
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

5

OPDSM: A Combinatorial Object-Based and Page-
Based DSM Model

ABSTRACT
The Distributed Shared Memory (DSM) system is designed on
the basis of page-based, shared-variable-based or object-based

access. There are certain advantages and disadvantages of each
access methodology. Comparison of such different access types
in a distributed environment is based on parameters namely,
type of operation (data read or update), maintenance of
consistent data copies on all nodes accessing shared data,
administration of data manipulations on multi-computers, etc.
This paper compares the design and implementation issues for
page-based and object-based DSM in a multicomputing
environment. The paper also proposes a hybrid model for

implementation of a DSM system that combines some features
of page-based and object-based access that is focused on
efficient data access with optimum performance with respect to
memory access and cohesive data/object organization. Thus the
hybrid model is proposed to get a common function of data
sharing by using the best features of both page-based and object-
based DSM models.

Categories and Subject Descriptors:
[C.2.4] Distributed Systems: Distributed Applications

General Terms
Design, Theory

Keywords

Distributed Shared Memory, DSM, page-based DSM, object-
based DSM

1. INTRODUCTION
Distributed systems have evolved consistently since the past

three decades and still has a great scope of optimization with
respect to various aspects namely, parallel processing, faster
data access and propagation, and effective system control in a
de-centralized environment. Distributed systems may be
implemented on multiprocessors (with or without caching) as

well as on multicomputers (that refer to a network of
computers, that each come with their own processor(s) and
memory).
Optimum implementation of shared memory systems in a
network of multicomputers is more challenging as compared to
that on multiprocessors, due to varied capabilities of the node
processors,
organization of underlying systems and network issues. Data
sharing should be necessarily facilitated in DSM systems in

order to run processes in parallel for higher throughput. This can

be achieved in one of three ways: page-based, shared-variable-
based or object-based. This paper is organized as follows: In
section II, brief comparison between the two models namely,
page-based and object-based DSM is presented. In section III,
the introduction to proposed hybrid model is presented. Section

IV discusses the implementations of the proposed model. In
section V we discuss the different issues related to the hybrid
model. In section VI we give insight to the pros, cons and
applications of our model and finally section VII concludes the
paper.

2. COMPARISON OF PAGE-BASED DSM

AND OBJECT-BASED DSM

2.1 Page-based DSM
In a page-based DSM, the data to be shared among processes are
organized as logical fixed-size pages that are distributed over
multicomputers. Whenever a page required by a process is
locally available, the DSM grants access to the required page via
the Memory Management Unit (MMU). This requires simple
memory access to the secondary storage that does not involve
network access. On the other hand, when a process tries to

access a page, that is non-local to the machine, then the page
faults to the DSM. The DSM software should now search for the
page on a network of computers in a true distributed system and
when found is fetched from the source computer. The faulting
instruction is then restarted and can now complete [1].
Page-based or block-based DSMs are an extension of traditional
Virtual Memory systems thus are usually implemented at the
hardware and/or OS layers. Because the implementation is at the

H/W and/or OS layers there is complete transparency with
respect to memory system, i.e. memory system is completely
hidden from users of the system. It is difficult to choose the right
size for the page and/or block because page and/or block not
only depends on the system characteristics but also on
applications.
 Implementation of page-based DSM at the H/W and/or OS
layers needs to modify the existing systems (H/W and/or OS).

Such implementations are usually system dependent and hence
should have homogenous systems. Existing multiprocessor
programs can easily be adopted to run on the page-based DSM.
Number of memory consistency models is in existence for the
maintaining the consistency among the processor nodes.
Generally page invalidation method is used to keep pages
consistent among the processor nodes of the distributed system.
False sharing is one of the prominent problems in the page-
based memory.

Synchronization is achieved using synchronization managers
implemented on different nodes each taking care of locking and

Milind R. Penurkar
Assistant Professor

Department

of Information Technology

M.I.T. College of Engineering, Pune,
Maharashtra, India

Rekha S. Sugandhi
Assistant Professor

Department of Computer Engineering
M.I.T. College of Engineering, Pune,

Maharashtra, India

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

6

unlocking. Some examples of page-based DSM are IVY,
Mermaid and, Blizzard [6].

2.2 Object-based DSM
In object-based DSM, processes on multiple machines share an
abstract space filled with shared objects. An object is a
programmer-defined data structure consisting of internal data
(object state) and procedures (methods/operations) that operate
on the object state. Since direct access to the internal object state
is not allowed, the property of information hiding forces all

references to an object’s data to go through the methods that
also helps structure the program in a modular way [1]. In object-
based DSM, the location and the management of the object is
handled automatically by the runtime system.
Implementation of Object-based DSMs is mostly done using the
language/compiler or library layers. In Object-based
DSM(ODSM) modifications must be

Figure 1 Object-Based DSM

done at user level for its implementation i.e. changes must be
done to programming model used and/or language.

Since ODSMs are implemented at the higher level, they
have less performance but offer more flexibility. It is also
system independent [3]. As per the need of the application,
programmers can control the distribution of data. Determination
of parameters such as, the method of data access, block size,
communication mechanism, memory consistency model, etc can
be done by programmers easily in ODSMs. There are few
subsystems, which may be deployed for the implementation of

ODSMs. Examples of such subsystems are TCP/IP, DCE, etc.
This may result in the reduction of development time and system
becomes portable to variant architectures. Amendments to the
concluded system can be easily done once innovative techniques
become available [3].
As mentioned earlier in the same section, ODSMs can be
implemented at the language/ compiler layer or the library layer.
This clearly reveals that new compilers or preprocessors must be
developed in order to implement ODSM. Automated

manipulation of partitioning the data, distribution of data,
parallelism exhibition and optimization in communication are in
infancy. For library-layer implementations primitives must be
developed which may be useful for programming and
compilation. These primitives will be those for data distribution,
for the utilization of efficient memory consistency model, and
for performance tuning. So it is definitely possible and feasible
to implement the DSM in library layer [3].

Object-based DSM has three main advantages:

i. Flexibility in the implementation ensured by controlled
data access.

ii. Modularity-the very structure of an object ensures
modular organization of data and its related functions.

iii. Transparency -Programmers are unaware of the

synchronization of objects and the access done to the
objects [7].

The main disadvantages of ODSM are:

1. Shared address space can not be randomized for
writing or reading by any process since objects are
structurally organized as a block of memory as
compared to variables organized as byte-granular.

2. Additional overhead is ensured as accesses to the
shared objects must be done by invoking the objects'
methods only [7].

It may be possible to apply many types of memory consistency
models with no effect to the programming since processes
cannot directly access the internal state of a shared object.
Generally in ODSM, the update or the invalidation coherence
policy is used [5]. For synchronization generally locks and

barriers are used.
Some examples of programming languages for the purposes of
implementation of object-based DSM are Linda, Orca [1, 6].

3. INTRODUCTION TO OPDSM- A

HYBRID MODEL
In the previous section we discussed, at length, the comparison
between Page-based DSM (PDSM) and Object-based DSM
(ODSM). As discussed, both have advantages and
disadvantages. Having discussed those details, we now

introduce our proposed model called Object-and-Page-based
DSM (OPDSM) that is a hybrid model, with a mix of
advantages and disadvantages.
In the proposed model, the underlying page-based DSM system
shown has the same architecture as that of the standard model
and is used to transfer pages from one processor node to another
in the distributed system. Page-based DSM does not require a
programming language runtime support as the page reference
management is done by the MMU and the underlying operating

system [10].
The hybrid architecture contains an underlying page-based DSM
superimposed with an object-based programming language
runtime on top of the page-based DSM. The two layer model is
as shown in Figure 2.
As can be seen from the diagram, the upper layer is object-based
DSM, implemented in the user space, using programming
language and its runtime. Any existing ODSM can be used as

upper layer of the hybrid model with few modifications. The
lower layer is implemented in the kernel space of the distributed
O.S. Any existing PDSM can be used as the lower layer
projected in the hybrid model.
The hybrid model processes the information for page
management that includes sending the pages to needy processes
that run on distributed nodes, and hence would function in the
same way as the ones on traditional DSM systems.

The basic idea of designing this model is to identify the objects
as per the application that could be required by one or more
processes on a remote node.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

7

The required data objects can now be sent to the target location
by the run time system developed for this purpose. In other

cases, again based on applications, objects can be sent over the
network to the destination processor in terms of a page using
conventional page-based DSM. The hybrid model can adopt any
consistency model as that of the object-based DSM system. The
consistency model will take into account complete user
transparency. In order to perform synchronization without
replication, the sequential consistency model can be used in the
hybrid model implementation. The sequential consistency model

basically performs page invalidations after page updates.

4. IMPLEMENTATION OF OPDSM-

HYBRID MODEL

4.1 User-level Implementation
For management of objects, certain run-time system needs to be
implemented that should be supported by the programming
language to be run on the distributed environment for object

sharing. This run-time system has few functions implemented
which take care of object manager and all object management.
Every object will be assigned a type, which will indicate the
memory model applied.
This type will either be page-based or object-based memory
model applied to object. We will discuss the data structures
needed for this type implementation in the next section. We
assume that at any moment of time there is a single owner

processor node of an object, which may reside any where in the
distributed system.

The run-time system will have functionalities as specified
below.

i. int allocate(int size)
This function allocates the memory for the object, given the
size for the object and, returns a unique id (integer) generated

for this object.

ii. void free (int id)
This function will be invoked to free the memory of an object
if this object has been used and needs to be invalidated or
updated.

iii. int check _access(int OId)
This function checks whether an object is sharable i.e. if it is
readable or writable. This is done by checking the

accessibility field in the Object-look -up table as described in
the next section. If this field is 1 then it is writable-and-
readable and, if it is 0 then it is readable.
The function returns an integer value that represents the
accessibility code.

iv. void set_object_info(int OId)
This function (member of the ObjectInfo class)sets the
various attribute values that define the specific object. The
argument OId identifies the object the attributes of which are
defined by the class ObjectInfo with the following members;
class ObjectInfo
{
 int m_iOId; //the object identifier

 bool m_boolObjType;

 //0: page based; 1:object based

 int m_iObjSize; //object size in bytes
 int m_iObjOwnerNodeId;
 //owner node identifier
 struct m_stObjUserNodeProcessList

{

int m_iObjUserNodeId; //identifier of
nodes accessing the //object
m_iOId
int m_iProcessId;

//identifier of processes //accessing the
object m_iOId

} stObjUserNodeProcessList[];
 bool m_boolAccessibility;

 //read access- 0;
 //read-write access- 1
public:

 ObjectInfo(ObjectInfo obj);
 void set_object_info(int OId);
 void get_object_info(int OId);
 void update_obj_lookup(ObjectInfo temp);
 void update_p_lookup(ObjectInfo temp);

}

v. void update_p_lookup(ObjectInfo obj)

This function does the job of updating the Process-wise
Object Sharing Information table (Table 1).

vi. void update_obj_lookup()
This function does the job of updating the

Object Distribution table (Table 2).

vii. void send (ObjectInfo ObjI, ObjType Obj, int

DestinationNodeId)
This function is invoked by the runtime system of the owner
node to send the object with OId (Member of ObjI) to
destination node identified by DestinationNodeId. The actual
object to be shared is of type ObjType.

viii. void lock (ObjectInfo ObjI, ObjType Obj)

This function is used for mutual exclusion.
Only one object at a time can be in its critical section to be
writable with the help of this function. Thus this object
cannot be copied to any other node when it is in its critical
section.

Object-based

DSM

implementation

(user-level)

Page-based

DSM

implementation

(system-level)

Runtime System

(Library Layer)

Memory

Management Unit

Programming
Language Compiler

(Library)

Figure 2. Object-and-Page-based Distributed
Shared Memory (OPDSM)

Object

Manager

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

8

ix. void Unlock (Object OId)
This function is also used for mutual exclusion. The function
unlocks the object and takes the object out of critical section
and hence can be copied to any processor node.

 As mentioned earlier there exists a process called the object

manager, that resides on every node which is amenable for
executing the above mentioned functions.

5.2Data Structures for Object Management
This section discusses the different data structures for the object

management.
Following diagrams show thet two lookup tables that are
required for object sharing groups.

4.1.1 Process-wise Object Sharing Information

Table (Owned by Object Manager on every node)
As shown in Table 1, the object manager maintains the

information regarding the processes running at the node and also
offers lookup on the local and remote objects manipulated or
accessed by that process.
We now discuss meaning of each field and the intention behind
deploying this data structure.
 1. ObjUserNodeId: - This field identifies the node on the
distributed system assuming that every node in the distributed
system is assigned a unique identifier.
2. ProcessId: - This is process id that owns this object. This

ProcessId indicates that this process currently owns this object
indicated by OId.

Table 2: Object Distribution Information

ObjOwnerNodeId OId Object Size (in bytes)

ObjSize

ProcessId Process Location

ObjUserNodeId

Accessibility (R-0;

R/W-1)

boolAccessibility

N1 O2 20 P3 N5 0

3. OId: - Identifier of the object residing on node

ObjUserNodeId [9].
4. ObjSize: - The object with OId has ObjSize size in bytes.
5. ObjOwnerNodeId: - The object OId is owned by node
identified by ObjOwnerNodeId

6. Accessibility: - This field indicates the access rights to an
object indicated by OId; for eg, this object may be
readable(indicator bit : 0), writable(indicator bit : 1)or both (
indicator bit: 1).

The above data structure is manipulated by Object Manager
process using void update_p_lookup() function mentioned
earlier in the user-level implementation. All the Object
Managers residing on different nodes on DS must update this
data structure as and when processes and objects get created and
destroyed.

4.1.2 Object Distribution Information Table
The second data structure is as shown in Table 2. As shown this
data structure provides the Object Manager process with object-
look-up information as compared to process-wise lookup

information (as in Table 1).
We now discuss meaning of each field and the intention behind
deploying this data structure.

1. ObjOwnerNodeId: - This field represents the node on the
distributed system that owns the object (OId).
2. OId: - Object with this object id resides on the node
ObjOwnerNodeId.

3. Object Size: - size of the object OId is specified in bytes.

4. User Node-Process Pair: - The information about the user
node location and user process that accesses an object is
indicated in two fields of Table 2. The user node-process pair is
represented by a structured list of data object,
stObjUserNodeProcessList, whose members are
ObjUserNodeId and ProcessId .
The runtime system updates this data structure by using void

update_o_lookup() function mentioned earlier in the user-
level implementation section.

4.3 Kernel-level Implementation
This section deals with the implementation of OPDSM model in
kernel level. As mentioned in the section “Introduction to
OPDSM- a Hybrid Model” any existing software for Page-based

DSM can be considered to be the lower layer of our proposed
model.
Since the software PDSM is constructed by amendment in the
underlying OS, user level library, runtime system, linker and
preprocessor [6], our proposed model does not take care of any
PDSM implementation. Instead the user-level implementation as
mentioned by ours will suffice the purpose.

4.4WORKING OF OPDSM
Having discussed the two types’ implementations and the data
structures for the user-level implementation, we now head
towards how all the above layers get integrated to form the
working model of our system. Let us first have a look at the

modified user layer.

Table 1: Process-wise Object Sharing Information

ObjUserNodeId ProcessId OId Object Size

(in bytes)

ObjSize

Object Location

ObjOwnerNodeId

Accessibility

(R-0;

R/W-1)

boolAccessibility

N1 P1 O1 24 N6 0

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 6

9

Any object will be created on any processor node using the
allocate() function by the runtime system. As mentioned earlier
in the user-level implementation, type field is associated with
every object at the time of creation of object based on type of
application. The object will either be page-based object or

object-based object. Based on the type of the object (ObjType)
the runtime system will take decision about further distribution
and access.
If the type is object model then the object will be sent using the
user-level runtime system. The size of the object is specified
when it is created and hence, the granularity in object based
implementation is bound to be an object.
As mentioned earlier in the user-level implementation section

there is only one owner of the object. Hence when an object is
needed by any processor node it is copied to that node using the
send() function. Before being sent, it is checked for
accessibility. If it is readable (bit value:0) then the copying can
be done and nothing needs to invalidated. If it writable and/or
R/W (bit value:1) then this shared object is updated by some
processor node. Then the copies of the object at other processor
nodes will be invalidated (using the free() function). As it

reveals, our model uses the invalidation type of coherence

policy.
Our model can work for any type of consistency model used at
the user level. Since only one node can write on an object at any
given time, our model uses Many Readers Single Writer
(MRSW) algorithm [6]. Finally, the functions lock () and
unlock () are used for synchronization (and hence mutual
exclusion) of the objects.

The main intention behind the above proposed model and the
discussion done in the working so far, is focused on
manipulation of objects in an elegant manner by amending the
existing ODSM.
Now we discuss the functionality of the lower layer in short, as
PDSMs are quite prevalent. If all the objects have their type
specified as page based memory model, then all these objects
are integrated to form a page size and are sent over network to
other processor nodes when needed.

Since size of all objects collectively may not form a page size,
internal fragmentation may occur. The rest of the functionality is
as per the underlying PDSM, as we have mentioned earlier no
amendments have been done to the lower layer of the hybrid
OPDSM architecture, since the said lower layer corresponds to
the PDSM architecture.

4.5THE FEASIBILITY OF OPDSM
In this section we try to focus on the feasibility study of our
model although we cannot be sure about it in practice until this
system is actually implemented. Hence we refer to OPDSM as a
model and not as a system. We have proposed the model

keeping in mind the deficiencies in the implementations of
existing ODSMs. Our model tries to mix the pros and cons of
the existing PDSM and ODSM. Our main focus was on ODSM
as we feel that there is still scope for a lot of improvements in
the ODSM. We decided to keep the lower layer as it is and tried
to amend only the upper layer with our own speculation.
We feel that our model will result into a system which may have
the following advantages and disadvantages.

4.5.1 Advantages
a) Any DSM can be used, since the run time will decide the

fate of objects for their transaction from one processor node
to another. This will result in the flexibility offered to users.

b) Any consistency model as that in the ODSM can be used.
c) Object access is secured since only the member methods of

the object can operate on them.

4.5.2 Disadvantages
a) Integration of existing system has huge overhead although

changes need to be done only in the ODSM.
b) Integrated Software DSM like this would have huge

memory requirements.

c) Complexity of the system can never be ignored.

5. CONCLUSION
Many existing PDSMs and ODSMs are present in the real world
with different features. All these systems have their pros and

cons. As mentioned in the earlier section, ODSMs have scope
for a lot of improvements.
We have tried to present our proposed hybrid model after
comparing the existing PDSM and ODSM. We have tried to put
our best efforts to present the model using integration of existing
systems and our amendments to one of the systems in an elegant
fashion.

6. REFERENCES
1. Andrew S. Tanenbaum Distributed Operating Systems:,

2004

2. George Couloris, Jean Dollimore, Kindberg Tim Distributed
Systems: Concepts and Design, 3/e-

3. Adsmith: An Efficient Object-Based Distributed Shared
Memory System on PVM-1087-4089/96 $5.00 0 1996 IEEE

4. Distributed Shared Memory Consistency Object-based
Model-Journal of Computer Science 3 (1): 57-61,
2007ISSN1549-3636© 2007 Science Publications

5. Ce-Kuen Shieh, An-Chow Lai, Jyh-Chang Ueng Tyng-Yue
Liang, Tzu-Chiang Chang, Su-Cheong- Cohesion: An
Efficient Distributed Shared Memory System Supporting
Multiple Memory Consistency Models Taiwan: 0-8186-
7038-Xl95$4 .00 0 1995 IEEE.

6. Jelica Protit, Milo Tomasevit, and Veljko Milutinovi,,DSM:
Concepts and Systems- - 1063-6552/96/$4.00 0 1996 IEEE

7. Mordechai Geva and Yair Wiseman -Distributed Shared
Memory Integration 1-4244-1500-4/07/$25.00 ©2007
IEEE

8. Htway Htway Hlaing , Thein Theinye , Win Aye -A Simple
and Effective Software Distributed Shared Memory
System978-1-4244-2101-5/08/$25.00 ©2008 IEEE

9. Abdelfatah Aref Yahya and Rana Mohamad Idrees Bader-
Distributed Shared Memory Consistency Object-based
Mode,l -Jordan , Journal of Computer Science 3 (1): 57-61,
2007, ISSN1549-3636, © 2007 Science Publications

10. Richard E. Schantz BBN Technologies, Douglas C.
Schmidt, Middleware for Distributed Systems Evolving the
Common Structure for Network-centric Applications,
Irvine, USA

