
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

6

Identifying the Aspectual Requirements: A Theme Based
Vector-Orientation Model

Dipankar Majumdar
Department of Information Technology

B.P. Poddar Institute of Management & Technology
137, V.I.P. Road. Kolkata – 700052, India

Swapan Bhattacharya
National Institute of Technology

M. G. Avenue, Durgapur
West Bengal – 713209, India

ABSTRACT
‘Separation of Concerns’ in the field of Software Engineering

has been an important issue for quite some time. And this issue

is very much related to Aspect Oriented Software Development.

This is so because Aspects happen to be certain concerns that

get interleaved with the Core-Functionalities in such a way that

they become nearly inseparable. As a result of which both the

designer as well as the programmer, who are supposed to be

concerned only with the Core-Functionalities, is bound to take

extra burden or botheration regarding the proper and accurate

handling of Aspects. The Theme approach is an already

established approach for Aspect identification in the

requirements-engineering phase. Our approach is a

diversification of the Theme approach where we look for

Aspectual Requirements instead of Aspectual Themes. This

paper proposes a purely mathematical model for Requirements-

Engineering for Aspect Identification. The concept is based on

N-Dimensional-Vector-Orientation Model, which is used to

serve the purpose.

Categories and Subject Descriptors
D.2.1 Requirement /Specifications

General Terms
Theory, Measurement

Keywords
Requirements Engineering, Aspect-Oriented-Programming,

Vector Orientation, N-Dimensional Space.

1. INTRODUCTION
Aspect Oriented Programming (AOP) has been an active

research area recently for some years. In due course, the Aspects

are identified as Concerns that gets tightly coupled with other

Core-Functionality Modules and thereby to the system as a

whole, making the system more and more complex to handle.

These interfering requirements (Aspectual-Requirements)

remain interleaved with the Core-Functionality Requirements in

order to perform certain essential activities. Since these

Aspectual Requirements does not form a logical part of these

Core Functionality Requirements, a major objective of the

‘Aspect Orientation’ is to somehow separate the Aspectual

Requirements from the Core Functionality Requirements.

On the other hand we cannot afford to ignore the functional

necessity of these Aspectual Requirements. The objective is

only to free the designer and the coder off the burden of

handling the Aspectual Requirements, while designing the Core

Functionality Requirements and not to totally ignore the Aspects

as a whole. If the Aspectual-Requirements could be separated

right at the Requirements Engineering phase, then the Aspectual

Modules may be designed and coded separately under the

Aspect Oriented Paradigm.

2. RELATED WORK
The objective of our work is to support requirements

engineering for identification of aspects, and traceability of

those aspects to (and from) the design from a mathematical

point of view. Hence, our related work primarily describes work

on identification of aspects from requirements. Previous

publications on Theme/UML [4, 6, 5] describe other work on

design. There have been several efforts in capturing and relating

aspect-oriented requirements [16, 18, 8, 13, 11, 10, 3]. We shall

consider the two, which relate most closely to the Theme

approach. Rashid et al [13] provide the AORE (Aspect-Oriented

Requirements Engineering) model and ARCaDe (Aspectual

Requirements Composition and Decision support) approach and

tool for describing components and requirements-level aspects.

Examples of these aspects are compatibility, availability, or

security. This work grows on the ViewPoints model [9], which

is planned to support the integration of heterogeneous

requirements specified from multiple perspectives. An early

stage in the AORE model is the identification and specification

of concerns. The approach to this differs from the Theme

approach to concern identification in that it relies on the domain

knowledge of the developer to identify possible non-functional

requirements to be taken into account when implementing a

particular requirement. Those concerns are not explicitly

mentioned in the requirements specification; it is up to the

developer to ascertain their relevance on their own. The

Theme/Doc approach aims to support the analysis of

relationships between behaviors described in requirements

specifications. It is possible that the Theme/Doc approach to

aspect identification could be used during the concern

identification phase of AORE, or could support AORE’s

extension to include functional as well as non-functional

requirements. Katera and Katz [11] propose architectural views

of aspects as a means for reasoning about the relationships

among aspects in a system. They describe aspects as

crosscutting augmentations to an existing design. In particular,

they allow for specification of the overlap between aspects

through the concept of a sub-aspect that provides the

overlapping functionality, and they make relationships between

aspects explicit. A UML approach has been given to support the

views, which differs from the Theme/UML approach: it

provides additional architectural support for aspect modeling to

that provided by Theme/UML, and it uses aspect mappings

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

7

rather than multi-dimensional composition style semantics.

Several publications have been made in the past, which endorse

the fact that Aspect Oriented Programming proves to be highly

effective in comparison with the traditional Object Oriented

Programming with respect to the issues like Implementations of

Cross Cutting Concerns, Error Debugging, Maintenance,

Modularity, Reusability, Readability, Compactness and

Developmental Effort. Early in 1998, Murphy, Walker, and

Beniassad [18] made an analysis on the usefulness and usability

of the AOP Technology and made necessary postulates

regarding the enhancement of the same. Tarr, Peri et al.

proposed the idea of N Degrees of Separation: Multi-

Dimensional Separation of Concerns in [7]. Siobhán Clarke and

Elisa Baniassad in their book [15] introduced the concept of

Themes. They proposed the idea how to find themes and

thereafter look for aspectual themes. Our work is based on [15],

the only difference being that we are looking for aspectual

requirements and not themes. And we intend to separate these

aspectual requirements right at the requirements engineering

level in order to achieve an early separation of concerns.

3. SCOPE OF THE WORK
The scope of our work is to give a purely mathematical shape to

the requirements engineering and aspect identification process.

Once this can be done, the aspect identification task becomes

completely mechanized and can be automated. We intend to

identify the aspects early in the requirement-engineering phase,

such that thereafter the aspectual requirements can be separated

from the core-requirements and be placed under the AOP

paradigm for further modeling and thereafter the

implementation. As themes [20] happen to be already an

established concept in the field of Aspect-Identification, we

intend to give the theme-based approach a mathematical shape

using vector analysis. We have defined an N-Dimensional space

where N is the number of themes. Under this scenario we model

the themes as mutually orthogonal co-ordinate axes and the

requirements as N-Dimensional Unit Vectors.

By property of a unit-vector [17], we know that it has a

magnitude equal to one and a direction. Likewise a

‘requirement’ may be represented by a unit magnitude and a

direction, depending on the number of entities and the number

of themes it involves for its functionality. Hence a requirement

may get involved with single or multiple entities and at the same

time single or multiple themes. Our requirement-vector shall

have a magnitude equal to one and the direction or alignment in

the vector space determined by the number of entities it involves

and the number of themes it involves. The more a requirement

gets involved with a theme, depending on the number of entities

participating for that theme, the more is its inclination towards

the axis represented by that very theme and lesser is the angle

made by that requirement-vector with that theme-axis.

Consequently the direction-cosines of a requirement-vector with

the theme-axes represent the involvement it has with them. Thus

we see that while the ‘magnitude’ of the requirement-vector

remains unity, the number of themes involved and the number

of entities involved together determines its ‘direction’. These

two values together results in the requirement-vector having its

base at the origin and making ‘N’ same/different angles with the

theme-axes. Our definition of an Aspectual-Requirement is a

requirement that gets involved with more number of themes.

Since we have clearly shaped the requirements and themes with

a mathematical background, we can now easily devise a

technique to find out those vectors that get involved with more

number of axes. Such a vector represents a requirement that is

involved with most of the themes and may be considered as an

aspectual requirement from our definition.

Our work goes one step ahead in defining an N-Dimensional

space and names it as the ‘Probabilistic Aspect-Zone’. Any

requirement-vector appearing in that zone can be

probabilistically said to be having aspectual characteristics.

3.1 Theme Based Vector Orientation Model
In this section we introduce the Theme Based-Dimensional-

Approach analogous to the Theme-Approach [15] for Aspect-

Oriented Analysis and Design. We use an ‘Expression-

Evaluation-System (EES)’ as a case study borrowed from [15]

to illustrate our proposed approach in Section 4.0. This approach

can be used to portray an abstraction for the requirements, and

conditionally express how to identify crosscutting aspectual-

requirements. Our approach is different from the theme

approach based aspect identification procedure in a sense that

[15, 20] shows how to identify aspects from themes. On the

other hand our approach is towards identifying Aspects from the

‘Requirements’. We look into the ‘requirements’ in order to

identify the ‘aspectual-requirements’ and not the aspectual-

themes. The following are the salient points of our assumption.

- Themes are independent of each other

- Themes may interact with each other through the

requirements

- A Requirement may get involved with one or more themes.

- A Requirement may not remain restricted to any particular

theme

- A Requirement may not remain scattered into all the themes

- A Requirement may depend on one or more themes, but a

theme never depend on any requirement

The Theme Based Vector Orientation Approach involves

identifying the potential themes [15], which are then assembled

together to form an N-dimensional space to prepare a design for

the whole system. Themes can be thought of as analogous to a

shortlisted list of the main actions or verbs, at its primitive level,

that happens to characterize a system visibly. In our approach

these themes are taken as reference axes mutually orthogonal to

each other thereby giving rise to a hypothetical N-Dimensional

space, where N is equal to the number of themes. And the

requirements are fitted into this N-Dimensional space as N-

Dimensional vectors.

So, in a sense, our Theme Based Vector Orientation Approach

converts the ‘Theme – Requirement’ relationship to a purely

mathematical model, where vector [17] based dimensional

analysis can straight away be applied for Requirement-

Engineering for the identification of Aspects.

3.2 Mathematical Analysis of the Approach
Let us consider an N-Dimensional Space, guided by N-

Coordinate axes. Any vector having its base at the origin will

have N dimensions. These kind of vectors [17] are represented

by a 1 X N matrix as shown below:

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

8

 1 2 3 … i i+1 … N

Let V =

The above shows an N-Dimensional Vector represented by a 1

X N Matrix. The N-Dimensional vector V makes N angles with

the N axes respectively. The magnitude of the vector and the

angles it makes with the theme-axes are represented as follows:

|V| = V(1)·U1 + V(2)·U2 + … + V(i)·Ui + … V(N)·UN

 √[V(1)2 + V(2)2 + … + V(i)2 + … V(N)2]

θV-1 =Cos-1 _ ____ _ V(1)_______________
 √[V(1)2 + V(2)2 + … + V(i)2 + … V(N)2]

U1, U2, … UN represents the unit-vectors along the theme-axes.

And similarly θV-2, θV-3, … upto θV-N. Where θV-i is the angle
that the vector: V makes with the ith coordinate axis. In the

above expression we represent the 1st element of the vector V by

V(1), 2nd element by V(2), 3rd element by V(3) and similarly

upto V(N).

Further let us consider an omni-directional unit vector U, such

that θU-1 = θU-2 = … = θU-i = … θU-N … = θ (say)
Any vector that gets involved with more number of the themes

makes some positive angles, less than or equal to θ (depending
on the number of entities involved while interacting with each

theme), with each of these involving theme-axes.

The more number of themes and the number of entities the

requirement-vector involves, the lesser is the angle between that

requirement-vector (V for instance) and the unit-vector (U for

instance). Thus we have the following.

Let ϕ be the angle between V and U, then

ϕV-U = Cos
-1
[θV-1·θU-1 + θV-2·θU-2 +…
+ θV-i·θU-i +…+ θV-N·θU-N]

Our hypothesis for an Aspectual-Requirement can be

probabilistically laid down as follows:

“The lesser the angle a requirement-vector makes with the

omni-directional unit vector, the higher is the probability of

the vector being an Aspectual Requirement”.

Mathematically we may represent the hypothesis as follows:

pASPECT(Ri)

 = Probability of a Requirement being an

 Aspectual Requirement.

And pASPECT(Ri) = (θ - ϕ Ri-U)
 θ

3.3. Probabilistic Aspect Zone
From the above, we draw the following corollary. Let us

consider a vector Z anywhere in the N-Dimensional space that

makes an angle equal to ϕ with the omni-directional unit vector
U such that θ >= ϕ >= 0. If the base of such a vector is kept
static at the origin and the tip of this vector is rotated all through

the N-Dimensions about the vector U keeping ϕ constant, we
find an N Dimensional surface for a certain value of ϕ. Varying
the angle ϕ from 0 to θ, we define this N-Dimensional space
probabilistically.

The lesser the value of the angle ϕ, the greater is the probability
of finding an aspectual-requirement there. We name this N-

Dimensional space guided by the rotating vector Z as the

‘Probabilistic-Aspect-Zone’.

We further propose that any requirement-vector appearing to be

in this region is likely to be an aspectual requirement depending

on the probabilistic value of the space. This requirement should

be separately analyzed and studied and if required may be

modeled as aspectual-requirement. And thereafter be treated

separately in further requirement-engineering task.

4.0 Case Study
We now review the nature of themes [15], with the ‘Expression

Evaluation System (EES)’ again borrowed from [15] as a case

study for the demonstration of our approach. Table –1 shows the

requirements of our Expression Evaluation System case study.

Table-1 shows the entities in bold text and themes in bold-

underlined text.

4.1 Finding Themes
The first step in the Theme Based-Vector Orientation Model is

to examine the documentation of the system requirements. At

this stage, we try to identify potential ‘action-features’ that are

described in the requirements from the EES and also to find out

which portions of the requirements document pertain

specifically to those features. In Table-1, the identified potential

themes are shown underlined.

Table-1: Expression Evaluation System Requirements

R1 An evaluation capability, which determines the result of evaluating an expression.

R2 A display capability, which depicts an expression textually

R3
A check-syntax capability, which optionally determines whether an expression is syntactically

and semantically correct

R4 The check-syntax, display, and evaluation operations on any expression should all be logged

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

9

Table-1: Expression Evaluation System Requirements Continued..

R5
The expression is defined as a variable-expression or a number-expression or a plus-operation

or a minus-operation or a unary-plus-op or a unary-minus-op

R6 plus-operation is defined as an expression and a plus-operator and an expression

R7 minus-operation is defined as an expression and a minus-operator and an expression

R8 unary-plus-op is defined as a plus-operator and an expression

R9 unary-minus-op is defined as a minus-operator and an expression

R10 variable-expression is defined as a letter and an expression

R11 number-expression is defined as a number and an expression

In object orientation, classes, or entities, form the main unit of

modularity. In the Theme Based Vector Orientation Model,

basic action-features are as much a unit of modularity as

entities. The first step is to identify a set of primary action-

features from our requirements. So, rather than just sifting

through our requirements and looking for key entities, we also

look for key themes.

In the next step, we iterate over that set, deciding whether to

add, delete, split up, or group themes. As in Object Oriented

Style, where we use at least some of the entities to motivate

classes, we use some of the actions/verbs to motivate themes.

There are several ways to arrive at a starting point of Theme

Based Vector Orientation Model. Names of ‘Services’, or ‘Use

Cases’ of the system can be chosen to become potential themes.

In the case study namely the Expression Evaluation System

(EES) borrowed from [15], we have no Use-Case described and

have not analyzed the requirements in terms of services. Instead,

we scan the requirements for identifiable pieces of functionality.

We identify 6 potential themes:

Table-2: List of Themes

1 EVALUATION

2 DISPLAY

3 DETERMINE

4 CHECK-SYNTAX

5 LOG

6 DEFINE

We also identify 9 entities:

Table-3: List of Entities

1 EXPRESSION

2 VARIABLE-EXPRESSION

3 NUMBER-EXPRESSION

4 PLUS-OPERATION

Table-3: List of Entities Continued

5 MINUS-OPERATION

6 PLUS-OPERATOR

7 MINUS-OPERATOR

8 UNARY-PLUS-OP

9 UNARY-MINUS-OP

As told before we will consider the Requirements to be ‘vectors’

in a hypothetical-space with number of dimensions equal to the

number of themes. Each of the vectors having their magnitude

equal to unity and the direction depicting the involvement of the

requirement in terms of the number of participating entities with

one or more themes. In our case study, we have 6-Dimensions,

and 11 Requirements to fit in. The list of the vectors with their

magnitude being equal to unity, the direction cosines are shown

is as follows. The coefficients of the requirement-vectors along

each of the dimensions (theme-axes) are taken up as the number

of entities involved for that ‘requirement’ with that theme.

Therefore for any requirement, we count the number of entities

involved for a particular theme in case of a particular

requirement from Table-1 and put them up as coefficients along

the respective theme-axes. For example, we observe that for the

Requirement: R1, the only involved entity ‘expression’ is

working with two different themes, namely ‘determine’ and

‘evaluate’. Therefore for R1 we have the requirement-vector

having coefficient 1 with both the 1st and the 3rd dimensional

unit-vector. As a result for R1, the coefficient of both I as well

as K are equal to 1. We have used the convention θRP-Q to
denote the angle between the ‘vector’ represented by the Pth

Requirement and the Qth Axis. As convention the vectors and

directional unit vectors are marked in bold.

R1 = 1·I + 0·J + 1·K + 0·L + 0·M + 0·N

 √(12+ 02 + 12 + 02 + 02 + 02)
θR1-1 = Cos

-1
(1/√2), θR1-2 = Cos

-1
(0/√2), θR1-3 = Cos

-1
(1/√2)

θR1-4 = Cos
-1
(0/√2), θR1-5 =Cos

-1
(0/√2), θR1-6 = Cos

-1
(0/√2)

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

10

R2 = 0·I + 1·J + 0·K + 0·L + 0·M + 0·N

 √(02+ 12 + 02 + 02 + 02 + 02)
θR2-1 = Cos

-1
(0/1), θR2-2 = Cos

-1
(1), θR2-3 = Cos

-1
(0/1)

θR2-4 = Cos
-1
(0/1), θR2-5 = Cos

-1
(0/1), θR2-6 = Cos

-1
(0/1)

R3 = 0·I + 0·J + 1·K + 1·L + 0·M + 0·N

 √(02+ 02 + 12 + 12 + 02 + 02)
θR3-1
 = Cos

-1
(0/√2), θR3-2 = Cos

-1
(0/√2), θR3-3 = Cos

-1
(1/√2)

θR3-4
 = Cos

-1
(1/√2), θR3-5 = Cos

-1
(0/√2), θR3-6 = Cos

-1
(0/√2)

R4 = 1·I + 1·J + 0·K + 1·L + 1·M + 0·N

 √(12+ 12 + 02 + 12 + 12 + 02)
 θR4-1 = Cos

-1
(1/2), θR4-2 = Cos

-1
(1/2), θR4-3 = Cos

-1
(0/2)

 θR4-4 = Cos
-1
(1/2), θR4-5 = Cos

-1
(1/2), θR4-6 = Cos

-1
(0/2)

R5 = 0·I + 0·J + 0·K + 0·L + 0·M + 7·N

 √(02+ 02 + 02 + 02 + 02 + 72)
θR5-1 = Cos

-1
(0/7), θR5-2 = Cos

-1
(0/7), θR5-3 = Cos

-1
(0/7)

θR5-4 = Cos
-1
(0/7), θR5-5 = Cos

-1
(0/7), θR5-6 = Cos

-1
(7/7)

R6 = 0·I + 0·J + 0·K + 0·L + 0·M + 4·N

 √(02+ 02 + 02 + 02 + 02 + 42)
θR6-1 = Cos

-1
(0/4), θR6-2 = Cos

-1
(0/4), θR6-3 = Cos

-1
(0/4)

θR6-4 = Cos
-1
(0/4), θR6-5 = Cos

-1
(0/4), θR6-6 = Cos

-1
(4/4)

R7 = 0·I + 0·J + 0·K + 0·L + 0·M + 4·N

 √(02+ 02 + 02 + 02 + 02 + 42)
θR7-1 = Cos

-1
(0/4), θR7-2 = Cos

-1
(0/4), θR7-3 = Cos

-1
(0/4)

θR7-4 = Cos
-1
(0/4), θR7-5 = Cos

-1
(0/4), θR7-6 = Cos

-1
(4/4)

R8 = 0·I + 0·J + 0·K + 0·L + 0·M + 3·N

 √(02+ 02 + 02 + 02 + 02 + 32)
θR8-1 = Cos

-1
(0/3), θR8-2 = Cos

-1
(0/3), θR8-3 = Cos

-1
(0/3)

θR8-4 = Cos
-1
(0/3), θR8-5 = Cos

-1
(0/3), θR8-6 = Cos

-1
(3/3)

R9 = 0·I + 0·J + 0·K + 0·L + 0·M + 3·N

 √(02+ 02 + 02 + 02 + 02 + 32)
θR9-1 = Cos

-1
(0/3), θR9-2 = Cos

-1
(0/3), θR9-3 = Cos

-1
(0/3)

θR9-4 = Cos
-1
(0/3), θR9-5 = Cos

-1
(0/3), θR9-6 = Cos

-1
(3/3)

R10 = 0·I + 0·J + 0·K + 0·L + 0·M + 2·N

 √(02+ 02 + 02 + 02 + 02 + 22)
θR10-1 = Cos

-1
(0/2), θR10-2 = Cos

-1
(0/2), θR10-3 = Cos

-1
(0/2)

θR10-4 = Cos
-1
(0/2), θR10-5 = Cos

-1
(0/2), θR10-6 = Cos

-1
(2/2)

R11 = 0·I + 0·J + 0·K + 0·L + 0·M + 2·N

 √(02+ 02 + 02 + 02 + 02 + 22)
θR11-1 = Cos

-1
(0/2), θR11-2 = Cos

-1
(0/2), θR11-3 = Cos

-1
(0/2)

θR11-4 = Cos
-1
(0/2), θR11-5 = Cos

-1
(0/2), θR11-6 = Cos

-1
(2/2)

4.2 Theme Based Aspect Identification
In this section, we demonstrate how our Theme Based

Dimensional Approach may be used to identify Aspects, such

that they could be separated right at the time of requirements

engineering and treated separately. Let us define an omni-

directional unit vector U.

We call it unit-vector because |U| = 1, and omni-directional

because it makes equal angles with all the theme-axes. In our

case, we have 6 dimensions; therefore our omni-directional unit

vector makes equal angles with all the 6 axes.

Thus we have θU-1, θU-2, θU-3, θU-4, θU-5, θU-6 the angles that U
makes with all the 6 axes equal to each other. This implies from

the law of direction cosines of a vector [17] that if we assume

that θU-1= θU-2= θU-3= θU-4= θU-5= θU-6 = θ (say) then 6*cos
2θ =

1. Therefore cosθ = √(1/6) radians.

According to our proposed idea, the Requirements represented

by vectors that are closer to the omni-directional-unit-vector U

are assumed to be those requirements that tend to scatter into a

number of themes. Consequently they are more probable to be

aspectual requirements. Hence in order to identify the proximity

that a requirement-vector has with the omni-directional unit

vector, we calculate the angle between them.

For the ith requirement: Ri, we have the angle between Ri and U

computed as follows.

ϕ Ri-U
 = Cos

-1
[Cos(θRX-1)*√(1/6) + Cos(θRX-2)*√(1/6)

 + Cos(θRX-3)*√(1/6) + Cos(θRX-4)*√(1/6)
 + Cos(θRX-5)*√(1/6) + Cos(θRX-6)*√(1/6)]

⇒ ϕ Ri-U
 = Cos

-1
[{√(1/6)} * {Cos(θRX-1) + Cos(θRX-2)

+ Cos(θRX-3) + Cos(θRX-4)
+ Cos(θRX-5) + Cos(θRX-6)}]

From the corollary shown in section 3.3, let us identify

the ‘Probabilistic Aspect Zone’ for our particular case

study.

We have

 ϕR1-U = 0.9553 ⇒⇒⇒⇒ pASPECT(R1) = 0.1695

 ϕ R2-U = 1.1503 ⇒⇒⇒⇒ pASPECT(R2) = 0

 ϕ R3-U = 0.9553 ⇒⇒⇒⇒ pASPECT(R3) = 0.1695

 ϕ R4-U = 0.6155 ⇒⇒⇒⇒ pASPECT(R4) = 0.4649

 ϕ R5-U = 1.1503 ⇒⇒⇒⇒ pASPECT(R5) = 0

 ϕ R6-U = 1.1503 ⇒⇒⇒⇒ pASPECT(R6) = 0

 ϕ R7-U = 1.1503 ⇒⇒⇒⇒ pASPECT(R7) = 0

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

11

 ϕ R8-U = 1.1503 ⇒⇒⇒⇒ pASPECT(R8) = 0

 ϕ R9-U = 1.1503 ⇒⇒⇒⇒ pASPECT(R9) = 0

 ϕ R10-U = 1.1503 ⇒⇒⇒⇒ pASPECT(R10) = 0

 ϕ R11-U = 1.1503 ⇒⇒⇒⇒ pASPECT(R11) = 0

Fig-1: Bar Chart Showing

Aspectual Requirement Analysis

0

0.1

0.2

0.3

0.4

0.5

R1 R3 R5 R7 R9 R11

Requirements

A
s
p
e
c
tu
a
l P
ro
b
a
b
ili
ty

From the bar-chart shown in Fig-1, we find that the requirement

R4 has the highest probability of being an Aspectual

Requirement. Such a requirement is required to be treated

separately and processed under a separate programming

paradigm, namely the Aspect Oriented Programming Paradigm.

Likewise, we also note that the N-Dimensional space engulfing

only the requirement R4 has higher Aspectual Probability than

the space that engulfs R1 and R3 as well. We also find that since

the rest of the requirements have their Aspectual-Probability

equal to 0, they are unlikely to be an Aspect and should be

separately handled as non-aspectual-requirement.

Hence we put-forward the requirement as a probable aspectual

requirement and recommend further study on it in order to

conform that it truly satisfies all the condition of being an

Aspect.

5. DISCUSSION AND CONCLUSION
Identification of Aspects is always necessary as early as possible

in the phases of the Software Development Life Cycle. And

therefore our objective was to identify the Aspectual

Requirements as early as in the phase of Requirements

Engineering. On examination of any conventional

‘requirement’, we found that they consist of a set of one or more

entities performing certain actions.

From our acquaintance of ‘themes’, we have framed these

actions as themes in our model. Also from our prior knowledge

of Aspect Oriented Systems, we know that Aspects happen to be

certain requirements that remain scattered irrespective of the

domain of Entities or Themes. As a result, we look for those

requirements that remain scattered throughout the domain of an

information system.

In the current paper we have adopted and demonstrated a

Theme-Based Vector Orientation Model for identification of

Aspectual-Requirements and have proved its efficacy with a

case study. Our approach is not only limited to theoretical

studies but is practicable in case of large applications as well.

Themes are an established concept in the field of Aspect

Identification, but till date we do not have any core

mathematical procedure for such identification task. In that

respect our approach is expected to contribute in that area. And

at the same time it is expected to give a core mathematical shape

to the Aspect Orientation of Requirement Engineering.

6. REFERENCES
[1] Aspectj home page, Xerox PARC, USA, http://aspectj.org/.

[2] E. Baniassad, G. Murphy, and C. Schwanninger. Design

pattern rationale graphs: Linking design to source. In

Proceedings of the International Conference on Software

Engineering,pages 352–362, 2003.

[3] J. Castro, M. Kolp, and J. Mylopoulos. Towards

requirements-driven information systems engineering: The

tropos project, 2002.

[4] S. Clarke. Extending standard uml with model composition

semantics. Science of Computer Programming, 4(1):71–100,

July 2002.

[5] S. Clarke and R.Walker. Towards a standard design

languagefor AOSD. In Proceedings of the International

Conference on Aspect-Oriented Software Development, pages

113–119.ACM Press, 2002.

[6] S. Clarke and R. J. Walker. Composition patterns: An

approachto designing reusable aspects. In International

Conference on Software Engineering, pages 5–14, 2001.

[7] Tarr, Peri, Harold Ossher, William Harrison, and Stanley M.

Sutton, Jr. N Degrees of Separation: Multi-Dimensional

Separation of Concerns. In the proceedings of the International

Conference on Software Engineering (ICSE), 1999

[8] R. Darimont and A. van Lamsweerde. Formal refinement

patterns for goal-driven requirements elaboration. In

Foundations of Software Engineering, pages 179–190, 1996.

[9] A. Finkelstein. The viewpoints faq. BCS/IEE Software

Engineering Journal, 11(1), 1996.

[10] J. Grundy. Aspect-oriented requirements engineering for

component based software systems. In 4th IEEE International

Symposium on Requirements Engineering, pages 84–91.

[11] M. Katera and S. Katz. Architectural views of aspects. In

Proceedings of the International Conference on Aspect oriented

Software Development, pages 1–10, 2003.

[12] Kiczales, G, J.Lamping, A.Mendhekar, C.Maeda, C.Lopes,

Jean-Marc Loingtier, and J.Irwin. Aspect-Oriented

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

12

Programming. In the proceedings of the European Conference

on Object-Oriented Programming (ECOOP), 1997

[13] A. Rashid, A. Moreira, and J. Araujo. Modularisation and

composition of aspectual requirements. In Proceedings of the

International Conference on Aspect-oriented Software

Development, pages 11–20, 2003.

[14]Murray R Spigel, “Vector Analysis and an Introduction to

Tensor Analysis”,Mc Graw Hill 1968-06-01, ISBN-10/ASIN:

07060228X

[15] S Clarke, E Baniassad, “Aspect-Oriented Analysis and

Design: The Theme Approach”, Publisher: Addison Wesley

Professional, Pub Date: March 23, 2005, ISBN: 0-321-24674-8

[16] S. Sutton and I. Rouvellou. Modeling of software concerns

in cosmos. In Proceedings of the International Conference on

Aspect-oriented Software Development, pages 127–133, 2002.

[17]Erwin Kreyszig, “Advanced Engineering Mathematics”, 9th-

Edition,Ohio State University ISBN: 978-0-471-48885-9 ©2006

[18] X. Wang and Y. Lesperance. Agent-oriented requirements

engineering using congolog and i*. In Submitted to AOIS-2001,

Bi-Conference Workshop at Agents 2001 and CAiSE’01., 2001.

[19] G. C. Murphy, R. J. Walker and E. L. Beniassad.

Evaluating Emerging Software Development Technologies:

Lessons Learned from Assessing Aspect Oriented Programming

Technical Report TR-98-10, Dept of Comp. Sc, Univ. of British

Columbia, 1998

[20] Elisa Baniassad, Siobhan Clarke, “Theme: An Approach

for Aspect-Oriented Analysis and Design” in proceedings of

International Conference of Software Engineering (ICSE), 2004

