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ABSTRACT 
In this paper, a two-phase hybrid particle swarm optimization 

(PSO) approach is used to solve optimal reactive power dispatch 

(ORPD) problem. In this hybrid approach, PSO is used to explore 

the optimal region and direct search is used as local optimization 

technique for finer convergence. The performance of the proposed 

hybrid approach is demonstrated with the IEEE 30-bus and IEEE 

57-bus systems and also the performance of this hybrid PSO is 

compared with that of PSO, Evolutionary Programming (EP) and 

hybrid EP. The performance of the proposed method is compared 

with the previous approaches reported in the literature. The 

performance of hybrid PSO seems to be better in terms of solution 

quality and computational time.  

Keywords 
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1.INTRODUCTION 

The Optimal Reactive Power Dispatch problem is a non-linear 

optimization problem with many uncertainties. The loads acquire 

reactive power for magnetizing purposes at no load conditions. 

The electric power loads vary from hour to hour. The change of 

load causes variation in the reactive power requirement. The 

reactive power will depend on voltage, so that the variation of 

load causes the variation of voltage. Hence the important 

operating task is to maintain the voltage within the allowable 

range for high quality consumer service. The objective of the 

ORPD is to minimize the system real power loss. This objective 

can be achieved by employing the various reactive compensation 

devices such as automatic voltage regulators (AVRs), tap 

changing transformers and shunt capacitors/reactors [1].   

 

A wide variety of conventional optimization techniques such as 

linear programming, Newton approach, interior point methods 

and dynamic programming [2-6] have been developed to solve 

ORPD problem. Generally these techniques suffer due to 

algorithmic complexity, insecure convergence, and sensitivity to 

initial search point. [7].  

The expert systems [8], fuzzy logic [9], AI approach [10], 

fuzzy linear programming [11], evolutionary programming (EP)  

 

 

 

 

[12], are some of the heuristic techniques that have been used, 

recently, to solve the ORPD problem. The EP is suitable for 

solving global optimization problems like ORPD. The only 

disadvantage of EP is that it takes more computation time [13].  

This paper proposes a hybrid approach to the optimal reactive 

power dispatch problem. Particle Swarm Optimization (PSO) is 

one of the evolutionary computation (EC) technique based on 

swarm intelligence. It is sensitive to the tuning of its parameters 

and has a flexible mechanism to explore a global optimum point 

within a short calculation time [14].   

By employing the PSO initially the solution quality improves 

rapidly; later on obtaining the further improvement is very 

difficult and most of the computation time is spend over obtaining 

small improvements. To overcome this problem PSO is used for 

initial exploration and the local search (LS) technique is 

employed for finer convergence. The convergence of LS 

techniques depends on the initial search point and quickly finds 

the local optimum if the starting point is nearer to the optimum 

[15]. This paper employs direct search (DS) [16] as a LS 

technique. 

The hybrid approach consists of two phases. In phase-1, PSO is 

employed to obtain the optimal region quickly and in phase-2, the 

DS with systematic reduction of the size of the search region [16] 

is used to find the local optimum. To validate the proposed hybrid 

method, it is tested on two IEEE standard test systems having 

non-linear characteristics. The results of the proposed hybrid 

approach are compared with PSO, EP and hybrid EP. The 

comparison exhibits the effectiveness of the proposed approach in 

terms of solution quality and computation time.  

This paper is organized as follows: The reactive power dispatch 

problem is introduced in section 2. The swarm technique is 

briefed in section 3. The direct search technique is introduced in 

section 4. The hybrid approach is explained in section 5. Test 

cases and numerical solutions are presented in section 6. 

Conclusions are drawn in section 7. 

2.PROBLEM FORMATION  

The purpose of the ORPD is to minimize the system real power 

losses. The general ORPD with normal power system condition 

can be formulated [9] as follows:  

The objective function is represented as:  
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where, 

PL  = network real power loss 

nl      = number of lines 

The power loss is a non-linear function of bus voltages, which are 

functions of control variables. The minimization problem is 

subject to operating constraints [9], which are limits on various 

control variables (the inequality constraints) and power flow 

constraints (the equality constraints).  

Equality constraints:   

             

 
(2)     

where, 

 Vi      = voltage magnitude at i
th bus 

Gij, Bij = mutual conductance and susceptance between 

               bus i and j 

θij      = voltage angle difference between bus i and j 

         NB-1     = total number of buses excluding slack bus 

         NPQ      = set of PQ buses 

         Ni      = number of buses 

Inequality Constraints: 

In the control variables, the generator bus voltages (AVR 

operating values) are taken as continuous variable; the transformer 

tap settings are taken as discrete variable and shunt susceptance 

values are taken as binary variable. The load bus voltages and 

reactive power generation Qg are taken as state variables.  

Continuous control variable: 

         (3)  

 

 

 Discrete Control variable:  
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State Variables:    

 

State variables are restricted by adding them as a quadratic 

penalty terms to the objective function. Therefore, the equation 

(1) is changed to the following form:       

min
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The objective function of the target power system is calculated 

using load flow calculation with the above mentioned equality and 

inequality constraints.  

3.PARTICLE SWARM OPTIMIZATION 

The PSO algorithm was introduced by Kennady and Eberhart 

[17]. PSO is a swarm intelligence method for global optimization. 

It is a population based evolutionary algorithm. PSO is basically 

developed through simulation of bird flocking in two-dimension 

space. Bird flocking optimizes a certain objective function. It 

updates the population of individuals according to the fitness 

information, so that the individuals of population can be expected 

to move towards better solution areas. The position of each agent 

is represented by XY axis position and also the velocity is 

expressed by vx (the velocity along X axis) and vy (the velocity 

along Y axis). Modification of the agent position is realized by the 

position and velocity information.  

Each agent knows its best value so far (pbest) and its XY 

position. This information is analogy of personal experiences of 

each agent. Moreover, each agent knows the best value so far in 

the group (gbest) among pbests. This information is analogy of 

knowledge of how other agents around them have performed. 

Namely, each agent tries to modify its position using the 

following information:  

-  the current positions (x, y); the current velocities (vx, vy); the 

distance between the current position and pbest;  the distance 

between the current position and gbest.  

This modification of positions can be represented by the concept 

of velocity.  
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Velocity of each agent can be modified by the following 

equation: 

 
(10) 

where, 

k

iv = velocity of agent i at iteration k; w = weighting function; 

c1, c2 = acceleration constants; rand = random number between 0 

and 1; 
k

iX  = current position of agent i at iteration k; pbesti = 

pbest of agent i; gbest = gbest of the group.  

The following weighting function is usually utilized in (10):  

                    (11) 

where, 

wmax  = initial weight;  wmin   = final weight; itermax

 =maximum iteration number,  

iter = current iteration number.  

Using (10) and (11), a certain velocity, which gradually gets 

close to pbest and gbest, can be calculated. The current position 

(searching point in the solution space) can be modified by the 

following equation: 

                                   (12) 

4.DIRECT SEARCH  

The optimization procedure based on direct search is found 

effective in various problems. This method is very useful for the 

problems having more than one local optimum. It is used to locate 

the promising area to get the global minima [16]. This direct 

search optimization procedure is implemented as follows: 

Step1: The best solution vector from the phase-1 of the hybrid 

approach is used as an   initial search point C(o) for 

phase-2. The initial range vector is defined as  

  R(o) = range multiplication factor (RMF) * range (13) 

where, 

range = difference between maximum and minimum values  of 

C(o) 

Step2: Generate N trial solution vectors around C(o) using: 

 Ci = C(o) + R(o) .* rand (1,n)                                 (14) 

where, 

Ci = i
th solution vector;  .* = element by element multiplication; 

rand (1,n) =random vector. 

Step3: Calculate the objective function value for each    solution 

vector. 

Step4: Find the trial solution set, which minimize the objective 

function and call it as Cbest and   equate it to C(o): 

C(o) = Cbest                                                                          (15) 

Step5: Reduce the range by an amount given by: 

C(o) = C(o) *  (1-β)                                     (16) 

where, 

β = range reduction factor  

Step6: The algorithm proceeds to step2, unless it meets the 

stopping criterion.   

5.HYBRID ALGORITHM FOR RPC 

In phase-1 of the hybrid algorithm, PSO is employed to explore 

the whole search space and in phase-2, the DS is applied. 

Phase-1 algorithm 

Step1: Initialization: Initial searching vectors and velocities are 

generated randomly. 

Step2: The objective function for each particle in the initial 

population is evaluated using load flow calculation. pbest 
is set to each initial searching point. The initial best-

evaluated value among pbests is set to gbest 

Step3: Velocity updating: Using the global best and individual 

best of each particle, particle velocity is updated 

according to (10) 

Step4: Position Updating: Based on the updated velocities, each 

particle changes its position according to the (12). 

Step5: The objective function to the new searching points and the 

evaluation values are calculated. If the evaluation value 

of each agent is better than the previous pbest value, the 

value is set to pbest. If the best pbest is better than gbest, the 

value is set to gbest. All of gbests are stored as candidates 

for the final control strategy.  

Step6: If the stopping criterion is met, then go to Step 7. 

           Otherwise, go to Step 3. 

Step7: The phase-2 algorithm (given in section 4) is invoked. 

6.TEST RESULTS AND ANALYSIS  

 

The performance of the evolutionary algorithms PSO and EP and 

their hybrids called hybrid PSO and hybrid EP are evaluated. In 

hybrid EP, the phase-1 employs EP and phase-2 employs DS. 

 The following is the stopping criterion for all the algorithms: 

| P(i) – P(i-1) | / |P(i)| ≤ ε,                                     (17) 

where, 

P(i) = value at current iteration; P(i-1) = value at previous 

iteration;  

ε = is a sufficiently small positive value and taken as 10-5. 

6.1Description of the test systems 

In order to validate the proposed hybrid approach, it is tested with 

two test systems having non-linear characteristics. The first test 

system is IEEE 30 bus system. It consists of six generator buses, 

24 load buses and 41 branches in which 4 branches are tap 

changing transformers branches. In addition, buses 10, 12, 15, 17, 

20, 21, 23, 24 and 29 have been selected as shunt VAR 

compensation buses. In IEEE 30 bus system, totally 19 control 

variables are taken for reactive power dispatch. The branch 

parameters and loads were taken from [18]. The total loads are 

Pload = 2.834 [p.u] and Qload = 1.262 [p.u]. The initial transmission 

line loss is 0.05817 [p.u].  

The second test system is IEEE 57 bus system. It has seven 

generator buses, 50 load buses and 80 branches in which 17 

branches are tap changing transformer branches.  In addition, 

buses 18, 25 and 53 have been selected as shunt VAR 
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compensation buses, totally 27 control variables are taken for 

consideration in IEEE 57 bus system. The branch parameters and 

loads are taken from [19]. The total loads are Pload = 12.508 [p.u] 

and Qload = 3.364 [p.u]. The initial transmission line loss is 0.2793 

[p.u]. In both test systems, the base MVA is taken as 100. Table I 

gives the different control variables settings for the two test 

systems.  

 

Table I: 

Control Variable Settings for the Two Test Systems 

Test Cases Variables Min [p.u] Max [p.u] 

30 

VG 0. 95 1. 10 

VPQ 0. 95 1. 05 

T 0. 90 1. 10 

Bsh 0. 0 0. 05 

57 

VG 0. 95 1. 10 

VPQ 0. 95 1. 05 

T 0. 90 1. 10 

Bsh 18 0. 0 0.100 

Bsh 25 0. 0 0. 059 

Bsh 53 0.0 0.063 

6.2Parameter Selection 

Table II gives the parameters used in different EC 

techniques and in direct search method. 

 

Table II:  

Parameters Used in EC techniques and Direct Search Method  

Algorithm / 

Particulars 

PSO EP Direct Search 

Population size 10 10 - 

C1, C2 2, 2 - - 

wmax, wmin 0.9, 0.4 - - 

Scaling factor - 0.005 - 

RMF - - 0.5 

β - - 0.05 

 

6.3Testing Strategies 

Since the proposed approach is the hybridization of PSO and DS, 

it is necessary to find the relative strength of each constituent. 

Four testing strategies are carried on the test systems. 

1) The EP is applied 

2) The classical PSO is applied. 

3) The hybrid EP is applied. 

4) The proposed hybrid PSO is applied.   

The coding is written on MATLAB 6.5 package and executed in 

Pentium IV, 1.5 GHz, and 128 MB RAM processor.  

 

6.4Results and Discussion  

The convergence characteristics of all strategies for two test 

systems are given in Fig.1 and Fig.2. 

Figure 1. Convergence characteristics for IEEE 30 bus system 

Figure2. Convergence characteristics for IEEE 57 bus system 

 

From the convergence characteristics, it is learnt that PSO 

performs better than EP in terms of solution quality. For the first 

test case, EP takes around 35 iterations to converge, whereas the 

PSO takes only 25 iterations to converge. In the second test, the 

EP takes 30 iterations to converge; the PSO takes 40 iterations to 

converge. In both the test cases the PSO obtains the best solution 

than EP.   

The PSO is one of the evolutionary algorithms that do not use the 

survival of fittest concept. The PSO has no evolutionary operators 

such as crossover and mutation thereby the PSO is faster than EP. 

The PSO has the memory i.e., each particle is varied according to 

its past experience and relationship with other particles in the 

population which ensures near optimal solutions. 

Though the performance of PSO seems to better, almost there is 

no further improvement in solution quality and time is wasted in 

computation without improvement for many iterations. In general 

local search techniques have the advantage of solving the 

optimization problem quickly, though the results are very much 

dependent on the initial starting point; therefore they can easily be 
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trapped at a local optimum [15]. Hence if one can make use of the 

advantages of both local search and PSO (in general evolutionary 

techniques) technique, the optimization algorithm can be made 

both effective and efficient. When the direct search (local search) 

technique with systematic reduction in size of the search region 

[16] is combined with the PSO and EP, the solution quality is 

improves than the PSO and EP strategies. The convergence 

characteristics clearly demonstrate the effectiveness of the hybrid 

approach over the EP and PSO techniques as it reaches the local 

optimal point with in 10 iterations. For all the two test cases, the 

hybrid PSO converges faster and rank first in the performance 

scale.  

The Table III gives the loss values in MW and computation time 

in seconds. In the IEEE 30 bus system EP obtains 17.01% loss 

reduction, where as the PSO obtains 20.17%. With hybrid EP the 

loss reduction is 21.29% whereas for the hybrid PSO, the loss 

reduction is 23.76%. The hybrid techniques are able to obtain 

better solution in lesser computational time.  For hybrid PSO the 

computation time is around 11 sec. For PSO, EP and hybrid EP 

the computational time is 47 sec, 68 sec and 15 sec respectively. 

The hybrid PSO is faster than PSO by 36 sec, EP by 57 sec and 

hybrid EP by 5 sec. 
 

Table III: 

Loss Values and Computational Time 

 

 

In the IEEE 57 bus system EP obtains 1.81% loss reduction, 

whereas for the classical PSO, the loss reduction is 2.42%. For the 

hybrid PSO saving is 4.80%. The PSO is faster than EP by 43 sec. 

The hybrid PSO is 94 sec (6 times) faster than EP and 50.17 sec 

(4 times) than PSO and 9 sec faster than hybrid EP.  

From the above facts it can be inferred that the performance of 

hybrid PSO is better than other methods PSO, EP and hybrid EP 

in terms of solution and computational time. 

6.5Robustness test 

The performance of the EC techniques cannot be judged by single 

run. If the algorithm gives consistent results, then the algorithm 

said to be robust. The 100 trial runs were performed for both the 

test systems. The results for the two test systems are given in 

Tables IV and V. 

Table IV:  

Comparison of Four Testing Strategies for IEEE 30 bus 

System  

Loss (MW) EP PSO HYBRID EP HYBRID 

PSO 

Best 4.8275 4.6434 4.5782 4. 4345 

Worst 4.9681 4.7823 4.6682 4. 4801 

Average 4.8723 4.6863 4.5987 4. 4632 

 

Table V:  

Comparison of Four Testing Strategies for IEEE 57 bus 

System  

Loss 

(MW) 
EP PSO HYBRID EP HYBRID PSO 

Best 27.4230 27.2532 27.2132 26. 5890 

Worst 27.6631 27.3763 27.3581 26. 6380 

Average 27.5230 27.2931 27.2798 26. 6130 

 

The results show the superiority of the hybrid PSO over the other 

testing strategies. The average value obtained by the hybrid PSO 

is always very close to the best value and less than the best values 

of others strategies. It shows the robustness of the proposed 

approach.  

Tables VI and VII show the consistency of the proposed approach 

in achieving the minimum objective function for the two test 

systems. The success rate of the proposed hybrid PSO approach is 

higher (74%) than other strategies (58% for PSO, 63% for EP and 

67 for hybrid PSO) for the first test system.  

 

Table VI:  

Frequency of Convergence for IEEE 30 bus System  

 

Table VII:  

Frequency of Convergence for IEEE 57 bus System  

Strategies 

Loss Range (MW)                                     

26.40-

26.60 

26.60-

27.00 

27.00- 

27.30 

27.30-

27.45 

27.45- 

27.85 

EP 0 0 0 56 44 

PSO 0 0 72 28 0 

HYBRID EP 0 0 68 32 0 

HYBRID 

PSO 
77 23 0 0 0 

 

The above statement is true for the second test system also. The 

success rate of proposed hybrid PSO approach is higher (77%) 

than other strategies (72% for PSO, 56% for EP and 68% for 

hybrid EP) for the IEEE 57 bus system. From the Table 8 and 9, it 

can be said that the hybrid PSO always minimizes the objective 

function. Even though the PSO, EP and hybrid EP display   

similar characteristics, the hybrid approach converges to the 

optimal value when other methods premature. 

 

Loss 

values 

[MW] 

Method EP PSO 
HYBRID 

EP 

HYBRID 

PSO 

IEEE 30 

bus 
4.8275 4.6434 4.5782 4.4345 

IEEE 57 

bus 
27.4230 27.2522 27.2132 26.5890 

Comp

utation

al time 

[sec] 

IEEE 30 

bus 
68.73 47.12 15.74 11.45 

IEEE 57 

bus 
112 68.56 27.52 18.38 

Strategies 

Loss Range (MW) 

4.40-4.55 4.55-4.65 4.65-4.85 

 

4.85-5.00 

 

EP 0 0 63 37 

PSO 0 58 42 0 

HYBRID EP 0 67 33 0 

HYBRID PSO 74 26 0 0 



©2010 International Journal of Computer Applications (0975 – 8887)  

Volume 1 – No. 5 

70 

 

6.6Comparison of Hybrid PSO with other 

techniques 

The proposed hybrid method is compared with Multi Agent based 

Particle Swarm Optimization (MAPSO) [20] and Interior Point 

(IP) [21] for IEEE 30 bus system is given in Table VIII.  

  

Table VIII:  

Comparisons for IEEE 30 bus system   

Loss (MW) HYBRID PSO MAPSO  IP  

Best 4. 4345 4. 8747 5. 1009 

 

From the Table VIII, the loss value obtained by the proposed 

method is much lesser than the MAPSO and IP methods. 

7.CONCLUSION  

A two-phase hybrid PSO method is proposed for optimal reactive 

power dispatch problem. The phase-1 uses the classical PSO, 

while local optimization by direct search is applied in phase-2. In 

order to validate the proposed approach, it is tested with two 

standard test systems having non-linear characteristics and the 

results are compared with other techniques reported in the 

literature.  The proposed hybrid PSO is obtains lesser loss values 

than other strategies with lesser computational time. The 

robustness test is also conducted to verify the consistency of the 

proposed approach.  It is observed from the repeated trial runs, the 

hybrid PSO approach always converged to near optimal solution. 

The test results show that, the proposed approach not only 

improves the solution quality but reduces the computation time 

also and suitable for optimal reactive power dispatch problem. 
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