
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

33

ABSTRACT
Various communication and computing tasks in the fields can be

integrated and applied in a distributed system. However, those

resources are heterogeneous and dynamic in nature, connecting a

broad range of resources. This study proposed a hybrid load

balancing policy to maintain performance and stability of

distributed system in Mobile services. Proposed work suggests to

opt the use of some of advanced and efficient technologies like

Multiagent. In this proposed implementation two models are

developed. The worker model is used to describe the workload

and its current distribution within the system. The master model

defines for a given algorithm at any instant of time and shows the

formal context for obtaining and evaluating the load distribution

decisions. Multiagent computing on a cluster of workstations is

widely envisioned to be a powerful paradigm for building useful

distributed applications. The Mobile agents of the system span

across all the machines of a cluster. Just like the case of traditional

distributed systems. With different characteristics between

ordinary processes and agents, it is interesting and useful to

investigate whether conventional load-balancing strategies are also

applicable and sufficient to cope with the newly emerging needs,

such as coping with temporally continuous agents, devising a

performance metric for multi agent systems, and taking into

account the vast amount of communication and interaction among

agent. This work discusses the above issues with reference to

agent properties and load balancing techniques and outlines the

space of load-balancing design choices in the arena of multi agent

computing. The proposed algorithm works by associating a credit

value with each agent. The credit of an agent depends on its

affinity to a machine, its current workload, its communication

behavior, and mobility. When a load imbalance occurs, the credits

of all agents are examined and an agent with a lower credit value

is migrated to relatively lightly loaded machine in the system.

Proposed work considers the problem of load balancing to

minimize the cost of dynamic computations, including the cost of

migrations. We propose the Ripple load balancing paradigm, the

load balancing service presented is a generic tool for enhancing

performance of accessing distributed objects from the WAP

interface.

Index Terms
Load balancing, Multiagent, WAP

INTRODUCTION
With the growth of wireless subscribers‟ demands, service

providers and operators face the challenge of maximizing their

network capabilities with their existing infrastructure. This paper

develops our framework to optimize the use of network resources

to answer subscribers‟ demands and to reconfigure services

deployment on network when necessary. To achieve the same

minimum conditions is that a load balancing algorithm should

meet are stability, the load eventually reaches a fixed distribution,

and levelness, the load at the processors is equal at the fixed

distribution.

Multiagent systems have recently been widely employed in

developing scalable software system on heterogeneous networks.

Indeed, using a cross-platform language, distributed systems based

on agents are very attractive because of the inherent scalability

and autonomy [3]. Viewing the software agents as “brokers” and

interactions among agents as the exchange of “services”, a

multiagent closely resembles a community of human beings doing

business with each other, and is widely envisioned to be able to

perform many commercial activities on behalf of human being.

First motivation behind this work is given (section II).we will

study the classification of load balancing algorithm (section III).

Then, we present the concept of multiagents and mobile agents

and their use in load balancing (Section IV). We introduce the

ripple load balancing, which has several advantages (Section V).

Web architecture with its interface to WAP and objectives are

discussed in Section VI.

A. Motivation

Locally distributed system consists of a collection of autonomous

computers connected by local area network. Users submit tasks at

their host computers for processing. The need for load distributing

arises in such environments because, due to the random arrival of

tasks and their random CPU service time requirements there good

possibility that several computers are heavily loaded (hence

suffering from performance degradation) while others are idle or

lightly loaded.

Clearly if the workload at some computers is typically heavier

than that at others or if some processors execute tasks at slower

rate than others, this situation is likely to occur often. The

usefulness of load distributing is of as obvious in system in which

all processors are equally powerful and over the long term, have

equally heavy workload.

Statistical fluctuation in arrival of tasks and tasks services time

requirements at computers lead to high probability that at least

one computer is idle while a task is waiting for service elsewhere.

Their analysis can be presented as model of computer in a

distributed system by M/M/1 server.

Consider a system of N identical and independent M/M/1 servers.

By identical we mean that all servers have the same task arrival

and service rates.

Multi-agent Optimized Load Balancing Using

Spanning Tree for Mobile Services
Dr. Pradeep Kumar Sinha, Sunil R Dhore

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

34

We can find out the values of P for various values of server

 utilization and number of server N

1. For moderate system utilization (=0.5 to 0.8) the value

of P is High, indicating good potential for performance

improvement through load distribution.

2. At high system utilization the value of P is low as more

servers are likely to busy, which indicates lower

potential for load distribution.

3. At low system utilization the value P is low as server are

idle

Another observation is that as the number of servers in system

increases, P remains high even at high system utilization.

B. Classification of load balancing algorithms

C. Anatomy of load balancing:

Resources are distributed in different geographic locations.

Stability and performance of each resource is different. In other

words, newly distributed system is dynamic and resources are

composed of heterogeneous resources. Thus, an important problem

is resources selection and task distribution when task are

executed. This study proposed a hybrid load balancing policy,

which selects effective node sets in the stage of static load

balancing to lower the odds of selecting ineffective nodes and

makes use of the stage of dynamic load balancing. When a node

status changes, a new substitute can be located in the shortest time

to maintain the execution performance of the system [1]

It has four components:

1. Transfer policy that determines whether a node is in a

suitable state to participate in a task transfer

2. Selection policy that determines which task should be

transferred.

3. Location policy that determines to which node a task

selected for transfer should be sent.

4. Information policy which is responsible for triggering

the collection of system state information.

A transfer policy typically requires information on the local nodes

state to make decision. A location policy, on the other hand is

likely to require information on the state of remote nodes to make

decisions.

D. Classification of load balancing algorithms

The allocation of workload in distributed systems has almost as

many views as one would like. The attempt to find suitable

structures to classify the different ways of solving this task can

therefore reflect the underlying model only. We can classify these

algorithms based on three models [2]: The load model is used to
describe the workload and its current distribution within the

system. The action model defines for a given algorithm at any

instant of time the eligible next step(s). And finally, the solution

model shows the formal context for obtaining and evaluating the

load distribution decisions. All three models and their

interrelationship can be compared with existing load distribution

approaches. The result of the investigation is the recommendation

that load distribution algorithms can be classified according the

five criteria: objectives, type and amount of used information, the

source of the distribution, the parameter time, and the initiating

instance.

E. Online distributed Multiagent computing

Multiagent systems have recently been widely employed in

developing scalable software systems on heterogeneous networks.

Indeed, using a cross platform language (such as java in most

cases), distributed system based on agents are very attractive

because of the inherent scalability and autonomy. Viewing the

software agents (usually in form of object) as “broker “ and the

interactions among as exchange of „services‟ a multiagent system

closely resembles a community of human beings doing business

with each other , and are widely envisioned to be able to perform

many commercial activities on behalf of human beings.

Agent‟s properties:

1. Reactive: responds in a timely fashion to changes in

environment.

2. Autonomous: exercises control over its own actions.

3. Goal oriented / Proactive: does not simply act in

response to the environment.

4. Temporally continuous: is continually running process.

5. Communicative / socially able: communicate with other

agents, perhaps including people.

6. Learning / Adaptive : changes in behavior based on its

past experience

Let,

 = be the utilization of each server

Then

 P0 = 1 - is probability that server is idle

Let,

P = be probability that the system is in a state in which at least

one task is waiting for service and at least one server is idle.

Then

 P = ()Q i H N-i

Where: Qi= probability that given a set of i servers are idle.

And H N-I= is the probability that given set (N-I) are not idle

N

i=1

N

i

HN-1 = {probability that (N-i) systems have at least one task}

– {probability that all (N-i) systems have exactly one task}.

Therefore:

P = 1 – (1-Po)N (1-PoN) - PoN (2-PoN)

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

35

7. Mobile: able to transport itself from one machine to

another.

8. Flexible : actions are not scripted

9. Cloning: duplicates itself to achieve better performance.

10. Character: believable personality and emotional state.

F. Credit based load balancing model

Credit based load balancing model, which aims at capturing some

of the necessary agents‟ characteristics. It lets us analyze the

dynamics of load balancing operation with respect multiagent

system.

In dynamic load balancing schemes, the two most important

policies are selection policy and location policy.

If selection policy is formulated carefully, the desired effects are

that the agent selected to migrate will not make the overall

situation worse by making the destination more overloaded than

the source and cost of the migration will be compensated by the

gain in performance. Likewise should the location policy be

properly planned, the overall system workload will be more

averaged after the migration.

The credit based load balancing model focuses on these two

policies.

We assign a numerical value called credit to every agent. The

credit indicates the tendency of the agent to remain undisturbed in

case migration is under consideration. To an agent, the higher its

credit, the its chance to stay at same machine, which is equivalent

to saying that its chances to be selected and migration is lower.

The credit of an agent increases if the following ways :

1. Its workload decreases

2. It communicates with other agents also residing at the

same machine or

3. It has a high affinity with locale machine. For example,

it requires special type of processors, I/O devices , or

large amount of data localized at the machine.

On the contrary, the credit of an agent decreases in the cases

below:

1. Its workload increases

2. It communicates with other agents residing at other

machines.

3. It has a high mobility, i.e. it can be migrated elsewhere

very easily, or

4. It has just sent or received an agent‟s message which

indicates that the agents will probably become busier in

a short while.

As interaction and communications among the agents continue the

credit of each agent‟s changes accordingly, such a credit can be

used in the selection policy, where the agents with the lowest

value identified and migrated.

The location policy first identifies which remote agent will

perform the most communication with the agent to be migrated.

The machine at which this remote agent resides is selected as

destination machine.

G. The Comet Algorithm

We assume an application is composed of agent‟s executable on

any of P machines of the cluster.

The structure of the application is modeled by the interdependence

relationships among the agents. More specifically, we use an

undirected graph to model the application structure. An undirected

graph is an appropriate generic model because a multi agent

application executes perpetually and produces results continuously

in response to user queries.

Time

Heavily loaded Link/Machine

Lightly loaded Link/Machine

Medium loaded Link/machine

 Fig 1: Iterative and dynamic nature of a multi agent

application and structure of agents

Load of an agent executing on machine is defined as the sum

of its computational load and communication load

Ui = Hi + Gi

Where :

Hi – Communication Load

Gi – Computational Load

The load Lk of machine mk is defined as the sum of all its

local agents load. More specifically

Lk = (wi + ui) where :

wi – Communication Load

ui – Computational Load

Computation

Remote

Communication

Computation

Remote

Communication

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

36

Goal of a load balancing algorithm is to minimize the

variance of the load among all the machines in the cluster,

this will turn minimize the average response time of serving

users queries.

H. Load Balancing With Mobile Agents

The mobile agent is autonomous software unit, capable to move

across the network and perform some defined actions on behalf of

its owner. They migrate from node to node and return to its home

node to report their results.

Mobile agents can be effectively used in many areas, for several

reasons, including improvements in latency and bandwidth of

client-server applications as well as reducing vulnerability to

network disconnection. Mobile agents' following features are

welcomed for load balancing and could be successfully utilized in

increasing system performance for the following reasons:

1.They reduce the network load (instead of all-to-all

communication, the agent visits all nodes in cyclic manner),

2. They encapsulate protocols (protocol for task

 exchange is encapsulated in the agent)

3.They execute asynchronously and autonomously (the

agent‟s creator is free after agent‟s creation and

dispatching),

14. They adapt dynamically (agent will react according to

current situation)

5. They are naturally heterogeneous (thus, load balancing could be

applied to heterogeneous systems)

6. They are robust and fault-tolerant (if a host or link is being shut

down, all agents could change their paths and continue their

operation on another host in the network).

During last several years, a few solutions for mobile agents based

load balancing have been introduced. Some of them originated

from behavioral patterns in the nature like ant‟s life and swarming

intelligence. Their basic idea is to apply manners of

communication and cooperation between animals to

communication and cooperation between mobile agents[6].

I. Ripple based algorithms for migration and

load balancing

We introduce a class of algorithms, called Ripple algorithms that

reach leveling in time linear in the diameter of the processor

graph. Ripple algorithms are based on the simple idea that if the

load in the network is initially balanced then, any load increase (or

decrease) in one processor should be equally distributed among all

the processors. We begin by describing the Ripple paradigm for a

linear processor array. In particular we present two algorithms;

The first algorithm, Tortoise, minimizes migration cost, and the

second algorithm, Hare, minimizes load imbalance cost [4].

The Ripple technique introduced here has many advantages;

its time to stability is O(d) where d is number of processors, it can

be viewed as both sender initiated and receiver initiated [25], and

its scheduling mechanism allows it to be very flexible.

J. Overview of proposed system

K. Proposed Load Balancing Systems Design:

All load balancing strategies involve the adjustment of the

Fig 2: Overview of Mobile Agent Based Load

Balancing Environment

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

37

distribution of the work load among the participating processors if

the distribution is expected to result in a reduction of the total

execution time. These potential reductions due to load balancing

need to be weighed against the overhead involved in monitoring

the progress of the computation, as well as the redistribution of

work load among the processor.

The design of a load balancing mechanisms should include the

following policies:

1. Information Gathering Policy: maintains the information about

workload at the nodes in cluster. The policy is made up of two

components: frequency of information exchange and the method

for dissemination of the information. There is a tradeoff between

having accurate information and minimizing the overhead. It also

includes the estimation and specification of workload, e.g.,

processor load, length of queue, storage utility etc.

2. Initiation Policy: determines who initiates the process of load

balancing. The initiator can be the source node, the destination

node, or both (symmetric initiations).

3. Job Transfer Policy: decides when the initiator should consider

reallocate the workload to be executed to other nodes. The

decision can be made based on only local state or by exchanging

global processor load information.

4. Selection Policy: determines which particular job to reallocate.

Non _preemptive policies select tasks from the set of jobs, which

are yet to begin execution. Preemptive policies expand this set to

include all jobs located at the processor.

5. Location Policy: determines to which servers the jobs should be

re-allocated. The simplest location is to choose a server at random.

More complicated policies use negotiation, where the initiator

negotiates with each member in cluster.

These policies must be represented and implemented in

appropriate system components.

Our proposed architecture is based on multi-agent system. Mobile

agents are software programs that can migrate from host to host in

a network carrying code, data and state of the execution. They

have the abilities to survive in disconnection network and reduce

the network latency. Therefore, we use mobile agent in

distribution of load in a cluster. They will serve as monitoring,

controlling and distributing of load and keeping the directory

service for the whole cluster nodes information.

L. Load Balancing Approaches for General

Web Architecture

 Client Tier Middleware Back Tier

Fig 3: General Web Application

The proposed solution to implement the Web Service Engine

(WSE) as introduced above covers several individual components

and a service management layer which can easily be adapted and

plugged into the existing service management of the specific

mobile agent platform:

Stub Generator SOAP messages transported through the network

as result of a web service invocation are typically exchanged

between a client and a server stub. With respect to the WSE

architecture, the server stub processes incoming messages and

triggers the associated service object by means of direct method

invocation. Vice versa, the client implements the service‟s

interface and starts communication with the associated server

stub, upon local method invocation. Thereby, the task of the stub

generator is twofold. On the server side, it extracts the specific

Java interface from a given service object, automatically generates

a corresponding syntactic WSDL description and creates a new

server stub, which is then associated with the service object. On

the client side, it transforms a given WSDL description into the

corresponding Java interface, and creates a client stub

implementing this interface. To realize automated and transparent

integration for Java-based systems, the stub generator must be

able to dynamically generate new stub objects during runtime

Web Service Gateway Server stubs created by the stub generator

have to be exposed by means of web service endpoints accessible

over the network. The web service gateway thereby implements

the specific transport protocols and serves as both, web server

enabling access to server stubs (e.g. over HTTP and HTTPS) as

well as web client used by client stubs as transport layer for the

transmission of SOAP messages.

Registry Service To make agent services visible by means of web

service discovery, the registry service transforms WSDL

descriptions created by the stub generator from a given service

object into appropriate UDDI business entities. These business

entities are subsequently be registered at a UDDI-compliant

registry. Furthermore, this service can be used to search for a web

service which is syntactically compatible to a given Java interface.

WSE Service The WSE Service wraps the above described

functionality and provides it via a simple interface which can

explicitly be used by mobile agents to either search for web

services, or to deploy and undeploy encapsulated service objects.

In both cases, the agent does not need to know anything about the

Web

Tier
Application

Tier

Web

Browser
Web

server

engine

service

service

service

 service

Data

Storage

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

38

traditional web service stack: deployment is done by providing a

Java object implementing an arbitrary

Java interface which is automatically exposed by means of a web

service, then a search request with a given Java interface directly

returns the reference to a client stub implementing this interface,

if successful.

Service Management Layer The service management layer

transparently activates the above described processes by

automatically forwarding appropriate requests (to

register or lookup an agent service within the agent infrastructure)

to the WSE service. Since web service deployment and

undeployment is subsequently done implicitly, the administrator of

the local agent server can configure this layer in advance, and

select the types of services to automatically expose as web

services.

 Middleware Back Tier

Client Tier

Fig 4: Load Balancing in Web Application

 Interface to WAP

 WAP

 HTTP

WAP 2.0 brings the wireless world closer to the Internet with a

suite of specifications that utilizes technologies that will enhance

the wireless user experience.

With the release of WAP 2.0, the WAP Forum has successfully

accomplished several objectives:

1. Add support for the standard Internet communication

protocols. WAP 2.0 provides support for protocols such

as IP, TCP and HTTP. By adding these Internet

protocols and standards and providing interoperable

optimizations suitable to the wireless

telecommunications environment, the WAP

specifications provide an environment that permits

wireless devices to utilize existing Internet technologies.

2. Provide a rich application environment, which enables

delivery of information and interactive services to digital

mobile phones, pagers, personal digital assistants

(PDAs) and other wireless devices.

3. Minimize the use of device processing power and

 optimize network resources in order to minimize costs

 and maximize performance.

The following items represent the major architectural components

of WAP 2.0:

Protocol Stack Support – In addition to the WAP Stack

introduced in WAP 1, WAP 2.0 adds support and services

on a stack based on the common Internet stack including support

for TCP, TLS and HTTP. By encompassing both

stacks, WAP 2.0 provides a connectivity model on a broader range

of networks and wireless bearers.

WAP Application Environment – Nominally viewed as the

„WAP Browser', the WAP 2.0 Application Environment has

evolved to embrace developing standards for Internet browser

markup language. This has led to the definition of the XHTML

Mobile Profile (XHTMLMP). XHTMLMP is based on the

modularity framework of the eXtensible HyperText Markup

Language (XHTML) developed by the W3C to replace and

enhance the currently used HTML language common today. The

use of Internet technologies is not new for WML, as WML1 is a

fully conformant XML language in its own right.

Additional Services and Capabilities – The WAP specifications

have had items that were neither part of the

'WAP Stack' nor the 'WAP Browser' but helped to enrich the

environment defined in the WAP specifications. With

WAP 2.0, there is a considerable increase in the number of

features available to developers, operators and users.

WAP 2.0 capitalizes on a wide range of new technologies and

advanced capabilities, such as:

Networks and Network Bearers – Carriers worldwide are

upgrading their existing networks with higher-speed bearers such

as General Packet Radio Service (GPRS) and High-speed Circuit-

Switched Data (HSCSD) and introducing higher bandwidths and

speeds in third-generation (3G) wireless networks such as W-

CDMA and CDMA2000 3XRTT. These higher capable network

bearers permit new types of content (e.g., streaming media) and

Mobile Client

WAP Browser

WAP Gateway

WML Encoder

WEB Server

Application Server

Legacy

System

Database Server

Web

Browser

Web Tier

Compone

nts

Application

Tier

(Proxies and

services)

Load

Balancing

Service

Load Balancing

Policy

Service decision

Maker

Load Monitor

Load Agent

Data

Storage

Fig 5: Distributed Architecture of WAP based

Mobile

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

39

provide an 'always on' availability. These new aspects of the

serving networks permit new operational activities.

TCP/IP as Transport Protocol – Most new wireless network

technologies provide IP packet support as a basic data transport

protocol. WAP 2.0 leverages IETF work in the Performance

Implications of Link Characteristics (PILC) Working Group to

develop a mobile profile of TCP for wireless links. This profile is

fully interoperable with the 'common' TCP that operates over the

Internet today.

Processors – Manufacturers continue to introduce smaller devices

with faster and more power-efficient processors and dipoles that

are higher-definition and in color. Additionally, more efficient

packaging technology permits smaller integrated circuits and more

sophistication in a given size of device. The net effect is that new

wireless devices have more capabilities that can be leveraged to

enhance the services delivered to the user.

Mobile-friendly Technologies – With the growth in usage of

mobile devices, there is an increased awareness of the needs

specific to the mobile user. The WAP Forum has worked with the

W3C and the IETF to help characterize the key issues that impact

wireless usage of the web. Through that involvement, and from

the interest of their own membership,

The W3C has lately presided over advances in more mobile-

friendly technologies, including:

1. The release in late 2000 of the recommendation for the

 Basic profile for the Extensible Hypertext Markup

 language (XHTML). This Basic profile incorporates the

 core elements of the XHTML language, which provides

 a framework for expandability and enhancement.

 2. Recent updates to the Composite

 capabilities/Preference profiles (CC/PP) framework

 for describing user preferences and device capabilities.

 CC/PP provides the technical basis for the UAPROF

 device profile function.

 3. The release of the Cascading Style Sheets (CSS)

 Mobile Profile provides a subset of CSS version 2

 that is targeted at devices such as smart phones,

 personal digital assistants (PDAs) etc.

M. CONCLUSION

Algorithm stability, which is precondition to scalability, is an

indication of the ability of the algorithm to avoid poor allocation

decisions. To assess stability we can measure hit-ratio, the ratio of

remote execution requests concluded successfully. Another

measure of stability is percentage of remote execution in the

system. Activities related to remote execution should be bounded

and restricted to a small proportion of the activity in the system.

N. REFERENCES

[1] K.Q. Yan1, S.C. Wang1 “The Anatomy Study of Load

Balancing in Distributed System”, proceeding of the seventh

international conference on parallel and distributed computing,

Application and Technologies (PDCAT‟06)

[2] Reinhard Riedl and Lutz Richter “Classification of Load

Distribution Algorithms “, CH-8057,1066-6192/96 $5.00 0 1996

IEEE Proceedings of PDP '96

[3] Ka-Po Chow and Yu-Kwong Kwok “On Load Balancing for

Distributed Multiagent Computing”, ieee transactions on parallel

and distributed systems, vol. 13, no. 8, august 2002

[4] Rami G. Melhem,Kirk R. Pruhs, and Taieb F. Znati”Using

Spanning-Trees for Balancing Dynamic Load on Multiprocessors”,

ieee transactions on parallel and distributed systems, vol. 06, no.

8, march 1996

[5] Rome Tor Vergata ,PHILIP S. YU IBM T.J. ”Dynamic

Load balancing on web server system”, ieee internet computing,

no. 8, may-june 1999

[6] Cho Cho Myint, Khin Mar Lar Tun “A Framework of Using

Mobile Agent to Achieve Efficient Load Balancing in

Cluster “University of Computer Studies

Yangon, Myanmar

 [7] K. Yang, X. Guo, A. Galis, B. Yang, and D. Liu, “Towards

Efficient Resource On-Demand in Grid Computing,” ACM

SIGOPS Operating Systems Review, Vol. 37, No. 2, pp. 37-43,

2003

[8] O. Kremien, J. Kramer ” Methodical Analysis of Adaptive

Load Sharing Algorithms” IEEE Transactions on Parallel and

Distributed Systems, Vol 3, No.6 November 1992.

[9] Yiqiang Zheng, Heqing Guo, Wei Gao, Botong Xu “Research

on Load Balance of Multi Clusters Architecture Based on

Business Components Partition “Proceedings of the Third

International Conference on Information Technology and

Applications (ICITA‟05) 0-7695-2316-1/05 © 2005 IEEE

[10] Qi Zhang ,Ningfang Mi, Alma Riska “ Load Unbalancing to

Improve Performance under Autocorrelated Traffic” Proceedings

of the 26th IEEE International Conference on Distributed

Computing Systems (ICDCS‟06) 0-7695-2540-7/06 © 2006 IEEE

[11] Thomas L Consvent ,John G Kuhl “ A Taxonomy of

Scheduling in General-Purpose Distributed Computing Systems”

ieee transactions on software engineering, vol. 14, no. 2, february

1988

[12] Orly Kremien and Jeff Kramer “ Methodical Analysis of

Adaptive Load Sharing Algorithms “IEEE TRANSACTIONS ON

Parallel and distributed systems, VOL. 03,NO. 6, November 1992

[13]] Bhaskaran Raman, Randy H. Katz, ”Load Balancing and

Stability Issues in Algorithms for Service Composition”

ieee infocom 2003

[14] Chi-Chung Cheung Man-Ching Yuen Angus C H Yip

“Dynamic DNS for Load Balancing “Proceedings of the 23 rd

International Conference on Distributed Computing Systems

Workshops (ICDCSW‟03) 0-7695-1921-0/03 © 2003 IEEE

[15] Robert Bialek Eric Jul “A Framework for Evolutionary,

Dynamically Updatable,Component-based Systems “ Proceedings

of the 24th International Conference on Distributed

Computing Systems Workshops (ICDCSW‟04) 0-7695-2087-1/04

© 2004 IEEE

[16] Dariusz Kowalski Peter M. Musiał Alexander A.

Shvartsman “Explicit Combinatorial Structures for Cooperative

Distributed Algorithms “Proceedings of the 25th IEEE

International Conference on Distributed Computing Systems

(ICSCS‟05) 1063-6927/05 .00 © 2005 IEEE

[17] Hugo Miranda ,Lu ı́s Rodrigues “Using a Fairness

Monitoring Service to Improve Load-Balancing in DSR”

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

40

Proceedings of the 25th IEEE International Conference on

Distributed Computing Systems Workshops (ICDCSW‟05) 1545-

0678/05 © 2005 IEEE

[18] Thomas Koch, Gerald Rohde, Bernd Kramer“ Adaptive Load

Balancing in a Distributed Environment” 0-8186-5835-5/94

$03.00 63 1994 IEEE

[19] Valeria Cardellini,Michele Colajanni,Philip S. Yu

“Redirection Algorithms for Load Sharing in Distributed Web-

server Systems” Proceedings of the 25th IEEE International

Conference on Distributed Computing Systems (ICSCS‟05) 1063

6927/05 .00 © 2005 IEEE

[20] Xiaodong Zhang1 Yanxia Qu2 Li Xiao “Improving

Distributed Workload Performance by Sharing Both CPU and

Memory Resources”

[21] Xiaodong Lu, Yi Zhou and Kinji Mori “Agent-Based Rating

Oriented Information Provision and Reallocation for High-

Assurance in Open and Dynamic Environments “ Proceedings of

the 24th International Conference on Distributed Computing

Systems Workshops (ICDCSW‟04) 0-7695-2087-1/04 $20.00 ©

2004 IEEE

[22] Adnan Agbaria William H. Sanders “Application-Driven

Coordination-Free Distributed Checkpointing” Proceedings of the

25th IEEE International Conference on Distributed Computing

Systems (ICSCS‟05) 1063-6927/05 © 2005 IEEE

[23] Bhaskaran Raman, Randy H. Katz “Load Balancing and

Stability Issues in Algorithms for Service Composition “0-7803-

7753-2/03/$17.00 (C) 2003 IEEE

[24] Erik Putrycz nad Guy Benard “Client Side Reconfiguration on

software components for Load Balancing” 0-7695-1080-9/01

$10.00 (C) 2003 IEEE

[25] Asma Ben Letaifa, Sami Tabban, Zied Chou“ A Hybrid

Algorithm to Reconfigure platforms of Radio Mobile Services”

Proceedings of the IEEE Conference on Local Computer Network

30th Anniverssary (LCN‟05) 1063 - 927/05 .00 © 2005 IEEE

 [26] Pradeep K Sinha “ Distributed Operating systems : concepts

and Design “IEEE computer society Press, Prentice Hall India -

2004

[27] Mukesh Singhal, Niranjan G. Shivaratri “Advanced Concepts

in Operating Systems”

 [28] George Coulouris, Jean Dollimore, Tim Kindeberge

“Distributed Systems: Concepts and Design”, Pearson Education

[29] Bhardwaj, Ghosh , Mani” Scheduling Divisible loads in

parallel and distributed system”

[30] Shiraji, Hurson Kav. “ Scheduling and Load Balancing in

parallel and distributed System”

[31] “The Next Step In Server Load Balancing” Alteon ebSystems,

Inc. 50 Great Oaks Boulevard San Jose, California 95119 408-

360-5500408-360-5501 http://www.alteon.com

[32] “Web Service Scalability and Performance with Optimising

Intermediaries “Mark Nottingham

[33] Ananya Das, Charles Martel, Biswanath Mukherjee, and

Smita Rai “A Better Approach to Reliable Multi-Path

Provisioning” Department of Computer Science, University of

California, Davis, CA 95616 Email: fdas, martel, mukherje,

raig@cs.ucdavis.edu

[34] “Works in Progress: The 2nd International Middleware

Doctoral Symposium” IEEE DISTRIBUTED SYSTEMS ONLINE

1541-4922 © 2006 Published by the IEEE Computer Society Vol.

7, No. 3; March 2006

[35] VALERIA CARDELLINI Tor Vergata PHILIP S. YU IBM

T.J “DYNAMIC LOAD BALANCING ON WEB-SERVER

SYSTEMS “.

[36] Wang Fangxiong, Jiang Zhiyong “Research on A Distributed

Architecture of Mobile GIS Based on WAP”,State Key Laboratory

of Information engineering in Surveying, Wuhan University

[37] “WAP Forum : Wireless Application Protocol, Technical

White Paper” January 2002, www.wapforum.org

