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ABSTRACT 

The fast development of digital image processing leads to the 

growth of feature extraction of images which leads to the 

development of Image fusion. Image fusion is defined as the 

process of combining two or more different images into a new 

single image retaining important features from each image with 

extended information content. There are two approaches to image 

fusion, namely Spatial Fusion and Transform fusion. In Spatial 

fusion, the pixel values from the source images are directly 

summed up and taken average to form the pixel of the composite 

image at that location. Transform fusion uses transform for 

representing the source images at multi scale. The most common 

widely used transform for image fusion at multi scale is Wavelet 

Transform since it minimizes structural distortions. But, wavelet 

transform suffers from lack of shift invariance & poor 

directionality and these disadvantages are overcome by Stationary 

Wavelet Transform and Dual Tree Wavelet Transform. The 

conventional convolution-based implementation of the discrete 

wavelet transform has high computational and memory 

requirements. Lifting Wavelets has been developed to overcome 

these drawbacks.   The Multi-Wavelet Transform of image signals 

produces a non-redundant image representation, which provides 

better spatial and spectral localization of image formation than 

discrete wavelet transform. And there are three levels of image 

fusion namely Pixel level, Area level and region level. This paper 

evaluates the performance of all levels of multi focused image 

fusion of using Discrete Wavelet Transform, Stationary Wavelet 

Transform, Lifting Wavelet Transform, Multi Wavelet Transform, 

Dual Tree Discrete Wavelet Transform and Dual Tree Complex 

Wavelet transform in terms of various performance measures. 
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1. INTRODUCTION 

Image fusion is defined as the process of combining two or more 

different images into a new single image retaining important  

 

features from each image with extended information content. For 

example, IR and visible images may be fused as an aid to pilots 

landing in poor weather or microwave and visible images may be 

fused to detect weapons or CT and MRI images may be fused as 

an aid to medical diagnosis. The fusion process must satisfy the 

following requirements such as it should preserve all relevant 

information in the fused image, should suppress noise and should 

minimize any artifacts in the fused image. There are two 

approaches to image fusion, namely Spatial Fusion and Transform 

fusion. In Spatial fusion, the pixel values from the source images 

are summed up and taken average to form the pixel of the 

composite image at that location [1]. Transform fusion use 

pyramid or Wavelet Transform (WT) for representing the source 

image at multi scale. The most widely used transform for image 

fusion at multi scale is Discrete Wavelet Transform (DWT) since 

it minimizes structural distortions. But, DWT suffers from lack of 

shift invariance & poor directionality and these disadvantages are 

overcome by Stationary Wavelet Transform (SWT), Dual Tree 

Discrete Wavelet Transform (DTDWT) and Dual Tree Complex 

Wavelet Transform (DTCWT). The conventional convolution-

based implementation of the discrete wavelet transform has high 

computational and memory requirements. Lifting Wavelet 

Transform (LWT) has been developed to overcome these 

drawbacks.   The Multi-Wavelet Transform (MWT) of image 

signals produces a non-redundant image representation, which 

provides better spatial and spectral localization of image 

formation than discrete wavelet transform There are three levels 

in multi resolution fusion scheme namely Pixel level fusion, area 

level fusion and region level fusion. The performance measures 

which can be computed independently of the subsequent tasks 

express the successfulness of an image fusion technique by the 

extent that it creates a composite image that retains salient 

information from the source images while minimizing the number 

of artifacts or the amount of distortion that could interfere with 

interpretation. In this paper, it is proposed to evaluate the 

performance of all levels of multi focused image fusion using 

DWT, SWT, LWT, MWT, DTDWT and DTCWT in terms of 

various performance measures like Root Mean Square Error 

(RMSE), Peak to Signal Noise Ratio (PSNR), Quality Index (QI) 

and Normalized Weighted Performance Metric (NWPM). 

2. WAVELET TRANSFORM THEORY 

Wavelet theory and wavelet analysis is a relatively recent branch 

of mathematics. The first wavelet was developed by Alfred Haar 

in 1909. The Haar wavelet belongs to the group of wavelets 

known as Daubechies wavelets, which are named after Ingrid 

Daubechies, who proved the existence of wavelet families whose 
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scaling functions have certain useful properties, namely compact 

support over an interval, at least one nonvanishing moment, and 

orthogonal translates. Because of its simplicity, the Haar wavelet 

is useful for illustrating the basic concepts of wavelet theory but 

has limited utility in applications. The wavelet function ψ(x) and 
scaling function φ(x) of Haar wavelet is presented in figure1.  

 

Figure 1. The wavelet and scaling function of Haar wavelet 

Various researchers further developed the concept of wavelets 

over the next half century but it was not until the 1980's that the 

relationships between quadrature mirror filters, pyramid 

algorithms, and orthonormal wavelet bases were discovered, 

allowing wavelets to be applied in signal processing. Over the 

past decade, there has been an increasing amount of research into 

the applications of wavelet transforms to remote sensing, 

particularly in image fusion. It has been found that wavelets can 

be used to extract detail information from one image and inject it 

into another, since this information is contained in high 

frequencies and wavelets can be used to select a set of frequencies 

in both time and space. The resulting merged image, which can in 

fact be a combination of any number of images, contains the best 

characteristics of all the original images. 

Wavelets can be described in terms of two groups of functions: 

wavelet functions and scaling functions. It is also common to refer 

to them as families: the wavelet function is the “mother” wavelet, 

the scaling function is the “father” wavelet, and transformations of 

the parent wavelets are “daughter” and “son” wavelets. Generally, 

a wavelet family is described in terms of its mother wavelet, 

denoted as ψ(x). The mother wavelet must satisfy certain 

conditions to ensure that its wavelet transform is stably invertible. 

These conditions are: 

∫
∫
∫
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The conditions specify that the function must be an element of 

L2(R), and in fact must have normalized energy, that it must be an 

element of L1(R), and that it have zero mean. The third condition 

allows the addition of wavelet coefficients without changing the 

total flux of the signal. Other conditions might be specified 

according to the application. For example, the wavelet function 

might need to be continuous, or continuously differentiable, or it 

might need to have compact support over a specific interval, or a 

certain number of vanishing moments. Each of these conditions 

affects the results of the wavelet transform. To apply a wavelet 

function, it must be scaled and translated. Generally, a 

normalization factor is also applied so that the daughter wavelet 

inherits all of the properties of the mother wavelet. A daughter 

wavelet ψa,b(x) is defined by the equation, 

)/)(()( 2/1

, abxaxba −Ψ=Ψ −
                      (2) 

where a, b∈R and a≠0; a is called the scaling or dilation factor 

and b is called the translation factor. In most practical applications 

it is necessary to place limits on the values of a and b. A common 

choice is  a=2-j and b=2-jk, where j and k are integers. The 

resulting equation is 

)2(2)( 2/1

, kxx j

kj −Ψ=Ψ                           (3) 

This choice for dilation and translation factors is called a dyadic 

sampling. Changing j by one corresponds to changing the dilation 

by a factor of two, and changing k by one corresponds to a shift of 

2−j. Figure  3 uses the Haar wavelet to illustrate the relationship of 

daughter wavelets to the mother wavelet and the effect of varying 

dilation and translation for both the general equation and the 

dyadic equation. The mother wavelet is ψ1,0(x) in Fig. 3a and 

ψ0,0(x) in Fig. 3b. Non-integer values are used for j and k in one 

example in Fig. 3b to allow direct comparison with ψ0.5, 1.5(x) in 

Fig. 3a. In discrete wavelet transforms, a scaling function, or 

father wavelet, is needed to cover the low frequencies. If the 

mother wavelet is regarded as a high pass filter then the father 

wavelet, denoted as ϕ(x), should be a low pass filter. To ensure 

that this is the case, it cannot have any vanishing moments. It is 

useful to specify that, in fact, the father wavelet have a zeroth 

moment, or mean, equal to one: 

∫ =1)( dxxφ                  (4) 

In mathematical terms, φ(x) is chosen so that the set {φ (x−k), 
k∈Z} forms an orthonormal basis for the reference space V0. A 

subspace Vj is spanned by 

}{ Zkkxx j

kj ∈−= ),2(2)( 2/1

, φφ . Multiresolution analysis 

makes use of a closed and nested sequence of subspaces 

{Vj}j∈Z,, which is dense in L2 (R): each subsequent subspace is 

at a higher resolution and contains all the subspaces at lower 

resolutions. Since the father wavelet is in V0, it, as well as the 

mother wavelet, can be expressed as linear combinations of the 

basis functions for V1, φ1,k(x): 

∑=
k

kik xlx )()( ,φφ                 (5) 
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The set }{ Zkkxx j

kj ∈−= ),2(2)( 2/1

, φφ then forms a basis 

for Wj, with Wj being the orthogonal complement to Vj and 

{Wj}j∈Z forming a basis for L2 (R). In practice, neither the 

scaling function nor the wavelet function is explicitly derived. 

Provided that the wavelet function has compact support, the 

scaling function is equivalent to a scaling filter and it is sufficient 

to determine the filter coefficients. The coefficients lk in Eq. (5) 
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form this scaling, or low-pass, filter and the coefficients hk in Eq. 

(6) form the wavelet, or high-pass, filter To ensure that a signal 

can be exactly reconstructed from its decomposition, the scaling 

coefficients and wavelet coefficients must form a quadrature 

mirror filter.   

 

Figure 2. Mother wavelets and Daughter Wavelets 

a. Daughter Wavelets according to equation 2 

b.  Daughter Wavelets according to equation 3 

 

3. DISCRETE WAVELET TRANSFORM 
Wavelet transforms provide a framework in which a signal is 

decomposed, with each level corresponding to a coarser 

resolution, or lower frequency band. There are two main groups of 

transforms, continuous and discrete. Discrete transforms are more 

commonly used and can be subdivided in various categories. 

Although a review of the literature produces a number of different 

names and approaches for wavelet transformations, most fall into 

one of the following three categories: decimated, un-decimated, 

and non-separated. A continuous wavelet transform is performed 

by applying an inner product to the signal and the wavelet 

functions. The dilation and translation factors are elements of the 

real line. For a particular dilation a and translation b, the wavelet 

coefficient Wf (a,b) for a signal f can be calculated as 

∫== dxxxffbaW babaf )()(,),( ,, ψψ  (7) 

Wavelet coefficients represent the information contained in a 

signal at the corresponding dilation and translation. The original 

signal can be reconstructed by applying the inverse transform: 
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∞

∞−

∞

∞−

=
2, )(),(

1
)(

a

da
dbxbaW

c
xf baf

w

ψ  (8) 

where Cψ is the normalization factor of the mother wavelet. 

Although the continuous wavelet transform is simple to describe 

mathematically, both the signal and the wavelet function must 

have closed forms, making it difficult or impractical to apply. The 

discrete wavelet is used instead. The term discrete wavelet 

transform (DWT) is a general term, encompassing several 

different methods. It must be noted that the signal itself is 

continuous; discrete refers to discrete sets of dilation and 

translation factors and discrete sampling of the signal. For 

simplicity, it will be assumed that the dilation and translation 

factors are chosen so as to have dyadic sampling, but the concepts 

can be extended to other choices of factors. At a given scale J, a 

finite number of translations are used in applying multi resolution 

analysis to obtain a finite number of scaling and wavelet 

coefficients. The signal can be represented in terms of these 

coefficients as 

∑ ∑∑
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where cJkare the scaling coefficients and djk are the wavelet 

coefficients. The first term in Eq. (8) gives the low-resolution 

approximation of the signal while the second term gives the 

detailed information at resolutions from the original down to the 

current resolution J. The process of applying the DWT can be 

represented as a bank of filters, as in figure 3.  In case of a 2D 

image, a single level decomposition can be performed resulting in 

four different frequency bands namely LL, LH, HL and HH sub 

band and an N level decomposition can be performed resulting in 

3N+1 different frequency bands and it is shown in figure 3. At 

each level of decomposition, the image is split into high frequency 

and low frequency components; the low frequency components 

can be further decomposed until the desired resolution is reached. 

When multiple levels of decomposition are applied, the process is 

referred to as multi-resolution decomposition. In practice when 

wavelet decomposition is used for image fusion, one level of 

decomposition can be sufficient, but this depends on the ratio of 

the spatial resolutions of the images being fused. The 

conventional DWT can be applied using either a decimated or an 

un-decimated algorithm. In the decimated algorithm, the signal is 

down sampled after each level of transformation. In the case of a 

two-dimensional image, down-sampling is performed by keeping 

one out of every two rows and columns, making the transformed 

image one quarter of the original size and half the original 

resolution. The decimated algorithm can therefore be represented 

visually as a pyramid, where the spatial resolution becomes 

coarser as the image becomes smaller. The decimated algorithm is 

not shift-invariant, which means that it is sensitive to shifts of the 

input image. The decimation process also has a negative impact 

on the linear continuity of spatial features that do not have a 
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horizontal or vertical orientation. These two factors tend to 

introduce artifacts when the algorithm is used in applications such 

as image fusion. 

 
Figure 3.  2D-Discrete Wavelet Transform 

 

4. STATIONARY WAVELET TRANSFORM 
The Discrete Wavelet Transform is not a time- invariant 

transform. The way to restore the translation invariance is to 

average some slightly different DWT, called un-decimated DWT, 

to define the stationary wavelet transform (SWT).  It does so by 

suppressing the down-sampling step of the decimated algorithm 

and instead up-sampling the filters by inserting zeros between the 

filter coefficients. Algorithms in which the filter is up-sampled are 

called “à trous”, meaning “with holes”. As with the decimated 

algorithm,  the filters are applied first to the rows and then to the 

columns. In this case, however, although the four images 

produced (one approximation and three detail images) are at half 

the resolution of the original, they are the same size as the original 

image. The approximation images from the un-decimated 

algorithm are therefore represented as levels in a parallelepiped, 

with the spatial resolution becoming coarser at each higher level 

and the size remaining the same. The un-decimated algorithm is 

redundant, meaning some detail information may be retained in 

adjacent levels of transformation. It also requires more space to 

store the results of each level of transformation and, although it is 

shift-invariant, it does not resolve the problem of feature 

orientation. A previous level of approximation, resolution J−1, 

can be reconstructed exactly by applying the inverse transform to 

all four images at resolution J and combining the resulting images. 

Essentially, the inverse transform involves the same steps as the 

forward transform, but they are applied in the reverse order. In the 

decimated case, this means up-sampling the approximation and 

detail images and applying reconstruction filters, which are 

inverses of the decomposition scaling and wavelet filters, first by 

columns and then by rows. For example, first the columns of the 

Vertical Detail image would be up-sampled and the inverse 

scaling filter would be applied, then the rows would be up-

sampled and the inverse wavelet filter would be applied. The 

original image is reconstructed by applying the inverse transform 

to each deconstructed level in turn, starting from the level at the 

coarsest resolution, until the original resolution is reached. 

Reconstruction in the un-decimated case is similar, except that 

instead of up-sampling the images, the filters are down-sampled 

before each application of the inverse filters. Shift-invariance is 

necessary in order to compare and combine wavelet coefficient 

images. Without shift-invariance, slight shifts in the input signal 

will produce variations in the wavelet coefficients that might 

introduce artifacts in the reconstructed image. Shift-variance is 

caused by the decimation process, and can be resolved by using 

the un-decimated algorithm. Let us recall that the DWT basic 

computational step is a convolution followed by decimation. The 

decimation retains even indexed elements. But the decimation 

could be carried out by choosing odd indexed elements instead of 

even indexed elements. This choice concerns every step of the 

decomposition process, so at every level we chose odd or even.  

 

 

 

If we perform all the different possible decompositions of the 

original signal, we have 2J different decompositions, for a given 

maximum level J. Let us denote by j = 1 or 0 the choice of odd or 

even indexed elements at step j. Every decomposition is labeled 

by a sequence of 0's and 1's:  = 1, J. This transform is called the 

decimated DWT.  It is possible to calculate all the decimated 

DWT for a given signal of length N, by computing the 

approximation and detail coefficients for every possible sequence. 

The SWT algorithm is very simple and is close to the DWT one. 

More precisely, for level 1, all the decimated DWT for a given 

signal can be obtained by convolving the signal with the 

appropriate filters as in the DWT case but without down 

sampling. Then the approximation and detail coefficients at level 

1 are both of size N, which is the signal length. The general step j 

convolves the approximation coefficients at level j-1, with up 

sampled versions of the appropriate original filters, to produce the 

Figure 4. 2D Stationary Wavelet Transform. 
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approximation and detail coefficients at level j. This can be 

visualized in the following figure 4. 

 

4. MULTIWAVELET TRANSFORM 

Multiwavelets are very similar to wavelets but have some 

important differences. In particular, whereas wavelets have an 

associated scaling function ϕ(t) and wavelet function ψ(t), 
multiwavelets have two or more scaling and wavelet functions. 

For notational convenience, the set of scaling functions can be 

written using the vector notation ϕ(t) = [ϕ1(t) ϕ2(t) .,. ϕr (t)] 
T, 

where ϕ (t) is called the multi scaling function. Likewise, the 

multiwavelet function is defined from the set of wavelet functions 

as ψ(t) = [ψ1(t)  ψ2(t)  …. ψr(t)]
T. When r = 1, ψ (t) is called a 

scalar wavelet, or simply wavelet. While in principle r can be 

arbitrarily large, the multiwavelets studied to date are primarily 

for = 2. 
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However, {Hk} and {Gk} are matrix filters, Hk and Gk are r x r  

matrices for each integer k. The matrix elements in these filters 

provide more degrees of freedom than a traditional scalar wavelet. 

These extra degrees of freedom can be used to incorporate useful 

properties into the multiwavelet filters, such as orthogonality, 

symmetry, and high order of approximation. The key is to figure 

out how to make the best use of these extra degrees of freedom. 

During a single level of decomposition using discrete wavelet 

transform, the 2D image data is replaced with four blocks 

corresponding to the sub-bands representing either low pass or 

high pass filtering in each direction. The multi wavelet transform 

have two channels, so there will be two sets of scaling coefficients 

and two sets of wavelet coefficients. 

 

Figure 5. 2D Discrete and Multi Wavelet Transform 

 

5. LIFTING WAVELET TRANSFORM 

The conventional convolution-based implementation of the 

discrete wavelet transform has high computational and memory 

requirements. Recently, the lifting-based implementation of the 

discrete wavelet transform has been proposed to overcome these 

drawbacks and named as Lifting Wavelet Transform (LWT). 

LWT is also called second generation wavelet transform.  It is a 

three-step filtering process: split, prediction and update. The 

original input signal is fk. It is transformed into signal of high pass 

hk and low pass signal. lk.  In the split step, the original signal is 

split into two non-overlap subsets, namely even sequence and odd 

sequence. In the prediction step, even sequences are used to 

predict odd sequences. The prediction error forms the 

corresponding high-pass subband. In the update step, an 

approximation subband is obtained by updating even sequences 

with the scaled high-subband samples, which forms a low-pass 

subband. Backward transform is easy to find and has the same 

complexity as the forward transform. The two-step lifting 

transform can be generally described as 
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where fk[x] is the sequence of input data to be processed, hk and lk 

are resulting high-pass and low-pass sequences respectively, pi 

and uj are prediction and update coefficients of filters respectively.  

 

Figure 6. Lifting Wavelet Transform 

 

6. DUAL TREE WAVELET TRANSFORM 

The Dual Tree Wavelet Transform (DTWT) overcomes the 

limitations of DWT like poor directionality and shift invariance. It 

can be used to implement 2D wavelet transforms that are more 

selective with respect to orientation than is the separable 2D 

DWT. For example, the 2D DTWT transform produces six 

subbands at each scale, each of which is strongly oriented at 

distinct angles. There are two versions of the 2D DTWT 

transform namely Dual Tree Discrete Wavelet Transform 

(DTDWT) which is 2-times expansive, and Dual Tree Complex 

Wavelet Transform (DTCWT) which is 4-times expansive.  

Dual Tree Discrete Wavelet Transform 

The DTDWT of an image is implemented using two critically 

sampled separable DWT in parallel. Then for each pair of 

subbands, the sum and difference are taken. The six wavelets 

associated with DTDWT are illustrated in figure 2 as gray scale 

images.  Note that each of the six wavelet are oriented in a distinct 

direction. Unlike the critically-sampled separable DWT, all of the 

wavelets are free of checker board artifact. Each subband of the 2-

D dual-tree transform corresponds to a specific orientation. 

Dual Tree Complex Wavelet Transform 

The DTCWT also gives rise to wavelets in six distinct directions 

and two wavelets in each direction. In each direction, one of the 

two wavelets can be interpreted as the real part of a complex 

valued wavelet, while the other wavelet can be interpreted as the 

imaginary part of a complex-valued wavelet. Because the 

complex version has twice as many wavelets as the real version of 

the transform, the complex version is 4-times expansive. The 
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DTCWT transform is implemented as four critically sampled 

separable DWTs operating in parallel. However, different filter 

sets are used along the rows and columns. As in the real case, the 

sum and difference of subband images is performed to obtain the 

oriented wavelets. The twelve wavelets associated with the real 

2D dual-tree DWT are illustrated in the following figure as gray 

scale images. 

 

Figure 7. Directionality of DTDWT 

 

Figure 8.  Directionality of DTCWT 

The wavelets are oriented in the same six directions as those of 

DTDWT. However, there are two in each direction. If the six 

wavelets displayed on the first row are interpreted as the real part 

of complex wavelets, then the six wavelets displayed on the 

second row can be interpreted as the complex part of complex 

wavelets.  

 
Figure 9.  Four levels of Complex Wavelet Tree for real 1D 

input signal x 

The filter bank structure of the DTCWT has CWT filters which 

have complex coefficients and generate complex output samples. 

This is shown in figure 9, in which each block is a complex filter 

and includes down sampling by 2 (not shown) at its outputs. Since 

the output sampling rates are unchanged from the DWT, but each 

sample contains a real and imaginary part, a redundancy of 2:1 is 

introduced. The complex filters may be designed such that the 

magnitudes of their step responses vary slowly with input shift 

only the phases vary rapidly. The real part is an odd function 

while the imaginary part is even. The level 1 filters, Lop and Hip 

in figure 9, include an additional pre filter, which has a zero at z 

=-j, in order to simulate the effect of a filter tree extending further 

levels to the left of level 1. Extension of complex wavelets to 2-D 

is achieved by separable filtering along rows and then columns. 

However, if row and column filters both suppress negative 

frequencies, then only the first quadrant of the 2-D signal 

spectrum is retained. Two adjacent quadrants of the spectrum are 

required to represent fully a real 2-d signal, so we also need to 

filter with complex conjugates of either the row or column filters. 

This gives 4:1 redundancy in the transformed 2-D signal. If the 

signal exists in m-d (m > 2), then further conjugate pairs of filters 

are needed for each dimension leading to redundancy of 2m:1. The 

most computationally efficient way to achieve the pairs of 

conjugate filters is to maintain separate imaginary operators, j1 

and j2, for the row and column processing, as shown in figure 8. 

This produces 4-element `complex' vectors: {r, j1, j2, j1j2} (where r 

means `real'). Each   4-vector can be converted into a pair of 

conventional complex 2-vectors, by letting j1 = j2 = j in one case 

and j1 = -j2 = -j in the other case. This corresponds to sum and 

difference operations on the {r, j1j2} and {j1,j2} pairs in the 

summation blocks in figure 6 and produces two complex outputs, 

corresponding to first and second quadrant directional filters 

respectively. Complex filters in multiple dimensions provide true 

directional selectivity, despite being implemented separably, 

because they are still able to separate all parts of the m-D 

frequency space. For example a 2D DTCWT produces six band 

pass sub-images of complex coefficients at each level, which are 

strongly oriented at angles of ± 15o, ± 45o, ± 75o, shown by the 

double-headed arrows in figure 10. 

 
Figure 10. Two levels of the Complex Wavelet tree for a real 2-D 

input image x giving 6 directional bands at each level. 
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7. WAVELET BASED IMAGE FUSION 

Wavelet transform is first performed on each source images, and 

then a fusion decision map is generated based on a set of fusion 

rules. The fused wavelet coefficient map can be constructed from 

the wavelet coefficients of the source images according to the 

fusion decision map. Finally the fused image is obtained by 

performing the inverse wavelet transform. Let A (x, y) and B (x, 

y) are images to be fused, the  decomposed low frequency sub 

images of A (x, y) and B (x, y) be respectively lAJ
 (x, y) and lBJ 

(x, y) ( J is the parameter of resolution) and the decomposed high 

frequency sub images of A (x,y) and B(x,y) are hAj
k (x, y) and 

hBj
k (x, y). ( j is the parameter of resolution and j=1,2,3….J for 

every j,  k=1,2,3..). Then, the fused high and low frequency sub-

images Fj
k (x, y) are given as Fj

k (x, y) = Aj
k (x, y) if G(Aj

k (x, y)) 

>= G(Bj
k (x, y)), else Fj

k (x, y)  = Bj
k (x, y) and FJ (x, y) = lAJ

 (x, 

y) if G(AJ (x, y)) >= G(BJ (x, y)), else FJ (x, y)  =  lBJ
 (x, y) where 

G is the activity measure and Fj
k (x, y) & FJ (x, y) are used to 

reconstruct the fused image F′(x, y) using the inverse wavelet 
transform. The block diagram representing the wavelet based 

image fusion is shown in figure 11.  

8. LEVELS IMAGE FUSION  
Activity measure for image fusion is calculated using three levels 

namely pixel level, area level and region level. 

 

 

Pixel level fusion uses the activity measure of pixel of interest to 

select the pixel to form the fused wavelet coefficients. In Pixel 

level fusion, we can take the average value of the pixel from the 

particular location of both the source images to form the pixel 

value of the fused image. However when this method is applied, 

there is chances of reduction of contrast of features uniquely 

presented in either of the images. As an alternative, the pixel 

which is having the highest gray level can be selected to form the 

fused image. Limitation is in the fusion of patterns that have 

roughly equal salience but opposite contrast, which results 

pathological [1]. Since larger absolute transform coefficients 

correspond to sharper brightness changes, the good integration 

rule is to select, at every point in the transform domain, the 

coefficients whose absolute values are higher [2].   

 Since the useful features in the image usually are larger than one 

pixel, the pixel by pixel selection rule of pixel level fusion may 

not be the most appropriate method. In area level of fusion 

algorithm, an area based selection rule is used. The images are 

first decomposed into sub bands using wavelet transform. Then 

the feature of each image patch over 3X3 or 5X5 window is 

computed as an activity measure associated with the pixel 

centered in the window[2]. This paper uses maximum absolute 

value over 3x3 window as the activity measure to select the pixel 

from source images to form the fused wavelet coefficient. 

Region level image fusion, the activity measure is calculated over 

the region after the source images are segmented into various 

regions[5]. After creating the pyramid image using a wavelet 

transform, canny edge detector is applied to the lowest resolution 

approximation sub band of the image. After the edge detection, 

region segmentation is performed based on the edge information 

using region labeling algorithm. In the labeled image, zero 

corresponds to the edges and other different value represents 

different regions in the image. The activity level of region k in 

source image ‘n’, Aln(k) is given by  

∑
≤≤

=
kNj1K

n Pj 
N

1
  (k)Al                                     (12) 

where Nk is the total number of pixels in region k, Pj is the activity 

intensity of pixel j in region k, which is the absolute value of pixel 

j in that region. Next step is to produce the decision map. The size 

of the decision map is the same as the size of the region image, 

which is the same size as the approximation band in the wavelet 

coefficient map. Each pixel in the decision map corresponds to a 

set of wavelet coefficients in each frequency band of all 

decomposition levels. Once the decision map is determined the 

mapping is determined for all the wavelet coefficients. Suppose, 

there are two registered images A and B to be fused then the 

decision map will be a binary image. For each pixel in this image, 

assume that value “1” means image A should be used instead of 

image B. Likewise the value “0” means image B should be used 

instead of image A. If a given pixel in the decision map is a “1” 

the all the wavelet coefficients corresponding to this pixel are 

taken from image A. If the pixel is “0” all the wavelet coefficients 

corresponding to this pixel are taken from image B. For a specific 

pixel of the decision map, P(i,j), this pixel may be 1).In region m 

of image A, and in region n of image B. 2).An edge point in one 

image, and in certain region in the other image 3).an edge point in 

both image. The value of each pixel in decision map is assigned 

according to the criterions like small regions preferred over large 

regions, edge points preferred over non edges points, high 

activity-level preferred over low activity level, decision on non-

edge points first and consider their neighbors when making the 

decision on edge points.  

9. EVALUATION CRITERIA 
There are four evaluation measures are used in this paper, namely 

Root Mean Square Error (RMSE), Peak Signal to Noise Ratio 

(PSNR), Quality Index (QI)[3] and Normalized Weighted 

Performance Metric (NWPM)[4] which are given in the equations 

13,314,15 & 16 respectively. 
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Figure 11. Wavelet Based Image Fusion. 
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where A and B are the input images, R is the reference image, F is 

the fused image, a is the average value of A, b is the average value 

of B, QAF(i,j) and QBF(i,j) are the edge preservation values. 

10. EXPERIMENTAL WORK 
A pair of source images namely Pepsi of size 512x512 is taken. 

The pair of source images to be fused is assumed to be registered 

spatially. The images are wavelet transformed using the same 

wavelet, and transformed to the same number of levels. In this 

paper, “HAAR” base is used in all the methods. For taking the 

wavelet transform of the two images, readily available MATLAB 

routines are taken. In each sub-band, individual pixels of the two 

images are compared based on the fusion rule that serves as a 

measure of activity at that particular scale and space. A fused 

wavelet transform is created by taking pixels from that wavelet 

transform that shows greater activity at the level. The inverse 

wavelet transform is the fused image with clear focus on the 

whole image.  

11. RESULTS 
For the above mentioned method, image fusion is performed using 

DWT, SWT, MWT, LWT, DTDWT and DTCWT, their 

performance is measured in terms of Root Mean Square Errors, 

Peak Signal to Noise Ratio, Quality Index & Normalized 

Weighted Performance Metric  and the results are shown in figure 

4 and tabulated in table1.  

12. CONCLUSION 
This paper presents the comparison of all levels of fusion of multi 

focused images using DWT, SWT, LWT, MWT, DTDWT and 

DTCWT in terms of various performance measures.  DTCWT 

provides very good results both quantitatively and qualitatively 

for pixel level and area level fusion. LWT provides 

computationally efficient and better qualitative and quantitative 

results in region level fusion among DWT, SWT, MWT and 

LWT. Hence using these fusion methods, one can enhance the 

image with high geometric resolution. 
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Table 1. Performance Comparison of Wavelets 

 
 

 

Figure 8. Results of Image Fusion Using Wavelets 

a. Input Image 1 b. Input Image 2 c. Reference Image 

d. Fused Image using DWT e. Fused Image using SWT 

f. Fused Image using MWT g. Fused Image using LWT 

h. Fused Image using DTDWT i. Fused Image using DTCWT 


