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ABSTRACT 

The problem of model selection is considerably important for 

acquiring higher levels of generalization capability in supervised 

learning. Neural networks are commonly used networks in many 

engineering applications due to its better generalization property. 

An ensemble neural network algorithm is proposed based on the 

Akaike information criterion (AIC). Ecologists have long relied 

on hypothesis testing to include or exclude variables in models, 

although the conclusions often depend on the approach used. The 

advent of methods based on information theory, also known as 

information-theoretic approaches, has changed the way we look at 

model selection The Akaike information criterion (AIC) has been 

successfully used in model selection. It is not easy to decide the 

optimal size of the neural network because of its strong 

nonlinearity. We discuss problems with well used information and 

propose a model selection method.   

Categories and Subject Descriptors 

I.2.6 [Artificial Intelligence]: Learning – Connectionism and 

neural nets.  

General Terms 

General terms: Algorithms, Design. 

Keywords 

Neural Network, Hidden Neurons, Akaike’s Information Criterion 

(AIC), Correct Classification Rate (CRR) 

1. INTRODUCTION 
Akaike's information criterion, developed by Hirotsugu Akaike 

under the name of "an information criterion" (AIC) in 1971 and 

proposed in Akaike (1974), is a measure of the goodness of an 

estimated statistical model. It is grounded in the concept of 

entropy, in effect offering a relative measure of the information 

lost when a given model is used to describe reality and can be said 

to describe the tradeoff between bias and variance in model 

construction. The AIC is not a test on the model in the sense of  

 

hypothesis testing; rather it is a tool for model selection. Given a 

data set, several competing models may be ranked according to 

their AIC, with the one having the lowest AIC being the best.  

From the AIC value if top three models are in a tie and the rest are 

far worse, but one should not assign a value above which a given 

model is 'rejected'.  

The AIC is a basis of comparison and selection among several 

statistical models. As we all know the goodness of parameters of a 

model can be calculated by the expected log likelihood, means the 

larger the expected log likelihood is better explanation. In looking 

at the relationship between the bias and the number of free 

parameters of a model [1], it is found that, 

(Maximum log likelihood of a model) – (number of free 

parameters of the model) 

It is an asymptotically unbiased estimator of the mean expected 

log likelihood. AIC estimator of Kullback –Leibler information is 

AIC = -2 * (maximum log likelihood of the model) + 2 * (number 

of free parameters of the model).                         (1) 

2. PROBLEM STATEMENT 
The goal is to find most efficient neural network 

architecture. It is difficult to select number of hidden 

neurons while designing neural network architecture [1]. 

3. AKAIKE’S INFORMATION CRITERION 
In the general case, the AIC [5] is, 

klikelihoodAIC *2)ln(*2             (2) 

Where ln is the natural logarithm, k is the number of parameters 

in the statistical model and RSS is the residual sums of squares 

(Calculation of RSS value is discussed later in this paper). AIC 

can also be calculated using residual sums of squares [5] from 

regression 

KnRSSnAIC *2)/ln(*                   (3) 

Where n is the number of data points (observations). AIC requires 

a bias-adjustment small sample sizes. If ratio of n/K < 40 then 

uses bias adjustment  
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)1/())1(**2(*2)ln(*2 KnKKKLAIC    (4) 

For example, consider 3 candidate models for the growth model, 

their RSS values, and assume n = 100 samples in the data.Table1 

shows the Calculation of AIC values for different Models. AIC is 

calculated using different RSS values and different no of free 

parameters. Lower AIC is better for model 

Table 1. Table captions should be placed above the table 

K RSS AIC 

4 25 
100*ln(25/100) + 2*4 + (2*4*(4 + 1))/(100 - 4 -1) 

= -130.21 

3 26 
100*ln(26/100) + 2*3 + (2*3*(3 + 1))/(100- 3- 1) 

= -128.46 

3 27 
100*ln(27/100) + 2*3 + (2*3*(3 + 1))/(100- 3- 1) 

= -124.68 

4. MODEL SELECTION WITH AIC 
The best model is determined by examining their relative distance 

to the “truth”. The first step is to calculate the difference between 

lowest AIC model and the others as  

AICAICii min                         (5) 

Where Δi is the difference between the AIC of the individual 

models and min AIC is the minimum AIC value of all models [5]. 

The smallest value of AIC is –130.21(using equation 5). Thus the 

Δi is show in table1. 

Table 2. Calculation of Δi  

K RSS AICc Δ i 

4 25 -130.21 0 

3 26 -114.15 1.75 

3 27 -98.73 5.53 

 

To quantify the plausibility of each model as being the best 

approximating, we need an Estimate of the likelihood of our 

model given our data 

)|( dataModelL  

Interestingly, this proportional ( ) to the exponent of  

(-0.5*Δi) so that 

)*5.0exp()|( idataModelL  

The right hand side of above is known as the relative likelihood of 

the model, given the data. A better means of interpreting the data 

is to normalize the relative likelihood [5] values as  

R

i

iii )*5.0exp(/)*5.0exp(     (6) 

Table 3. Exponent of Delta  

K RSS AICc Δ i exp(-0.5*Δ i) 

4 25 -130.21 0 1 

3 26 -128.46 1.75 0.4166 

3 27 -124.68 5.52 0.0631 

    Sum = 1.4798 

 

The sum of the relative likelihoods is 1.4798, so we obtain the 

Akaike weights for each by dividing the relative likelihood by 

1.4798. 

Table 4. Akaike’s Weights for different Models  

K RSS AICc Δ i Wi 

4 25 -130.21 0 0.6758 

3 26 -128.46 1.75 0.2816 

3 27 -124.68 5.52 0.0427 

 

Where Wi are known as Akaike weights for model I and the 

denominator is simply the sum of the relative likelihoods for all 

candidate models. For example, using the earlier values from the 3 

growth models: 

For the above example, the first model is (0.6758/0.2816) = 2.4 

times more likely to be the best explanation for growth compared 

to second Model only and (0.6758/0.0427) = 15.8 times more 

likely than third model only.  

As a general rule of thumb, the confidence set of candidate 

models (analogous to a confidence interval for a mean estimate) 

include models with Akaike weights that are within 10% of the 

highest, which is comparable with the minimum cut-off point (i.e., 

8 or 1/8) suggested by Royall (1997) as a general rule-of-thumb 

for evaluating strength of evidence.  

For the above example, this would include any candidate model 

with a value greater than (0.6758*0.10) = 0.0676. Thus, we would 

probably exclude the third model only from the model confidence 

set because its weight, 0.0427<0.0676 

5. RESIDUAL SUM OF SQUARED 
We want to find a model which has an equation of the form 

10y
                                  (7) 

We want to find RSS of the red line. First we need the equation of 

this line. We know that the equation of a line can always be 

determined by two points on the line.  

In statistics, the residual sum of squares (RSS) is the sum of 

squares of residuals. It is a measure of the discrepancy between 

the data and an estimation model. A small RSS indicates a tight fit 

of the model to the data. 

In general: total sum of squares = explained sum of squares + 

residual sum of squares. 
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Figure 1. Selecting Red Line for RSS Calculation 

To find the equation of this line we need to find their 

intercept and their slope. 

Slope:    

 )12/()12(1 xxyy                   (8) 

 

is equal to (4.3-2.7) / (6.5-4.5) = 0.8 

 

Intercept: 

1110 xy                            (9) 

 

is equal to 2.7-0.8•4.5 = -0.9 

 

With this we get the equation  

 

xy 8.09.0                              (10) 

 

Let's consider observation #4 with values x4=4.89 and 

y4=3.34 Now using the x value in our equation we get Y4 = 

-0.9 + 0.8*4.89 = 3.01. This is called the fitted value. 

 

 
Figure 2. Residual (Errors) at Point Three 

We have two y values. y4 = 3.34 is actual observation and Y4 = 

3.01 is what our line predicted we should observe for an x value 

of x4=4.89.The difference between them is 

 

444 Yy =3.34 - 3.01 = 0.33 

4 is called the residual (or error).  

 
Figure 3. Individual Residual (Error) at Observation Points 

Of course we can do the same thing for all the other observations: 

Find the fitted values, and then find the corresponding residuals 

1 to 10. 

Each of these errors shows how much the actual observed y value 

differs from what the model predicted. Finally we can combine all 

these individual errors into one overall error called Residual Sum 

of Squares (or RSS) [6] as follows:  

RSS i
2 
=1.13                          (10) 

6. EXPERIMENT AND RESULT 
We have tested this method for employee retention problem. To 

find the retention probability of employee of our organization 

using neural network, first we need to select the Neural Network 

architecture. We have total 17 inputs (e.g., age, sex, marital status, 

salary, experiences...) and retention probability is one output of 

neural network. By using AIC method we are getting following 

best Neural Network architecture. We assume the single hidden 

layers. 

Table 5. AIC for different NN Architecture  

i/p h/d o/p Wgts RSS n K AIC 

17 1 1 18 1 100 18 -416.073 

17 2 1 36 1 100 36 -346.231 

17 3 1 54 1 100 54 -220.517 

17 4 1 72 1 100 72 72.816 

17 5 1 90 1 100 90 1539.483 

17 6 1 108 1 100 108 -2860.517 

17 7 1 126 1 100 126 -1393.850 

17 8 1 144 1 100 144 -1100.517 

17 9 1 162 1 100 162 -974.803 

17 10 1 180 1 100 180 -904.961 

 

Where i/p is Input Neurons, h/d is hidden neurons, o/p is output 

neurons, wgts is total weights is sample data and k is free 

parameter. For example, inputs are 17 and one output increment 

the number of hidden neuron by one up to 10 hidden neurons; we 

get the lowest AIC at [17-6-1]. 
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Table 6. AIC for NN with More number of Hidden Neurons  

i/p h/d o/p Wgts RSS n K AIC 

17 2 1 36 1 100 36 -346.231 

17 4 1 72 1 100 72 72.816 

17 6 1 108 1 100 108 -2860.517 

17 8 1 144 1 100 144 -1100.517 

17 10 1 180 1 100 180 -904.961 

17 12 1 216 1 100 216 -829.748 

17 14 1 252 1 100 252 -789.929 

17 16 1 288 1 100 288 -765.279 

17 18 1 324 1 100 324 -748.517 

17 20 1 360 1 100 360 -736.379 

 

Similarly we increment the number of hidden neurons by two up 

to 20.We get the lowest AIC at [17-6-1].Always Low AIC is Best. 

7. CONCLUSION 
If there is more number of Input Neuron and Output Neurons at 

that time it is better to use AIC method for Model Selection. If 

number of inputs are more than it is difficult to select number of 

hidden neurons. After the Results and experiments, we can 

conclude that the Akaike’s Information Criterion methods are 

giving best result for selecting Neural Network Architecture. 
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