
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

82

A Comparative Study of using Object Oriented

Approach and Aspect Oriented Approach for the

Evolution of Legacy System

 S.A.M Rizvi
Zeba Khanam,

Jamia Millia Islamia,
New Delhi

India

ABSTRACT
Legacy systems are vital to an organization, and sometimes form

the backbone of an organization, yet their maintenance and

evolution had been an area of research for a long time. Besides

being costly to maintain, legacy systems often lag behind

changes in the businesses they support. The challenge in today’s

environment is to keep evolving the older systems so that they

are compatible with the real world technological environment.

The most common approach was to migrate the legacy code to

object oriented code. However, there are many other paradigms

that a legacy system might adopt. Aspect-oriented technology is

another emerging programming paradigm that is receiving

considerable attention from research and practitioner

communities alike. Nowadays much of the work is carried on,

on developing different methodologies to enable aspect oriented

programming to be applied to legacy systems. In this paper, we

begin by highlighting the work done in evolving a legacy system

using the object oriented approach, then we analyze the impact

of object oriented technology and aspect oriented technology on

legacy systems and the environment that is required to

implement the two paradigms. The advantages and

disadvantages of both the paradigms have been explored, and a

comparative study of both the paradigms is done and analyzed in

the light of legacy systems.

General Terms

Evolution techniques of legacy software, comparison, aspect

oriented programming, object oriented approach.

Keywords

Legacy software evolution, object oriented approach, aspect

oriented approach.

1. INTRODUCTION

As stated in Lehman’s first law of software evolution, (Lehman

1974), it is now generally accepted that E-type software must be

continually adapted and changed if it is to remain satisfactory in

use. There are many approaches that an organization may

choose to evolve software-intensive systems, depending upon

the system, and the technology. During the late 90s, the

explosion of web , emergence of net centric computing,

significant progress in object technology and system

understanding it became easier and economically feasible to

evolve the legacy systems to a more flexible and maintainable

state. In particular, interface technology, wrapping technology,

and network technology were used commonly for the

upgradation of existing software assets instead of scrapping

them and starting over [17].During this period, most popular

approach ―software migration‖ was not often considered

feasible. There were significant changes in the approaches that

were used to evolve the legacy system due to the emergence of

distributed object technology, middleware and wrapping

technology. We have elaborated, a few approaches in the next

section.

2. OBJECT ORIENTED APROACH TO

LEGACY SYSTEM MIGRATION

This section presents a discussion of various ways in which

object oriented approach was employed for the evolution of

legacy system. One of the approaches was based on the Object

Management Group’s (OMG).

Common Object Request Broker Architecture (CORBA) for

migration of legacy systems. The OMG is a consortium

established to remote industry guidelines and object

management specifications in order o provide a common

framework for the development of distributed applications.

Some other approaches were Microsoft’s Object Linking and

Embedding (OLE), and the pen Software Foundation (OSF)

Distributed Computing Environment DCE) are similar

alternative approaches to legacy migration [6][16].

Systems built upon the principles of an object-oriented

architecture maximize portability, reusability, and

interoperability of software, resulting in a true open system

solution.

The approach [16] basically targeted mainframe based legacy

systems but client server systems were also migrated to object

oriented environment using this approach. It worked by using

the encapsulation or ―wrapper‖ approach. System applications

were transformed into object-oriented components for a modular

architecture suitable to a heterogeneous, distributed processing

environment.UNAS product, CORBA compliant was used to

develop the backbone of distributed system architecture. It

facilitated the development of OMG standard distributed

environment, however there were limitations to the approach as

they are based on evolving standards and the products compliant

with these standards may or may not be available, also the

legacy systems wrapped that way were not reusable.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

83

The other contribution in this area [20] also aimed at migration

of procedurally oriented legacy systems to object oriented

platform. The approach used reverse engineering activities to

abstract an object-oriented model from legacy code. The

methodology was to migrate it incrementally by decomposing

existing systems into notable sets of components, each of which

potentially implements an object. Each object was re-

implemented independently using new object-oriented

technologies whereas the old components were used in their

original form until the new equivalent objects guaranteed

acceptance.

Related work is done by Wong and Li in the same area in which

they presented a computer-aided semi-automatic method that

abstracts OO designs from the original procedural source code.

The results indicated that efficient abstraction of OO design can

be obtained out of the original C code [21].

One of the main objectives of maintaining the legacy systems is

to migrate the standalone systems to distributed environment.

But now many legacy systems are object oriented and even they

are not suitable for distributed environment, so work is being

done to evolve these systems so that they fit in the new

environment. Therefore ,one approach was [19] to migrate the

object oriented legacy systems to a component based system as a

component-based technology have proven to be more suitable

for the new environments due to their granularity and

reusability.

The next section deals with migrating Legacy Systems to the

Web that is one of the main concerns of enterprises looking for

more flexible distributed application environments.

3. MIGRATION OF LEGACY SYSTEMS

TO THE WEB AND SERVICE ORIENTED

ARCHITECTURE

With the tremendous growth of web and the internet and web

enabled client server architecture, the traditional information

system scenario also changed. The information system working

nowadays is no longer working as standalone but are actually

working in web based or distributed environment. Therefore, to

be compatible with the new environment most of the traditional

legacy software system is also migrating to the web enabled

client server architecture. The work done by Canfora etal

explored the migration of legacy system towards service

oriented computing. They used the wrapping methodology to

make the interactive functionalities of legacy systems web

enabled [23].Another migration process comprises the

construction of a Web Interface that needs to interact in an

arbitrary complex manner with pre-existent business logic

modules, which must pay off prior investments. These Web

Engineering concerns have been already addressed with UML.

The multi-tier architecture given by Zou [24] provided

numerous advantages for legacy system migration and

integration with other applications. The technique used specified

the component configuration in XML, to provide rich

information for the consequent automatic wrapping, integration

and searching for the services provided by the legacy

component.

Modeling the integration and interference of design of business

logic and Web Interface design is the key factor for getting

successful Web Applications. Some proposals exist for the

definition of interface and integration with logic that are device

and technology independent. Also, business logic concerns have

already been partially addressed in a number of Advanced

Software Production Environments [13] that use Model Based

Code Generation techniques, many of them based on UML-

compliant models A case study has been conducted [14] to

evaluate the use of MELIS (Migration Environment for Legacy

Information Systems) for the migration of legacy COBOL

programs to the web. Due to huge demand by the customers,

several COBOL systems were required to be migrated to the

web. MELIS (migration environment for legacy information

systems), was also developed to support the migration process.

MELIS has been developed as an eclipse plug-in within a

technology transfer project. The results showed that the use of

MELIS increased productivity and also reduces the gap between

an expert programmer and a novice developer.

Legacy system modernizing using service oriented architecture

and web services need to have a user interface that can interact

with the SOA/web environment. This problem was solved by

developing a wrapper that could interact with the system on

behalf of the user [15]. The wrapper behaviour was defined in

the form of Finite State Machines retrievable by black-box

reverse engineering of the human-computer interface. One more

approach known as OO-H (Object-Oriented Hypermedia)

Method [9], aims at extending the UML-Compliant

environments with two new features: navigation in

heterogeneous information spaces and connexion with pre-

existent logic modules. Although the aspects such as service

composition, asynchronous execution of services, security

concerns or very sophisticated front-ends have not been taken

into account, still the new capabilities will be added as the

number and type of modeled applications increases.

Other approaches that have gained popularity in recent years is

the modernization of legacy software for service oriented

architecture (SOA). One of the major difficulties with the

legacy systems is making them interface with new, open and

modern distributed architecture. This type of service is offered

by Service oriented architecture. Four main approaches for

migrating legacy systems to SOA: replacement, wrapping,

redevelopment and migration have been highlighted in [18] and

the comparison of each approach is done in the area of

maturity, applicability, strengths and weaknesses of each of

them so that , we can better understand how to choose among

strategies for any given project.

Although SOA has been introduced to provide service on the

network, it cannot be seen as a replacement to distributed object

architecture but as a way of developing loosely coupled

distributed systems. They may also be considered superficially

similar but there are subtle differences in the two approaches

that, taken together, lead to significant differences in terms of

their large-scale software engineering properties such as the

granularity of service, ease of composition and differentiation –

properties that have a significant impact on the design and

evolution of enterprise-scale systems[27].They have further

emphasized that some features of distributed objects are actually

crucial to the integration tasks targeted by service-oriented

architectures.

SOA cannot be termed as a replacement but we may say that

SOA focuses at a higher level and is considered to relate to large

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

84

scale systems and focuses on business functionalities design

whereas OO focuses on object design and classification.

Hence, we have briefed up the trend that was adopted for the

migration of legacy systems and certain issues related to the

migration of legacy system to object oriented environment, their

advantages and drawbacks. The next section deals with the

impact of Aspect oriented programming on the evolution of

legacy systems.

4. ASPECTUAL ANALYSIS OF LEGACY

SYSTEMS

Aspect-oriented programming (AOP) is a programming

paradigm that increases modularity by allowing the separation of

cross cutting concerns. AOP states that programming

languages based on any single abstraction framework,

procedures, constraints, whatever are ultimately inadequate

for many complex systems[7] In AOP, the different aspects of a

system behavior are each programmed in their most natural

form, and then these separate programs are woven together to

produce executable code.

For example, code that implements a particular security policy

would have to be distributed across a set of classes and methods

that are responsible for enforcing the policy. However, with

aspect-oriented technology, the code implementing the security

policy could be factored out from all the classes to an aspect [8].

Logging is the archetypal example of a crosscutting concern

because a logging strategy necessarily affects every single

logged part of the system. Logging thereby crosscuts all \logged

classes and methods.

AspectJ, that was developed for java has a number of such

expressions and encapsulates them in a special class, as aspects.

Soon even procedural languages like C and COBOL also started

getting their aspect languages like Aspect C, Aspect C++,

Aspicere, Weave C, C4, TinyC, etc.

4.1 Approaches to Dynamic Software

Evolution

AOSD also supports dynamic evolution of legacy systems. Peter

Ebraert has proposed a solution that allows systems to remain

active while they are evolving [10]. He has presented a

preliminary reflective framework that allows dynamic evolution

of separate concerns. The system evolves in 2 steps. In a first

step, the application’s cross-cutting concerns should be

removed, so that it is well modularized. Aspect mining and static

refactoring techniques were used to detect and separate the

cross-cutting concerns respectively. In a second step, the well-

modularized application should be controlled at the metalevel by

a monitor with full reflective capabilities. Such a monitor

merged the ideas of EAOP (Event-based Aspect-Oriented

Programming) and partial behavioral reflection with the

dynamic capabilities of the Smalltalk language.

4.2 Impact of AOP+LMP in legacy software

Bram Adams has proposed in his work a mix of aspect-oriented

programming (AOP) and logic meta-programming (LMP) to

tackle some concerns of/in legacy environments [11]. The work

was carried out in the context of the two major languages in

legacy environments -C and COBOL. Tracing in C and business

rule mining in COBOL was done smoothly, using LMP as a

point cut mechanism in AOP. The Y2K-bug is probably the

best-known example of problems related to legacy systems. It is

important to understand that at the heart of this was not a lack of

technology or maturity thereof, but rather the understandable

failure to recognize that code written as early as the sixties

would still be around some forty years later. The problem

statement certainly presents a crosscutting concern: whenever a

date is accessed in some way, make sure the year is extended.

Knowing which items are dates and which are not requires

human expertise. The nice thing about LMP is that we could

have used it to encode this.

5. COMPARATIVE ANALYSIS OF AOP

AND OOP

The impact of both the approaches has been highlighted in the

above sections in some of the areas related to the maintenance of

legacy systems. Object-oriented technology provides powerful

tools, such as encapsulation or multiple inheritance of objects,

which enable programmers to construct more functionality with

less code than previous methods. More importantly, it can

minimize the impact of change by combining data and the

functions associated with it into a single package — the object

— thus reducing the amount of time and effort necessary to

produce an application and also increases reuse of software [2].

The approach developed by OMG was discussed. The basis for

the approach is that existing; proven software is retained, thus

eliminating the costs associated with new development. Using a

modular, component-based architecture should also result in

reduced software development and maintenance life cycles and

related costs.

Analyzing the history of legacy software evolution most of the

organizations relied on migrating the legacy systems to object

oriented framework. The redevelopment was practically

inconvenient job and with the explosion of distributed and web

based environment, the wrapping approach was intensively used

to migrate legacy systems to distributed environment. The

introduction of CORBA had eased the transition from

mainframe based centralized legacy systems to object oriented

distributed systems. The next step was migrating them to web

based client server architecture. A number of approaches have

already been discussed above. The increasing emphasis on

migration of legacy systems to object oriented, component based

distributed systems lead to a number of techniques being

developed for the purpose.

Another approach to migrating legacy systems that most of the

system tend to adopt now are migrating them to service oriented

architecture. However, the study [22] based on certain case

studies stated that the process of migrating legacy systems into

SOA has not always been successful. They highlighted a few

success factors such as the potential of legacy systems for being

migrated, strategy of migration, SOA governance, the business

process of the company, budgeting and resources, legacy

architecture, close monitoring and few others on which the

adaptation of the legacy systems to the new service oriented

architecture is dependent.

Most definitions of SOA make use of web services. However it

is possible to implement SOA using any service based

technology.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

85

Although the early emphasis of the programmers was to migrate

the systems to component based architecture but SOA also has

become the next step in software architecture evolution. The

similarities have been highlighted by Helmut .Both the

architecture seem to have the same goal: To provide a

foundation for loosely joined and highly interoperable software

architecture, enabling efficient, error-free software development

[25].

Nearly all evolution research done in recent years had focused

on developing a type of architecture that allows loose coupling

and high reusability of its components. That will make the

software more efficient, faster, error-free software production.

Therefore, enabling legacy teams to successfully migrate

towards object-oriented and component development needs to

address a whole range of issues.

On the other hand, Aspect-Oriented Programming is a

programming paradigm with deals directly with aspects of

concern rather than modules of software code. Therefore, AOP

works at different level of abstraction. The purpose of AOP is to

remove the tangled code by making it possible to extract the

cross cutting concerns from the code and then to combine those

aspect with one another and executable code using automating

tools. This enables the details of the aspects to be modified

without having to modify all software code that the aspects

affect.

Everything that AOP does could also be done without it by just

adding more code.

AOP just saves writing this code. Assume you have a graphical

class with many "set()" methods. After each set method, the data

of the graphics changed, thus the graphics changed and thus the

graphics need to be updated on screen. Assume to repaint the

graphics "Display. update ()" should be called. The classical

approach is to solve this by adding more code. If there are few

set-methods, that is not a problem. But if there are many, then

it's getting real painful to add this everywhere. No need to

update many methods; no need to make sure to add this code on

a new set-method. Only a pointcut is needed.

In addition, refactorings are instrumental for the migration of

legacy OO systems to use AOP [5]. Research shows that CCCs

represent an important evolution problem in legacy systems,

especially if one takes the scale of these systems into account

(millions of lines of code). AOP can also be used in the dynamic

analysis of the legacy systems that no other paradigm can assist

[2].

However, this example also shows one of the big limitations of

AOP. AOP is actually doing something that many programmers

consider an ―Anti Pattern‖. The exact pattern is called ―Action at

a distance‖ is an anti-pattern (a recognized common error) in

which behavior in one part of a program varies wildly based on

difficult or impossible to identify operations in another part of

the program.

As with all immature technologies, widespread adoption of AOP

is hindered by a lack of tool support, and widespread education.

Some argue that slowing down is appropriate due to AOP's

inherent ability to create unpredictable and widespread errors in

a system. Implementation issues of some AOP languages mean

that something as simple as renaming a function can lead to an

aspect no longer being applied leading to negative side effects.

6. CONCLUSION

Analyzing the facts that had been covered in the earlier sections,

it can be concluded that AOP does not replace OOP in the

maintenance of legacy systems but adds certain decomposition

features that address the so-called tyranny of the dominant

composition (or crosscutting concerns). OOP and AOP are

working at different levels of abstraction, OOP at object level

whereas AOP at code level. One more constraint is that AOP

and software architecture have evolved separately as discipline.

Therefore integration of aspects into software architecture is a

complex job. The ideas and practices of OOP stay relevant. We

have discussed object orientation in the light of both component

based development and service oriented architecture.

Conceptually, all the approaches define different software

system characteristics. However, Aspect-orientation, on the

other hand, can be seen as a complementary paradigm affecting

the software system on several levels. Having a good object

design will probably make it easier to extend it with aspects.

Although this should always be taken into consideration that the

legacy systems should not necessarily include AOP, as it may

result in unnecessary code complexity and the programmers

might have to face the anti-pattern problem. Therefore AOP

should not be seen as a replacement of OOP, but as an approach

that makes your code more clean, loosely-coupled and focused

on the business logic.

7. REFERENCES
[1] Bram Adams, ―Aspect Orientation in the Procedural Context

of C‖, 2006.

[2] Bram Adams, Kris De Schutter , Andy Zaidman , Serge

Demeyer , Herman Tromp, Wolfgang De Meuter , ―Using

Aspect Orientation in Legacy Environments for Reverse

Engineering using Dynamic Analysis - An Industrial

Experience Report‖,2008

[3] Fatima Beltagui, ―Challenges of Aspect-oriented

Technology, Features and Aspects: Exploring feature-

oriented and aspect-oriented programming interactions‖,

2003

[4] Gail Cochrane,‖ An Object-Oriented Approach to Legacy

System Migration‖, 1996

[5] Jan Hannemann, ―Aspect-Oriented Refactoring:

Classification and Challenges‖, 2006

[6] John Wiley and Sons, ―The Common Object Request

Broker: Architecture and Specification‖, Revision 2.0,

Object Management Group, 1995

[7] John Irwin, Gregor Kickzales, John Lamping, Jean, Cristina

Videiralopes, Chris Maeda―Aspect Oriented

Programming‖, 2000

[8] James M. Bieman, Roger T. Alexander,‖ Challenges of

Aspect-oriented Technology, 2004

[9] Jaime Gómez, Cristina Cachero, and Antonio Párraga,

―Extending UML for the migration of Legacy Systems to

the Web‖, Spain, 2002

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

86

[10] Peter Ebraert and Tom Tourwe, ―A Reflective Approach to

Dynamic Software Evolution‖, 2004

[11] Kris De Schutter, Bram Adams, ―Face-off: AOP+LMP vs.

legacy software‖, 2007

[12] Nader Mohamed and Jameela Al-Jaroodi and, ―An Object-

Oriented Approach for High Availability of Applications

Integration‖, United Arab Emirates University, 2007

[13] R. Bell, ―Code Generation from Object Models‖,

Embedded Systems Programming‖, 1998

[14] Massimo Colosimo, Andrea De Lucia, Giuseppe

Scanniello, Genoveffa Tortora, ―Evaluating legacy system

migration technologies through empirical studies‖,

Information and Software Technology (2009) Volume: 51,

Issue: 2, Pages: 433-447

[15] G.Canfora, A.R.Fasolino, G.Fratollilo, P.Tramontana, “A

wrapping approach for migrating legacy system interactive

functionalities to Service Oriented Architectures‖,Journal

of Systems and Software,Elsevier Science,2008.

[16] An Object-Oriented Approach to Legacy System Migration

Gail Cochrane, TRW Government Information Systems

Division, 1996

[17] Nelson H. Weiderman,John K. Bergey,Dennis B. Smith

Scott R. Tille ―Approaches to Legacy System

Evolution‖,USA,1997.

[18] Asil A. Almonaies, James R. Cordy, and Thomas R.

Dean,‖Legacy System Evolution toward Service-Oriented

Architecture‖, Canada, 2010.

[19] Eunjoo Lee,Byungjeong Lee, Woochang Shin, Chisu

Wu,―Reengineering Process for Migrating from an Object-

oriented Legacy System to a Component-based System,

Proceedings of the 27th Annual International Computer

Software and Applications Conference

(COMPSAC’03),2003.

[20] Aniello Cimitile, Andrea De Lucia, Giuseppe Antonio Di

Lucca, Anna Rita Fasolino, ―Identifying objects in legacy

systems using design metrics‖, The Journal of Systems and

Software 44 (1999) 199±211,1999.

[21] Wong Weric, Jenny Li ―Redesigning legacy systems into

the object-oriented paradigm ―,International Journal of

Software Engineering and Knowledge Engineering

IJSEKE,2004.

[22] Maulahikmah Galinium, Negar Shahbaz, ―Factors

Affecting Success in Migration of Legacy Systems to

Service-Oriented Architecture (SOA) Shared Experiences

from Five Case Companies, 2009.

[23] G.Canfora, A.R.Fasolino, G.Fratollilo, P.Tramontana

―Migrating interactive legacy systems to Web services‖,

Software Maintenance and Reengineering, 2006. CSMR

2006. Proceedings of the 10th European Conference, 2006.

[24] Ying Zou and Kostas A. Kontogiannis ―Web-based Legacy

System Migration and Integration‖, 2001.

[25] Helmut Petritsch, ―Service-Oriented Architecture (SOA) vs.

Component Based Architecture‖, 2005.

[26] Andrea De De Lucia, Rita Francese, Giuseppe Scanniello,

Genoveffa Tortora ―Developing legacy system migration

methods and tools for technology transfer‖,2008.

[27] Sean Baker and Simon Dobson Comparing Service-

Oriented and Distributed Object Architectures‖, 2005.

.

