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ABSTRACT 
A drawback of the non-rigid registration is its unpredictable 

nature of the deformation on the target image. Mapping 

every point on images can cause deformations even to 

regions, which are expected to remain rigid. A non-rigid 

registration is therefore desirable, that produces only local 

deformations where needed, while still preserving the overall 

rigidity. This work focuses on one such method called the 

Moving Least Squares (MLS) transformation and compares 

the results with Thin Plate Splines (TPS). An intensity based 

non-rigid registration algorithm is applied apriory, if the 

input medical images are from two different patients in order 

to facilitate for the selection of homologous control points in 

them. We compare the performance of both the techniques 

by calculating the Target Registration Error (TRE) at certain 

points and results are encouraging. 

Keywords 
Moving Least Squares, Non-rigid medical image 

registration,  Thin Plate Splines, As-rigid-as-possible 

transformations. 

1. INTRODUCTION 
 Image registration, a processing requirement for combining 

images (i.e., image fusion), is used extensively in the 

medical field for monitoring disease progression, image 

guided surgery, studying brain shift after surgery and 

developing medical atlases. The process for image 

registration involves two images namely, the source and the 

target images, and finding the best deformation field to align 

the two images. Various features like points, line segments 

and intensities can be used as the basis for the registration. 

Functions used to map the source image to the target image 

are called transformation functions. It is classified as rigid or 

non-rigid,  based on the transformation function used. 

Unlike rigid registrations, where the distances between all 

points remain constant before and after the registration, a 

non-rigid registration involve more complex computations 

like local stretching and scaling to map the two images 

which might generate unpredictable deformations. It is not 

possible to exactly specify the mapping of each point in the 

source image to the target image. It would thus be good to 

have a non-rigid registration technique that produces local 

deformations only  

 

where needed while still preserving the overall rigidity of the 

transformation as much as possible called as-rigid-as-

possible methods. Fortunately such techniques exist, and this 

work focuses on one such method called the MLS 

transformation [2]. This technique is relatively recent and is 

better known for surface reconstruction and in computer 

graphics for image deformation and morphing. Here, we are 

exploring the applicability of the MLS technique as a point 

based non-rigid registration technique. Methods of MLS 

using affine, similarity transformations and rigid 

transformations are presented elsewhere [22].The results are 

compared with TPS method, which is another widely used 

technique both qualitatively and quantitatively. 

            The source and target images considered for 

registration are of the same modality. To evaluate the 

performance of the MLS technique, 2D MR brain images 

from the same patient and different patients were considered 

as the input to the system. If the source and target images are 

from the same patient, then homologous control points are 

selected from the respective images and are passed to each 

of the registration algorithm to get the transformed source. If 

the input images are from two different patients, an intensity 

based non-rigid registration algorithm is used for the 

selection of homologous control points. Then the selected 

control points are applied to each of the point based 

technique to obtain the registered source. During this 

process we can compare the performance of both the 

techniques by calculating the TRE at certain points in the 

image other than the control points. 

Figure 1:  The Image Registration process.      

             Steps in Image Registration involve pre-processing, 

feature selection, feature correspondence, determining and 

applying a transformation, and in many cases re-sampling of 

the images [3]. 

2. MEDICAL IMAGE REGISTRATION 
             Image registration has evolved independently in 

various research areas, ranging from geo-surveying to 

medical imaging, each with a number of unique applications.  

Medical image analysis, in particular, has many challenging 

and useful applications.  The need  for registration  can  arise  
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when  images of a given piece of anatomy  are  taken over a 

period of time and need to be compared,  as is the case for 

the study of tumor growth or in  functional magnetic 

resonance  imaging(fMRI) studies [4, 5]. Registration can 

also be used to characterize normal versus abnormal 

anatomical shape variations.  For example, tumors may be 

registered to normal or abnormal tumors within the same 

class. Other applications include labeling and segmentation, 

in which the image to be labeled/segmented is registered to a 

previously labeled/segmented image (the atlas).This atlas 

registration circumvents the need for explicit 

labeling/segmentation. 

 The image that needs to be compared may also be 

obtained using different hardware devices, each highlighting 

a specific part of the body (these images are also referred to 

as multi-modality images). Examples of common multi-

modality images in medical imaging include Computed 

Tomography (CT), X-ray imaging, Positron Emission 

Tomography (PET) imaging, and Nuclear Magnetic 

Resonance (NMR) Imaging. If these images are registered, 

they can be combined (fused) in a more meaningful way to 

provide an integrated view. 

 Medical image registration is a very popular area 

of image processing with applications ranging from 

monitoring disease progression [6], building medical atlases 

[5], image guided surgery etc [4]. A survey of the recent 

publications in the field of medical image registration with 

algorithms, validations and applications can be found in [6] 

and [7]. More details about the feature selection and 

correspondence, transformation functions and evaluation 

methods for 2-D and 3-D image registration can be found in 

[8].  

3. NONRIGID IMAGE REGISTRATION 

3.1 Normal or Body Text 
               Non-rigid registration is an active area of research 

in the field of medical image registration.  This activity is 

due to the fact that one cannot decide on the best algorithm 

for all applications, i.e., no universal solution exists for the 

mapping problem and lack of a reference standard to 

compute the exact errors obtained in the registration process 

[10].  Each algorithm works well under certain constraints 

and conditions but may not do so under a different set of 

conditions.  Crum et al [9] discusses the various types of 

non-rigid registration algorithms, their concepts, 

applications and limitations. The main problem that non-

rigid registrations pose is that it is not possible to actually 

predict the deformation field [9]. The control points may be 

mapped exactly in the source and target images/volume 

using different methods [11], but the accuracy in mapping 

the other points in the source image/volume map onto in the 

target image/volume is unpredictable. This is because non-

rigid registration involves more transformations than just 

rotation and translation as required for rigid registrations [9].  

This work focuses on evaluating a non-rigid registration 

technique which allows the deformation field to be as-rigid-

as-possible while still performing local stretching 

deformations.  

3.2 As-rigid-as-possible Transformations 
The concept of as-rigid-as-possible transformations was first 

introduced by Alexa et al [12] where an object space 

morphing technique that blends the interiors of objects as a 

smooth blending was proposed. This morphing was called 

as-rigid-as-possible because the objects undergo minimum 

distortion during morphing. The shape manipulation 

technique presented by Igarashi et al [13] is also based on 

as-rigid-as-possible transformations. First Page Copyright 

Notice 

3.3 MLS Transformations 
The principle of the MLS technique is to minimize the least 

squares error function obtained during the mapping 

transformation process. A set of control points are chosen 

and transformation function is obtained for each point in the 

image and is based on a weight function included in the least 

squares error function at each point of evaluation. This 

weight function ensures that the effect of a control point is 

seen mostly in the regions immediately surrounding it, while 

its effect is less prominent in far off regions. The 

transformation matrix of the MLS technique can include 

affine, similarity and as-rigid-as-possible transformations 

and therefore extended here for registration. This work 

focuses on the as-rigid-as-possible transformations which 

are capable of producing local deformations. The 

transformation function is smooth and interpolates the 

control points.  

             Given a set of control points on the source and 

target images, the MLS technique computes the 

transformation Iv(x) that best minimizes the least squares 

error: ∑ − 2|)(| qpI i  where pi and qi are the set of 

control points in the source and target images respectively. 

This transformation however produces a single affine 

transformation of the entire image as there is no control over 

the scaling or shearing in the image. A weighting function 

included to this least squares error fixes this problem and 

thus produces a different transformation function for each 

point of evaluation of the image. 

                        ∑ −
i

iii qpIw 2|(|  

The weighting function wi is of the form 

                           α2||

1

vp
w

i

i −
=  

where v is the point of evaluation in the image and α is the 

fall-of-parameter of the weighting function whose value 

decides if the weights computed are small or large. The 

weighting function is dependent on the point of evaluation 

and thus produces a different transformation for each point 

of the image. Hence the method is called Moving Least 

Squares. We can see that as v approaches the control points, 

the weight approaches infinity and the transformation 

function interpolates.  

              The transformation function can be solved as a 

simple linear transformation matrix, M and a translation 

vector, T as: 
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               The transformation matrix M can be modified to 

include affine, similarity and rigid transformations. To 

perform as-rigid-as-possible transformations, the matrix, M 

must be constrained to satisfy the condition for rigidity 

M'M=I. The translation component can be easily computed 

by: 

   MpqT ** −=      

 

where                    are the weighted centroids of the 

control points given by: 

 

 

   

 

The transformation function can now be calculated as: 

 

The least squares problem can be written as: 

 

 

where  

 

            The transformation matrix for the as-rigid-as-

possible transformations can be obtained by eliminating the 

scaling constant. The solution is simple and closed form. It 

can be obtained easily by a slight modification of the 

similarity transformation for which the transformation matrix 

must satisfy the condition, M1’M2=M1M2’=λ
2I , where λ is 

some constant and M1 and M2 are the columns of M and are 

vectors of size 2x1. M1 and M2 have the relationship such 

that                                 , 

 For rigidity condition to be satisfied, M’M=I, the 

scaling constants needs to be removed. By using partial 

derivatives with respect to the free variables in M and 

substituting the values back into the error function the 

optimum transformation function is obtained as: 

 

 

 

 

where                                                                       

removes any scaling and thus produces as-rigid-as possible 

transforms.  

 The non-rigid registration technique evaluated in 

this paper, the MLS transformation is escribed in [11].  

Though this paper is build on technique described by 

Igarashi it aims at achieving faster deformations. For this 

purpose we propose the transformation of objects by using 

linear MLS. No triangulation of the input is needed in this 

case and the transformation can be computed at each point in 

the image. The transformations achieved using rigidity 

constraints are as-rigid-as-possible with minimum non-

linear shearing and non-uniform scaling , which is a property 

of MLS transforms, thus making it a suitable candidate for 

applications in medical image registration where rigid 

registrations are insufficient and non-rigid registrations are 

necessary to align features of the image. 

3.4 Thin Plate Spline Transformations 
Thin-plate splines are a part of the spline family with radial 

basis functions as the interpolating function.  They produce 

smooth and closed form transformations and have been used 

extensively in image deformation. Thin-plate Splines have 

been used in remote sensing for mapping images. Goshtasby  

et al [8] describes how the thin-plate  splines can be used in 

image deformation  for remote  sensing images.   His book 

on 2D and 3D registrations also describes the TPS 

transformation function and it applications [14].  Though the 

TPS produces smooth transformations, the main 

disadvantage of the technique is that each control point in 

the image has a global effect on the transformation and thus 

even if one point is perturbed all other points in the image 

do not get mapped correctly [9].  The work by Bookstein et 

al [15] also describes the theory behind TPS transformations 

and how it can be used in medical image processing. 

Numerous papers have been published in the medical image 

processing area using the TPS algorithm in image 

registration [16, 17]. The TPS algorithm can be used to 

obtain an elastic transformation to map the source image to 

the target image. Rohr et al [18] uses the TPS as a technique 

to obtain elastic registration of brain images taking into 

account the errors at the landmark points in the images. The 

method proposed in this paper is applicable to 2D and 3D 

MR images. This paper establishes that the MLS 

transformation technique can be used as an alternate to the 

TPS transformation technique and can perform better due to 

its as-rigid-as-possible nature. This could enable the MLS 

technique to be used in applications like constructing 

medical atlases, studying the progression of diseases, 

postoperative shift of brain and other such applications 

where the TPS technique has been used so far.  

4. IMPLEMENTATION DETAILS 
The overall system for the non-rigid registration of the 

medical images obtained from the same patients using the 

MLS and TPS techniques is shown in figure 4.1. For each 

pair of the source and target images first of all a set of 

homologous control points are extracted. These  control 

points from the source and the target are taken  as the input 

to the Moving least Squares (MLS)  and Thin Plate Spline 

(TPS) algorithms, which will find out a transformation 

function for each pixel position in the source image to 

obtain the registered source. In the case of images taken 

from two different patients, it is difficult to identify 

homologous control points. As these points play the most 

important role in the registration process it becomes 

necessary to accurately obtain homologous control points 

from the source and target images. Initially two images of 

the same modality S and T from two different patients were 

given as the input to the system.  The two images were 

registered using an intensity based method. The deformation 

function thus obtained was applied to the source image S to 
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get the new transformed image T. T has homologous points 

to the source S. The transformed source image T obtained by 

the intensity based registration algorithm was used as the 

new target image for the point based registration process. In 

this case we can quantitatively evaluate the performance of 

the two techniques by computing the Target Registration 

Error(TRE) as shown in the following   figure 2. 

.4.1. Intensity Based Non-Rigid 

Registration Algorithm 

 Here an error function is estimated using Taylor-series 

expansion, in order to simplify the minimization.  A more 

accurate estimate of the actual error function can be 

determined using a Newton-Raphson style iterative scheme. 

In particular, on each iteration, the estimated transformation 

is applied to the source image, and a new transformation is 

estimated between the newly warped source and target 

image. As few as five iterations greatly improve the final 

estimate. Secondly, the required spatial/temporal derivatives 

have finite support, thus fundamentally limiting the amount 

of motion that can be estimated. A coarse-to-fine scheme is 

adopted in order to contend with larger motions [22].  A 

Gaussians pyramid is built for both source and target images 

and the local affine parameters are estimated at the coarsest 

level.  These parameters are used to warp the source image 

in the next level of the pyramid.   A new estimate is 

computed at this level, and the process repeated through 

each level of the pyramid. The transformations at each level 

of the pyramids are accumulated yielding a single final 

transformation.   This multiscale approach is critical given 

the differential nature of our measurements, allowing us to 

register images with larger motions. Finally the estimation of 

the spatial/temporal derivatives is crucial step. 

Spatial/temporal derivatives of discretely sampled images 

are often computed as differences between neighbouring 

sample values. Such differences are typically poor 

approximations to derivatives and lead to substantial errors.   

In computing derivatives we employ a set of derivative 

filters specifically designed for multi-dimensional 

differentiation [23]. The spatial/temporal derivatives are 

estimated as follows.  The  images are  first  pre-filtered  in 

time(using  the two-tap  filter(  [0.5 0.5] ).The  derivative  in 

x is then estimated  by pre-filtering  the result  in y (using 

the 3-tap  pre-filter  [0.223755 0.552490 0.223755] ), 

followed by differentiating in x (using the derivative filter[-

0.453014 0.0 0.453014]).Similarly the derivative in y is 

estimated by first pre-filtering the result in x (using the 3-tap 

prefilter [0.223755 0.552490 0.223755]), followed by 

differentiating in y (using the derivative filter [-0.453014 0.0 

0.453014]).The derivative in time is estimated by first pre-

filtering in space (in x and y) using the 3-tap pre-filter 

[0.223755 0.552490 0.223755]), followed by applying the 

two-tap derivative filter [0.5 0.5] in time to the result.  These 

filters significantly improve the resulting registration. 

 System overview for the registration algorithm is 

split into three sections as depicted in Figure 3. It depicts the 

multiscale estimation of the registration map, from a coarse 

to fine scale.  The multiscale registration algorithm proceeds 

as follows.  The source and target images at the coarsest 

scale are registered to obtain an initial estimation of the 

registration map [10]. This initial estimate is used to warp 

the source image at the next scale.  The warped source image 

is then registered with its corresponding target image.  This 

process repeated at each level of the pyramid.  A single 

registration map is obtained by accumulating successive 

estimated registration maps at each scale. This multiscale 

registration approach allows us to recover large motions as 

well as small motions. Within each scale, the registration 

map is determined in an iterative fashion. After an initial 

estimation of the registration parameters the source image is 

warped with the estimated parameters and registered again 

with the target image.  During each of these iterations, 

successive intermediate registration maps are accumulated to 

form a single registration map [24].   The iterations are 

stopped when the average displacement of the estimated 

motion is less than 0.1 pixels. Within each scale, and within 

each accuracy-iteration, a smooth registration map is 

obtained as follows.  Given source and target image, an 

estimate of the registration map without smoothness is first 

obtained. 

 

Figure 3: System diagram – Intensity Based Non Rigid 

Registration 

 This initial estimate is used to bootstrap the 

nonlinear iterative estimation of the smooth registration map 

[22].  These registrations are referred to as smoothness-

iterations.  These three components together form the 

complete registration algorithm. 

 

4.2. Control Point Selection 

 Control point selection is an important aspect in point based 

image registration technique. For good registration results it 

is necessary to select these control points as accurately as 

possible. Control points are selected from the source and 

target images by the user. Anatomically similar structures 

from the two images are usually selected as the control 

points. After the selection process it is applied to both the 

registration algorithm to obtain the registered source. 
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4.3. Target Registration Error (TRE) 

 Without quantitative evaluation, no registration method can 

be accepted for practical utilization. The Target Registration 

Error (TRE) is one such method which is the displacement 

between two corresponding points after registration, i.e., 

after one of the points has been subjected to the registering 

transformation. A lower TRE indicates a better method. The 

word target in the name of this error measure is meant to 

suggest that the error is being measured at an anatomical 

position that is the target of some intervention or diagnosis. 

Such errors would be expected to be more meaningful than 

errors measured at points with no intrinsic clinical 

significance. Let p represent a point in the first image of a 

pair to be registered, and q a point in the second image. A 

registration method applied to this pair leads to a 

transformation T that, without loss of generality, registers 

the first image to the second. The difference between the two 

vectors representing the transformed point and the 

corresponding point gives the target registration error. Thus, 

TRE = T (p) − q, which is nothing but the registration error 

at that point and is computed as the disparity in the position 

of two corresponding  points after registration. A low TRE 

thus indicates a better method. 

5. EXPERIMENTAL RESULTS 

5.1.  Datasets Used 

This section presents the results for evaluation of two 

dimensional images using the MLS and TPS techniques.  

We use two dimensional Magnetic Resonance images (MR) 

of brain from same patients as well as different patients for 

performing the registration. The datasets used are jpeg 

images of size 256x256. 

5.2. Quantitative Analysis- Performance 

Metrics 

Qualitative (Visual) comparisons are not sufficient to 

evaluate the performance of any algorithm, quantitative 

evaluations have to be made.   For this purpose the target 

registration error (TRE) was computed at certain points in 

the image for both the methods.  The target registration error 

at any point, which is nothing but the registration error at 

that point, is computed as the disparity in the position of two 

corresponding points after registration [20,9]. To compute 

the TRE, three points (namely A, B and C) at random was 

selected on the internal structures of the brain  as shown in 

the Figure  4(a & b).The TRE at these points A, B and C, 

shown on the source image, was computed by finding the 

points they mapped to on the MLS and TPS registered 

images. Since the points corresponding to A, B and C could 

be found on the target image by using the Intensity based 

non-Rigid registration Algorithm comparisons could be 

made on the resulting TRE’s for the two methods.  Table 1 

shows the resulting TRE values for the two methods. 

 

Table 1: Comparison of MLS and TPS  

 

Figure  4(a:d) Shows the Registration  of 2D MR Brain  

Images with points marked with  Yellow, White and Blue 

used to calculate TRE. 

   

Figure 4  (a)                               Figure 4 (b)                                     

Source Image                             Target Image 

with 21 Control  Points     with 21 Control Points 

   

Figure 4 (c)                             Figure 4 (d)  

Registration -MLS                  Registration - TPS  

5.3. Computational Aspects for MLS and 

TPS 

 The MLS and TPS algorithm were implemented in Matlab. 

The MLS algorithm involves finding the transformation at 

each point in the image and thus has a longer computation 

time as seen in Table 2. One way to reduce the computation 

time would be to decimate the image or volume using a grid 

and apply the deformation to each vertex of the grid instead 

of each point and interpolating the other points using 

bilinear interpolation. TPS transformations are 

computationally less time consuming. 

5.4. Observations 

 If the control points are uniformly distributed in both the 

source and target, it is difficult to visually analyse the 

performance of both the algorithms. In this case both the 

algorithms will give visually similar results. Hence the 
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Target Registration Error (TRE) is used as a quantitative 

metric to evaluate the performance of both the techniques. 

 

Table 2: Execution Time for MLS and TPS Algorithm Based 

on Number of Control Points 

 A lower TRE indicates a better method. Here three points 

other than the control points are randomly selected from the 

source and target. Then the TRE value is calculated. In each 

case it was found that the TRE for MLS technique is low as 

compared to TPS. The execution time for both the methods 

by varying the number of control points indicates that TRE 

perform faster than MLS. Even if the execution time of TPS 

is faster compared to MLS, the later will give less error 

during the registration. So we can conclude that MLS 

technique is quantitatively better than TPS algorithm. 

5.5. Qualitative Analysis 

Qualitative analysis is done based on Human Perception.  To 

evaluate the performance of the two techniques based on the 

placement of control points, the homologous control points 

were selected only on the spine leaving out the other regions 

as shown in figure 5 (a) and (b). The registration result using 

MLS and TPS techniques can be seen in figure 5(c) and (d).  

It was observed that even though control points were not 

placed in the head region, the MLS technique produced a 

qualitatively better result. This technique did not show any 

non-uniform scaling or stretching and also produced an as-

rigid-as-possible transformation.  The TPS transformation 

was seen to stretch the image unnaturally.  In this case too, 

we observed the stretching caused in the spine region along 

with the stretching seen near the head region. Thus it can be 

said that non-uniform placement of control points affects the 

deformation field minimally in case of the MLS technique 

than the TPS  technique which showed more stretching. 

   
Figure 5 (a) Source and Target Image with 7 Control Points 

        

    Figure 5 (b)       Figure 5 (c)  

    Registration – MLS            Registration - TPS 

To show that MLS can be used as a better technique for non-

rigid registration while maintaining the overall rigidity of the 

image the two techniques were also evaluated by using a 

limited  number  of control  points.   Using more control 

points will produce equally good results for the two methods 

since this allows more control over the deformation field. 

Figure 6 (a) shows the source and target images with 3 

control points placed on the head region.  The results of the 

two registration techniques can be seen in the Figure 6 (b) 

and (c). A visual inspection of the two transformations 

showed that the MLS algorithm produces a qualitatively 

better image than the TPS method. 

The MLS transformation was observed to map the source to 

the target image with minimal stretching, due to its as-rigid-

as-possible transformation ability, while the TPS 

transformation was observed to cause more stretching across 

shape. 

If the number of control points selected are less or if they are 

not uniformly distributed the Thin Plate Spline (TPS) 

registration algorithm fails. But in both the scenarios MLS 

technique will produce visually good results than TPS.  

6. CONCLUSIONS 
 In this work we have applied an interpolating non-rigid 

registration technique i.e., Moving Least Squares  and 

compared the results both quantitatively and qualitatively 

with another point based technique i.e., Thin Plate Splines. 

MLS technique was found to be a good candidate for non-

rigid registration for a given number of control points than 

thin plate splines.  A theoretical nicety of the MLS technique 

is that the deformation field is as rigid as possible, given the 

constraint that the control points are to be interpolated. 

 Figure 6 (a) Source and Target Image with 3 Pivots 
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Figure 6 (b)                             Figure 6 (c)  

Registered Source- ML      Registered Source -TPS 

This can offer advantages over other non-rigid registration 

methods, particularly those where bony structures should be 

minimally deformed during registration. Non-rigid 

registrations often produce unwanted stretching in the 

images and the unpredictable nature of the deformation field 

poses a major drawback which makes an algorithm with the 

ability to produce as-rigid-as-possible transformations 

attractive. The as-rigid-as-possible nature of the MLS 

technique thus makes it a suitable candidate for non-rigid 

registrations as it provides a transformation that maintains 

the rigidity of structures that need to remain non-deformed, 

while producing local deformations. 

 The overall rigidity of the image is maintained 

better with the MLS method.   This can be seen clearly in the 

example of the 2D MR brain images taken from the same 

patients.  Certain structures of the brain in the source image 

is deformed to match the target image while the other 

regions of the image remain minimally affected thus 

maintaining the global rigidity while performing local 

deformations. The results show that there are no unwanted 

stretching and shearing in the image. This is because the 

effect of the control points on each pixel location is 

weighted by a weight function. The results for the 

registration of 2D MR human brain images of different 

patients is used for qualitative comparison.  A quantitative 

evaluation is done by comparison of the target registration 

error (TRE).It shows that the MLS method has lower error 

values. Selecting the control points forms an important 

aspect of image registration.   Thus it becomes necessary to 

select these control points as accurately as possible. Any 

error in this placing of points affects the final registration 

result.  This is more pronounced in case of the TPS 

transformation as each point has a global effect on the 

deformation field.  From the results obtained for the MLS 

transformation we observed that the as-rigid-as-possible 

nature of transformation produces an acceptable deformation 

even if one or two control points are not placed accurately.   

This is because of the weighting function on the least 

squares error function.  This weighting function ensures that 

the effect of the control point in regions far away from it is 

less affected. The MLS transformation involves computing 

the transformation at each point in the image or volume.  

This leads to a longer computation time though it produces 

good results.  One way to reduce the computation time 

would be to decimate the image with a grid and computing 

the transformation only at the grid vertices and interpolating 

the other point in the image using an interpolation technique 

like bilinear interpolation. 

The MLS method can be used for producing even better 

registration results. In the future we would like to evaluate 

the performance of the MLS algorithm by modifying the 

weight parameter. Study can also be made by examining the 

results by using different distance functions to see the 

variation of rigidity in the deformation.  Another area of 

interest would be to study the effect of perturbation of the 

control points. Research can be carried out in future to find 

out ways for optimizing the MLS algorithm by automating 

the process of control point selection. 
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