fiz
i                              

of degree m, where fi € GF(2m) for i = 0, 1, …..m - 1. Let α € 
GF(2m) be a root of F(z), i.e., F(α) = 0. Then the set {1, α, 
α2, ……αm-1} is known as the polynomial (or standard) basis and 
each element of GF(2m) can be written with respect to this basis, 
i.e., if A is an element of GF(2m), then  

A =  ai α
i ,        α € {0,1}, 

where ais are the coordinates of A with respect to polynomial 
basis (PB). For convenience, these coordinates will be denoted in 
vector notation as 

a =[ a0, a1, a2, ……. am-1] T 
where T denotes the transposition of a vector. 

Let C be the product of any two elements A and B of GF(2m). 
Then, C can be obtained with respect to the PB using two steps of 
polynomial multiplication and modular reduction as follows:
    

S = A . B = A. biα
i = bi.(Aαi), 

 C = S mod F(α) = bi . ((Aαi)mod F(α)) 

              = bi . X
(i) 
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 Where 
  X(i)=α . X(i-1) mod F(α),  1 ≤  i ≤ m-1 
   And X(0)=A   
A traditional bit-parallel architecture for GF(2m) multiplication 
using above equation is shown in Fig. 1. It mainly consists of 

three types of modules, namely, the sum, pass-thru, and α 
modules. The sum module (denoted as a double circle with a plus 
inside) is to simply add two GF(2m) elements and it can be 
realized in hardware using m two-input XOR gates. The pass-thru 
module (denoted as a double circle with a dot inside) is to 
multiply a GF(2m) element by a GF(2) element, i.e., if X(i) € 
GF(2m) and bi € GF(2) are two inputs to a pass-thru module, then 
its output is 

bi X
(i)=   

In hardware, each pass-thru module consists of m two input AND 
gates. In Fig. 1, the third module (i.e., the rectangular shape α 
module) multiplies its input, which is an element of GF(2m), by α 
and reduces the result modulo F(α). Thus, this module is to 
essentially realize in hardware. Since α is a root of F(z). 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1 Multiplication of two elements in GF(2
m
) in polynomial 

basis 

 

4.1. FAULT DETECTION STRATEGY 
The fault detection strategy is done by parity prediction technique. 
This method is shown in Fig. 2, where the CUT (circuit under test) 
block can be either a complete finite field multiplier or a part of it, 

with A and B as inputs and Y as output, where A,B € GF(2m). In 
this figure, the parity generation (PG) block produces the actual 

parity of Y,   i.e. ,Py=  where yi are the coordinates of 

Y . The actual parity PG is then compared with the predicted 
parity PP using a single XOR gate, as shown in the figure. This 

comparison is monitored by an error indicator flag eCUT, where 
eCUT = 0 indicates that no error has been detected and eCUT = 1 
flags the detection of errors. The parity prediction (PP) block 
predicts the parity of the output Y using a function which 
depends only on the inputs of the CUT as PP = FCUT(A,B).  

 
Fig 2:Parity prediction technique 

 
The parities of A and B (i.e., pA and pB, respectively) are 
available or they can be reliably computed while loading the 

coordinates of A and B into the multiplier. Here we assume that 
the PP and PG blocks can be made fault-free or any fault in them 
can be detected using a suitable mechanism since these blocks are 
simple and/or regular. The basic assumptions for the fault model 
that we use in the entire paper are: 1) a fault in a logical gate (i.e., 

XOR, AND, etc.) results in one of its inputs or the output being 
fixed to either a logic 0 (stuck-at-0 or s-a-0 in short) or a logic 1 
(stuck-at-1 or s-a-1), respectively, and 2) a fault can be either 
permanent or transient.  

3. FAULT DETECTION IN TRADITIONAL 

BIT PARALLEL MULTIPLIER 

The traditional bit parallel multiplier can be divided in to three 
modules namely α module, sum modules and pass through 
modules. So we need to develop parity prediction technique for 
these three modules. 

 

4.2. Parity Prediction In α Module 
Let ω be the Hamming weight of the irreducible polynomial F(z). 
Then, f(z) can be written as  

F(z)= 1 + zρj + zm 

where ρjs are powers of z with fρj = 1,    1  ≤  j ≤  ω-2.Then, we 
have 1 ≤ρ1 < ρ2 < ρ3 < ……..ρ ω-2 and above equation can be 

written as 
Xi =        aρj-1 + am-1 i =ρj, 1≤ j ≤ ω-2 

       ai-1 mod m  otherwise 
 

 
Using the above equation the α module diagram is shown in fig 3. 

 
                                          

 

 

 

 

 

 

 

 

 

 

Fig 3: The α module 

 
Let X = A . modF(α) and PA = ∑ ai is the parity bit of A then the 
predicted parity bit of X is given by 

^Px = pa + am-1 € GF(2) 
 

4.3. Parity Prediction In Sum And Pass-Thru    

Module  
The sum module is a finite field adder which produces the sum of 
the two elements of GF(2m) at its output. Let A = (am-1 , ....... a1, 
a0) and B=(bm-1,……. b1, b0) be two inputs to this module. Then, 
the output is D=( A + B)= (dm-1,…….. d1, d0) where di= ai + bi  
for 0 ≤ i ≤ m-1. Then, the parity bit of the output  pd = 

 di  is predicted by 

  
  Pd = Pa + Pb 

The pass-thru module of Fig. 1 multiplies an element A € GF(2m) 
by a single bit b € GF(2) which can be implemented using m 
two-input AND gates. Let G € GF(2m) be the output of such a 
module with inputs of A and b. Thus, the output of this module G 

is zero when b = 0 and A when b = 1.Then the parity of the 
output is predicted by 

  
  Pg = b . Pa 
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Thus combining the above two results ie parity prediction of 
the α module and the parity prediction technique used in the sum 
and the pass-through modules the architecture of the bit parallel 
multiplier is modified as shown below. 

 

 

 

 

 

 

 

 

 

 

 
Fig 4: Multiplication of two elements using fault detection 

capability. 
Since the output of any gate of the shaded pass-thru and sum 
modules in the fig 4 is connected to only one gate, the single 
stuck fault at any gate of these modules changes only one 
coordinate of the output of this multiplier. Therefore, a circuit 
that compares the actual parity PC with the predicted ^PC to 
generate ^e, which is shown at the bottom end of the figure, is 
capable of detecting any single fault in the shaded sum and pass-

thru modules of the figure. Also, it is clear that any single fault in 
any XOR gate in the parity generation circuit PC and the very last 
XOR gate can be detected by ^e. It is noted that such a 
comparison circuit is implemented using a binary tree of XOR 
gates which is done by the last three XOR gates at the bottom end 
of the figure. 

5. FAULT DETECTION IN BIT SERIAL 

MULTIPLICATION  

There are two types of bit-serial, namely, LSB-first and MSB-
first, multipliers. Below, we consider these multipliers and 

present their fault detection architectures. 

 

5.1 LSB First multiplier 
The PB multiplier of can be realized in a bit-serial fashion as 
shown in fig 5. In this multiplier structure, both X = ( xm-1 ….. x1, 
x0) and Y = (ym-1 …… y1, y0) are m bit registers. Let X(n) and 
Y(n) denote the contents of X and Y at the nth, 0 ≤ n≤ m, clock 
cycle, respectively. Suppose the X register is initialized with A, 
i.e., X(0) = A, then the content of this register at the nth clock 
cycle is X(n) = X(n), where X(n) €  GF(2m). Also, suppose that the 
register Y is initially cleared, i.e., Y (0) = 0. Then, one can obtain 

the content of Y at the first clock cycle as Y(1) = b0A and, in 

general, at the nth clock cycle as Y(n) = b0A +   biX(i), 1 < 

n ≤ m  .Noting the fact that X(n) = X(n), one can determine that, 
after m clock cycles, Y contains C = AB € GF(2m), i.e., Y(m) = C. 
Since the coordinates of B enter the multiplier from the least 
significant bit (LSB), i.e., b0, this multiplier is referred to as the 

LSB first bit-serial multiplier. 

 

 
Fig 5: Multiplication of two elements in LSB multiplier 

In order to detect fault two m-bit registers X = (xm-1,….. x1 ,x0) 
and Y = (ym-1, ……  y1, y0) are replaced with (m + 1) -bit 

registers X’ = (xm, xm-1…. x1, x0) and Y’=( ym, ym-1,… y1, 
y0).Now we initialize X’ and Y’ with X’(0) =(pA,am-
1,……,a1,a0) and Y’(0)=(0,0,…..,0,0).After m clock cycles and 
in fault-free situation, the output of Y’ will be Y’(m)=(pC, cm-

1,…..,c1,c0) and e = ci +  Pc = 0 

If a single fault (permanent or transient) occurs in the α’ module 
and the register X’ (except the xm bit and the XOR gate 
connected to it) in then, in each clock cycle, the number of 
erroneous bits of Y’ may increase. This is because, in the α’ 
module , there is a cyclic shift with addition operation and it may 
increase the number of errors. Thus, at the end of the mth clock 
cycle, there is a 50 percent chance that this fault is detected. If the 

single fault occurs in other parts of (including input and output of 
xm, the output of the shaded pass-thru, and the sum modules as 
well as Y’ and the PG circuit), then, at the end of the mth clock 
cycle, at most one bit of the register Y’ will be in error and, thus, 
it will be detected by ^e. As a result, the total fault coverage is 
greater than 50 percent. 
The probability of fault detection in the bit-serial multiplier can 
be increased by checking the contents of two registers in every 

clock cycle. Consider the above fig 5 before the triggering of the 
(n+1)th clock cycle. At this time ,the input and output of the X 
register are X(n+1) and X(n), respectively and using the above 
theorem the α module we have  

Px(n+1) = Px(n) + xm-1(n) = xi(n) 

 
where xi(n) € GF(2) is the ith coordinate of X(n). In order to 
compare ^pX(n) with the actual value of pX(n), we need to store 
^pX(n+1) into a 1-bit register DX. Then, after the nth clock cycle, 

X(n) appears at the output of register X and the actual value of 
pX(n) is evaluated and compared with the value of DX, i.e., 
^pX(n), using the last XOR gate of figure that generates ^eX(n). a 
similar expression can be obtained for the Y register.Since Y(n+1) 
=Y(n)+ bnX(n), then 

 
Py(n+1) = Py(n) + bnPx(n) 

This can be implemented and it is delayed by a 1-bit register DY 

to obtain ^pY (n). Then it is compared with the actual value.pY(n). 
If no fault occurs, after the first clock cycle, both ^e x(n) = ^px(n) + 
p x(n) and ^ey(n) = ^py(n) + Py(n)  should be 0 and remain until the 
last clock cycle, ie  ^eX(n) = 0.and ^eY (n)= 0 for 1 ≤ n≤ m the 
existence of a fault is detected. For the cryptographic applications 
where m is a large number, it is most likely that either ^eX(n) or 
^eY(n) is 1 in at least one clock cycle if a single permanent fault 
occurs. It can be seen that the probability of fault coverage here is 

more. 
 

5.2 MSB FIRST MULTIPLIER 
The PB multiplication of A and B in can also be written as 
 C=(((bm-1Aα + bm-2A)α +bm-3A) +……+b1A)α+b0A.  
This equation can be realized by the below architecture, which is 
known as the most significant bit (MSB) first bit-serial multiplier, 
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the registers U and V are initialized with A=(am-1,…..,a1,a0) and 
0=(0,…..0), respectively.  
               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 6: Multiplication of two elements in MSB multiplier 
 

Let V(n) denotes the content of V=(vm-1,…….,v1,v0) at the nth, 0 
≤ n ≤ m, clock cycle. Then we can see that V(0)=0,V(1)=bm-

1A,V(2)=bm-1Aα+bm-2A,… 
  V(n+1)=V(n)α + bm-n-1A,   0 ≤ n ≤ m-1 

Thus after the mth clock cycle,V(m)=C,ie the register contains the 
coordinates of C. Now to detect the fault its α modules, sum and 
pass through modules are replaced with the fault detecting 

corresponding modules we used for the bit parallel and LSB 

multiplier.  

6. DIGIT-SERIAL NORMAL BASIS 

MULTIPLIERS 

Consider an element B which belongs to the Normal Basis in 
GF(2m), where B = (b0,b1,b2....bm-1). Then the register B in the 

architecture diagram shown below contains 
Bi = B2^(-di) = (boα,b1α

2,.....bm-1α
2^(m-1)) 

Consider an element A be a normal basis element in GF(2m). Let 
n = [m/d], where d is the selected digit size. Then the field 
element can be represented by  

  A =  Ai
2^(id) 

Where 

  Ai =  aid+jα
2^j 

Here the partial multiplier can be found by two ways. One by 
using Sunar and Koc multiplier method and other by Redundant 

basis method. 

 

6.1 Sunar And Koc Multiplier Method 
Here the multiplication takes place by three steps. 

1) Convert the elements represented in the basis M to the 
the basis N using the permutation. 

2) Multiply the elements in the basis N. 

3) Convert the result back to the basis M using the inverse 
permutation. 

 
Conversion of M basis elements to N basis elements. 

Assume that the element A belongs to the basis M and its going 
to be converted to basis N and A in basis M is given as A= 
a’1β+a’2β

2+a’3β
4+……a’mβ2^(m-1). After the conversion A will be 

given as A=a1β+a2β2+a3β3+…..amβm. So the elements are 
converted as aj=a’i as 
 
 

 

j =    k        if  k €  [1,m] 
                       (2m+1) if  k € [m+1, 2m] 
 

 
where k=2i-1 mod (2m+1) for i=1,2,….m 

 
Multiply the elements in the basis N 
 
The conversion does not requires any gate. But the 

multiplication requires the gate. So the elements represented in N 
basis are 

A = aiβi  =    ai (∂
i + ∂-i) 

B =  biβi  =     bi (∂
i + ∂-i) 

 
Now C=A.B given by 
 

C = A . B = (  ai(∂i + ∂-i ) )  ( bj(∂i + ∂-i) ) 

 
Here it is divided in to three parts C1,D1,D2 where C1 

contains elements of ∂i-j and D1,D2 contains elements of ∂i+j. So 
C1,D1 and D2 can be calculated and represented in table format 
by 
Table 1. Contents of C1 

 

 

Table 2. Contents of D1 

β1 β2 β3  βm-2 βm-1 βm 

 

 

 

 

 

 

a1b1 

 

 

 

 

 

a1b2 

a2b1 

 

 

 

 

… 

… 

 

 

 

 

a1bm-3 

a2bm-3 

..  

.. 

 am-3b1 

 

a1bm-1 

a2bm-3 

.. 

.. 

am-3b2 

am-2b1 

a1bm-1 

a2bm-2 

.. 

.. 

am-3b3 

am-2b2 

am-1b1 

 

Table 3. Contents of D2 

β1 β2 β3 ... βm-2 βm-1 βm 

ambm am-1bm  

ambm-1 

am-2bm 

am-1bm-1 

am bm-2 

 

 

 

... 

... 

... 

 

 

 

a3bm 

a4bm-1 

a5bm-2 

. . . 

am-1b4 

am b3 

a2bm 

a3bm-1 

a4bm-2 

. . . 

am-2b4 

am-1b3 

amb2 

a1bm  

a2bm-1 

a3bm-2 

. . . 

am-3b4 

am-2b3 

amb1 

 
So the final product can be obtained as  C = C1+ D1+ D2. Now 
we want to reconvert this which is in N basis to M basis using the 
same permutations. 

 

6.2 REDUNDANT BASIS MULTIPLIER 

METHOD. 
Let define Ci = AiBi then the product of Ci can be computed as  

 
      Ci =aid αBi + (a(1+id)αBi

2^-1)2 + ......( a(d-1+id) α Bi
2^-(d-1)

 ) 
2^(d-1) 

Now the αB is found by converting the B to redundant basis. 

β1    β2   . .  βm-2 βm-1 βm 

a1b2 + a2b1 

a2b3 + a3b2 

. . . 

am-2bm-1+am-

1bm-1 

am-1bm+ ambm-1 

a1b3 + a3b1 

a2b4 +a4b2 

. . . 

am-

2bm+ambm-2 

. .  

. .  

a1bm-1 + am-

1b1 

a2bm + amb2 

a1bm + 

amb1 
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αB =    ( b0, F(2^j) + b0, F(0) α
2^j) 

Where 
b0,F(j)  = bF(j-1) + bF(j-2m) + . . . + bF(j-2^(m(t-1))) 

 
Here the bF() is the representation of B in redundant basis. If 

A=(a0,a1,a2……am-1) indicate a normal basis elements in GF(2m), 
then the  redundant basis can be obtained by F(2i2mj mod p)=i 
where 0≤ I ≤ m-1 and 0≤ j ≤t-1. For eg. If m=5 then p=2m+1=11 

and if t=2 then the redundant basis representation becomes 

 
aF(1)=a0    aF(2)=a1     
aF(3)=a3   aF(4)=a2     
aF(5)=a4   aF(6)=a4     
aF(7)=a2    aF(8)=a3     
aF(9)=a1    aF(10)=a0   

In the initial step, both NB elements A and B2^(-d(n-1)) are stored in 
registers A and B, respectively. During first round an-1 and Bn-1 is 
computed and then corresponding cn-1 is calculated and stored in 

register C. In next cycle both registers B and C must be cyclically 
shifted to the left and the right by d digits, respectively. The 
result produced is added to the register C in just before cycle. 
After n iteration, the final register c can obtain the whole normal 
basis multiplication. The architecture is shown in the fig 8.  
 

7. PARITY PREDICTION IN DIGIT-

SERIAL NORMAL BASIS 

MULTIPLIER 
The digit-serial normal basis multiplier shown in the fig. 7 
mainly consists of a partial multiplier and a sum module. So the 
parity prediction of both this partial multiplier and the sum 

modules should be found out. 
1) Parity prediction of partial multiplier for computing 

AiBi  
The partial multiplier consist of a α module and computes the 
value of αB. Depending upon this computation the calculation of 
parity also changes. Here we can compute this by using 
multiplication of Gaussian Normal basis of type t. Ie if the value 

of t=1 it becomes optimal normal basis of type I and if the value 
of t=2 it becomes optimal normal basis of type II. So the parity is 
different for both the type. If its value is computed by t=1 ie 
optimal normal basis of type I then the parity is given by 
 

       PαB^i = Pb + bm/2 + i 
 If its value of t=2 ie optimal normal basis of type II then the 

parity is given by 

        PαB^i  = b i   { if  ai = 1} 

Thus depending upon the type of computation that is used to 
perform the parity must be calculated. 

2) Parity prediction of the sum module 
The main functions taking place in this modules is the addition 

and the shifting. Here the shifting will not cause any change in 
the parity. So the parity is caused only due to addition. So the 
parity of this module is calculated by  

Pc = (((pcn-1) + pcn-2) + ...) + Pc0  So when the parity 
prediction is incorporated the new architecture 

becomes

 
Fig 8: Parity prediction in Digit-Serial normal basis 

multiplier  

8. RESEARCH WORK PROPOSED 

The time and area overhead required for the additional parity 
prediction is less. The parity predictions used in these multipliers 
are capable of  detecting error online at the presence of 
certain faults, which make cryptographic schemes more reliable. 
These parity prediction schemes predict errors due to single and 
certain multiple faults during the multiplication operation in the 
field. But in case of multiple faults due to malicious attacks or 

natural causes that  result in an even number of errors at the 
output, the proposed structures are unable to detect these faults. 
The parity Prediction also cannot be used for detecting soft errors. 
So some other technique can be used to detect errors and which is 
more reliable like cyclic redundancy check (CRC), Hamming 
codes etc. We can also relay on the some of the algorithms that 
are using in the VLSI testing field like the fan algorithm. Apart 
from that these techniques can also be implemented in different 

kind of multipliers in both the normal and polynomial basis.  
 

9. CONCLUSION 
The proposed parity prediction technique will make the 
cryptographic systems more reliable as they are checking whether 
there is an error while the entire system is working. So works are 
going on to implement some error detection techniques in all 
types of cryptographic multipliers 
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