
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

29

Introduction of Aspect Oriented Techniques for
refactoring legacy software

ABSTRACT
Refactoring has become a well-known technique for improving
the code in a way that preserves behavior. The application of
refactorings during development process of an object oriented or
procedure oriented software improves the design and therefore

the quality of software. During the evolution of software it is a
requirement to refactor them in order to make it more
compatible and flexible with the new environment. Much work
is being done in refactoring object oriented code with aspect
oriented programming. But this paper describes the various
types of refactoring being done on procedural codes for eg: C
language and the utility of refactoring the procedural codes with
the help of aspect oriented programming. The paper also

proposes certain refactorings that could be achieved in a better
way using AOP.

Keywords

Legacy Systems, Aspect Oriented Programming, refactoring

techniques, Object Oriented Refactorings, procedural languages
challenges.

1. Introduction
Refactorings may be applied manually, although manual code
manipulation is error prone and cumbersome, so maintainers
need tools to make automatic refactorings. Refactoring is being
done since long time back especially in procedural languages as
there are many features like exception handling, logging
concerns etc that are not handled very well by these languages

.Its essence is applying a series of small behavior-preserving
transformations, each of which "too small to be worth
doing"[3].Refactoring can be done manually as well as
automatically. Currently extensive literature on refactoring
object-oriented programs and some very good tools for
refactoring Smalltalk and Java code are available. The feature of
aspect oriented programming has helped a lot in refactoring the
software as it helps modularize the program in a better way. The
C programming language, especially the preprocessor directives

that coexist with it, complicates refactorings in different ways as
directives are not legal C code and may not support correct
refactorings. Refactoring C poses two major research
challenges. On the one hand, as preprocessor directives may
violate correctness, new precondition and execution rules must
be defined for existing refactorings to preserve behavior. On the
other hand, the automated execution of refactorings requires
specialized program analysis tools to represent and manipulate

preprocessor directives [2].

2. Background: Refactorings for C
Various research attempts were made in the area of refactoring
C.The very first attempt was made by W.Opdyke [4] in his own
PhD thesis .It was established as a prime contribution in
refactoring techniques developed and catalogued to help the

maintainers with manual process.

Certain explorations are done in the area of refactoring the C
language [1]. A catalogue of refactorings was proposed for the C
language that was implemented in a prototype tool [1]. Later on
it was discovered that this catalogue was not applicable to the
preprocessor directives used in C language. The refactorings
allowed on preprocessed C code is very restricted; else it could

happen that the directives become irrecoverable which could
change the structure of the complete source code and its
behavior too, hence violating the primary rule of refactoring.

Thus refactoring Code with preprocessor directive requires that
users should be able to transform preprocessor directives; e.g.,
adding a parameter to a macro definition; - the presence of
directives should not affect the correctness of refactorings; users

should be able to transform C code that has interleaving
preprocessor directives. Especially in preprocessor directives it
is difficult to refactor the macros and conditional statements.
The other concern is that of code entangled in long procedure
bodies with interleaved switch cases that also causes problem in
refactoring. Thus these problems need to be resolved with the
emerging refactoring techniques to help a software evolve in a
better way.

3. Problems in refactoring procedural codes
This section highlights the problem in refactoring the procedural
code.

3.1Problem with Macro definitions:

Refactoring Macros
 When refactoring C code, the macro code that is called in that

scope has to be taken into consideration. Macro has access to
global variables and modifies them globally, the macro
definitions tend to change with any change in their variables.
Furthermore, the studies show that correctness of refactorings
can be affected due to the following reasons [2].
 -if a macro is defined but never called in the scope of
refactoring;
- if a macro refers to a variable with different declarations, and

the macro is called from the different contexts of the variable;
- If a macro definition uses the concatenation operator ##.

Dr S.A.M.Rizvi
Jamia Millia Islamia, New Delhi

Zeba Khanam

JSS Academy of Technical Education,
Noida

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

30

Previous works have proposed a list of refactorings for macro
definitions.
-Rename Macro
-Rename Macro parameter
-Add parameter to macro definition

-Remove parameter from macro definition
-Add macro definition replacing value in code
-Remove macro definition

3.2Conditional Directives
Conditional directives also pose a challenge to refactoring.
Conditional directives lines are those starting with #if, #ifdef,
#ifndef and #elif, plus #else lines and #endif lines. There are no

refactoring tools that can deal correctly with conditional
directives. The usual practice is to deal with the preprocessed
code ,but that would discard some of the code mentioned under
the conditional directive ,so refactoring would be done on only
part of the code which would lead to a lot of discrepancy in the
code.

Some of the refactorings proposed in earlier works, for the

conditional directives are stated as:
-Eliminate an alternative
-Complete a statement inside a conditional branch with the code
that follows the conditional
- Move common code outside the conditional

"Refactoring C is difficult", the standard C scanner, parser and
AST builder no longer apply when directives are not
preprocessed, as the code does not respond to the C grammar

[2].Thus we can conclude that macros and conditional
compilation cause error in refactoring and pose problems for
refactoring. Some of the solutions too have been offered [2].
New refactorings for preprocessor directives, new definitions of
scope, additional preconditions and execution rules for existing
refactorings have been proposed.

3.3 Problem with long procedures:

Refactoring procedures
In a traditional C implementation, the major complexity is

created by union and a procedure body that is essentially a giant
switch statement. In C++ implementations, the switch statement
is distributed over classes representing the cases, this made the
code more modular and reduced maintenance effort, while
speeding up the interpreter. Thus, subclassing, and reducing the
conditional statements, may improve both the clarity of the
design and the run-time performance. Now this subclassing can
be achieved in object oriented languages but for the procedural

languages, this again is a big drawback. So , how can the aspects
improve upon these code complexities, and can it be used in
subclassing and simplifying conditionals has to be validated and
is the focus of this research paper.

The objective of this research paper is to highlight the problems
being posed during the time of C language refactorings and to
explore as to how aspect oriented refactorings helps in
refactoring the C code and what contributions can be done by

the aspect oriented refactorings in refactoring the above
mentioned problems.

4. Aspect Oriented Refactorings
With the emergence of Aspect-Oriented Programming (AOP)

(amongst other new programming paradigms), new refactorings
using AOP mechanisms arose, resulting into Aspect-Oriented
Refactoring (AOR) [5]. It is still an entirely open issue how to
determine an appropriate refactoring (concept and technique) for
a certain kind of code smell, e.g., duplicated code. Aspect
oriented refactoring has been used for code clone removal and
has performed better than object oriented refactorings.

Systems software uses conditional compilation to manage
crosscutting concerns in a very fine-grained and efficient way,
but at the expense of tangled and scattered conditional code.
Refactoring of conditional compilation into aspects gets rid of
these issues, but it is not clear yet for which patterns of
conditional compilation aspects make sense and whether or not
current aspect technology is able to express these patterns [6].

AOP does provide more type safety and more power than usual
macros. But how it will be carried out is work in progress. In the
next section we will discuss how refactorings are done in Object
oriented framework. Then the next section states how we can
make the AOP also work to refactor on legacy applications
using these guidelines.

5. Refactoring Object Oriented Framework
Some of the refactorings that can be done on object oriented
systems are described below. The paper proposes here that these
refactoring methods can be extended to the legacy languages
also with the help of aspect oriented approach. Several
techniques have been developed based on structured

programming guidelines these include goto elimination, case
statement refinement and other techniques.

1. Refactoring To Generalize: Creating an Abstract Superclass
2. Refactoring To Specialize: Subclassing and Simplifying
Conditionals
3. Capturing Aggregations and Reusable Components.
4. Moving Members between Aggregate and Component
Classes.

5. Converting an Association, Modeled Using Inheritance, Into
an Aggregation.

Supporting Refactorings
1. Creating a Program Entity:
2. Deleting a Program Entity:

3. Changing a Program Entity:
4. Moving a Member Variable:
5. Convert a code segment to a function.

6. Aspect-Oriented Programming
Aspect-Oriented Programming, or AOP, extends Object-
Oriented Programming with the concept of aspects, which
modularize crosscutting concerns. Like a class, an aspect is
intended to capture a set of related program elements addressing
a particular concern. Like a class, an aspect is intended to
capture a set of related program elements addressing a particular
concern. Unlike classes, however, aspects are intended to
modularize crosscutting concerns—those that inherently span

the definitions of many classes. AOP techniques let the
programmer specify well-defined ways that aspect code blends
with other program code.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

31

Many software systems must address concerns that are not
localized to a single class.AOP has contributed in solving many
such problems. For example:

6.1. Error handling

Legacy applications like C applications do not have an explicit
exception handling mechanism .Instead they typically rely on an
idiomatic approach for signaling and handling exceptions. One
common idiomatic approach is the “return code idiom” , in
which a special return code signals an exception has occurred.

Michael Mortensen has described an aspect-oriented approach
for throwing exceptions in place of the “return code idiom”, and
discusses using aspects to handle those exceptions in a modular
way [7].

6.2Code clone removal
Code clones are identical codes repeated across the code base,
are special kind of code smells and can be seen as homogenous
crosscuts.AOP refactoring have worked well in handling this
problem[9].

These examples illustrate crosscutting concerns, and
modularizing the crosscutting concerns even with best object

oriented techniques is not possible, thereafter making the
refactoring procedure even tougher.

7. AOP refactoring statically and

dynamically
In order to allow aspects to modify classes and their hierarchy,

aspects may include several forms of introduction, which
declares new members on classes (inter-type declaration) or
alters inheritance relationships between classes.

For dynamic changes in the program execution the joinpoint
model specifies which join points in the program execution can
be described. Based on joinpoint specifications, code contained
in an aspect can be invoked during execution and affect behavior

at runtime.

The code that specifies how program behavior is to be affected
at runtime is advice. Advice has a great deal of power to inspect
program state at runtime using reflection, and to manipulate
state and execution paths. An Advice may get executed

before a joinpoint: advice can view and modify input values

and other state before the joinpoint is entered.
after a joinpoint: advice can view and modify return values and
other state after a joinpoint has finished. There are also special
cases of after advice for methods returning normally or exiting
by throwing an exception.
around advice replaces the joinpoint.

8 .Refactoring procedural languages with

AOP
In the following we present the features of AOP that can be used
in refactoring the procedural code and propose the guidelines to

refactor the code and thus can be used to improve the
modularity and maintainability of the system.

8.1 Aspects versus classes
Since with the emergence of aspect oriented languages, the

utilities of aspects can very well be added to the procedural
languages also as the aspect code can be very well blended with
the procedural code. The experiments are performed using
AspeCt Oriented C (ACC) on the source code in C.ACC
provides a compiler that translates code written in ACC into
ANSI-C code. This code can be compiled by any ANSI-C
compliant compiler, like for example gcc. The refactorings
mentioned in the next section are being performed on C using

ACC. The current work is being done on refactoring macros. In
the previous section we had explored the problems caused by
macros, we intend to replace them with the appropriate addition
of aspects and advice and observe the refactoring changes on the
code. In the next section few of the AOP refactorings are
discussed those are being used to refactor the source code.

Refactoring aspect oriented software [8] has explored few of the

contributions that AOP makes in the field of refactoring. We are
employing some of these refactorings to the procedural code.

Aspects behave quite similar to classes .So the refactorings that
can be done on object oriented applications can be done on
procedural code also as most of the refactorings done on classes
can also be carried using aspects. Following are the refactorings
that we propose using aspects.

1. Refactoring to Generalize: Creating a

superaspect

One of the refactoring in OOPs to separate the design is to move
the common behavior of a set of concrete class to an abstract

superclass. In case of procedural code the code entangled in

different functions with the same behavioral characteristics can
be migrated to the superaspect and be used whenever required.
This would generalize the common behavior into a single entity.

2. Refactoring to Specialize: subclassing

using aspects

Some times it is required that a complex function is transformed
into a subclass. Migrating the code from a complex function to

sublass reduces the complexity of that function. Refactoring
through subclassing cannot be achieved in a language like C but
with the help of AOP introduction of sub aspects can serve the
purpose by moving the fields to the sub aspects.

3. Refactoring by Creating a Program Entity

As in OOPs a new program entity like class can be created or a
new variable can be added but this class is unreferenced. No,
instances of this class are created nor any subclasses are created,
so the behavior is preserved. Similarly using, AOP we can create
an
1. Create Empty Aspect
2. Create Named Pointcut
3. Create Empty Advice

4. Refactoring by Deletion of a Program

Entity

The unreferenced variable can be deleted and it also preserves
behavior as they are unreferenced .This can be achieved using

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

32

deleting unreferenced Introduced field and deleting set of
unreferenced introduced methods.

5. Refactoring by Moving Program Elements

Certain member variables are migrated to subclass or superclass,
this can also achieved in procedural languages by:
1. Moving an advice declaration from one aspect to another.
2. Moving member variables to Aspects and from aspects to
functions.

6. Refactoring by replacing the macro

definition codes with proper aspect program

and advice

This is another refactoring that we propose. The macros cause a
lot of problems in refactoring as the refactoring tools cannot be
applied to them as we had discussed in the earlier sections. Thus
we are looking for appropriate replacements of the macros that

would also preserve the behavior. The replacements can be done
using appropriate aspects and executing the advice on the
appropriate join points. But to what extent would this refactoring
help, has to be validated.

We have discussed some of the refactorings that can be
performed on aspect oriented software. Infact the conventional
refactoring done using OOPs can be reinvented using AOP and

that too with the more enhanced features of aspect and join-point
model.

9. CONCLUSION

In this paper, we presented our idea of guidelines for refactoring

procedural code by using aspect oriented programming.
Therefore, we made a classification of refactorings which adds
the aspect join-point feature to the legacy procedural code.
Earlier these refactorings or features could not be added to the
procedural code because they were basically applied to classes
and the languages that have the utility of classes. These
refactorings we are employing on the procedural language like
C, for introducing subclasses, superclasses, moving larger
functions to aspects, turning the code of macros into the code

encapsulated in aspects and many more, to increase the
readability and reduce the complexity of the software to help it
evolve in a better way. Work in this area is still not being
explored too much so automatic refactoring tools are not
available for all kinds of refactoring. Currently, we are working
on these techniques and implementing them using ACC (Aspect
Oriented C) and we intend to explore other techniques also that
could assist in the same. Our emphasis is mainly on manual

refactoring techniques and work is still in progress. The
introduction of these refactoring to legacy languages has given a
new direction to the old conventional refactoring techniques as
well as a new shape to the old source code with even enhanced
capabilities.

10. REFERENCES
[1] Garrido, A. Software Refactoring Applied to C Programming

Language. MS Thesis. University of Illinoisate Urbana-
Champaign, 2000.
[2]Garrido.A, Ralph Johnson “Challenges of Refactoring C
Programs”, 2002
[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1st edition, 1999.
[4] William Opdyke, “Refactoring object Oriented

Frameworks”, 1992.
[5] Jan Hannemann, “Aspect-Oriented Refactoring:
Classification and Challenges”, 2005
[6] Wolfgang De Meuter, Bram Adams, “Can we Refactor
Conditional Compilation into Aspects, 2008
[7] Magiel Bruntink, Arie van Deursen, “Discovering Faults in
Idiom Based Exception Handling”, 2005
[8] Shimon Rura, “Refactoring Aspect-Oriented Software”,

2003.
[9] S.Schulze, M.Kuhlemann, M Rosenmuller “Towards a
Refactoring guideline Using Code Clone Classification”, 2008.

