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Bending of Skewed Cylindrical Shell Panels
  

 

 

 

 

 

 

 
 
 

 

 

 

 

ABSTRACT 
In this paper a nine node isoparametric plate bending element has 

been used for bending analysis of isotropic skewed cylindrical 

shell panels. Both thick and thin shell panels have been solved. In 

the present analysis first order shear deformation theory has been 

incorporated. The analysis has been performed considering 

shallow shell method. Both shallow and moderately deep shells 

have been solved. Skewed cylindrical shell panels having different 

types of transverse loads, shell thickness (h/a = 0.01 and 0.1), 

length to curvature ratios (a/R), skewed angle, and boundary 

conditions have been analyzed following shallow shell method. 
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1.INTRODUCTION 
The finite element method [1] is regarded as one of the most 

versatile analysis tools specifically in structural mechanics 

problems. The analysis of plates and shells are the first problems 

where the finite element method was first applied. The initial 

attempts were made with Kirchoff’s hypothesis where a number of 

problems were faced. The major problem concerned the 

satisfaction of normal slope continuity at the element edges which 

could not be solved satisfactorily by this time. In the subsequent 

study, the above problem has been avoided by adopting Mindlin’s 

hypothesis where the effect of shear deformation has been 

considered.  

Literature on skewed isotropic shells is very limited. The spline 

finite element method [2] has been used to analyze the bending of 

skew plates subjected to transverse uniform load and concentrated 

load with arbitrary boundary conditions. Natural vibration of 

parallelogram cylindrical shell panels fixed along all the edges has 

been investigated [3] and presented. Linear static analysis of first 

order shear deformable plates of various shapes has been analyzed 

[4] using energy method and presented. Free vibration analysis of 

laminated composite skewed cylindrical shell panels has been 

studied [5] thoroughly considering different boundary conditions, 

thickness ratios, skewed angles and shallow ness ratios. Dynamic 

and static analysis of open cylindrical shell freely supported along 

curved edges and having different boundary conditions along 

straight edges has been analyzed [6]. An improved finite element 

method [7] has been presented for the linear analysis of 

anisotropic and laminated composite doubly curved, moderately 

thick shell panels. Both shallow and deep  

 

 

 

 

 

 

shells have been investigated. A numerical investigation [8] of 

free vibration of skewed open cylindrical shell panels have been 

studied and presented. Thin and moderately thick shells have been 

studied [8]. 

In the present work, static analysis of isotropic skewed cylindrical 

shell panels has been studied using the concept of shallow shell 

method. 

2.FINITE ELEMENT FORMULATION 
The formulation is based on shallow shell theory. The effect of 

shear deformation has been taken into account following the 

Mindlin’s hypothesis where it has been assumed that the normal 

to the middle plane of the shell before bending remains straight 

but not necessarily normal to the middle plane of the shell after 

bending. Taking middle surface of the shell as the reference 

surface, the formulation has been carried out following the usual 

assumptions of linear elastic analysis. Element is used in the 

present work is the nine node isoperimetric element. One of the 

major advantages of the element is that any plate/shell shape can 

be nicely handled through a simple mapping technique which may 

be defined as 
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Where (x, y) are the co-ordinates of any point within the element, 

(xr ,yr) are the co-ordinates of the rth  nodal point and Nr is the 

corresponding interpolation function of the element. In this 

element Lagrangian interpolation function has been used for Nr 

[9]. Taking the bending rotations as independent field variables, 

the effect of shear deformation may be expressed as  
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Where, φx, and φy are the average shear rotation over the entire 

shell thickness and θx and θy are the total rotations in bending. The 

other independent field variables are u, v and w, where w is the 

transverse displacement while u and v are the corresponding in-

plane displacements. 

The interpolation functions used for the representation of element 

geometry, Eqns. (1) are used to express the displacement field at a 

point within the element in terms of nodal variables as 
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The generalized stress-strain relationship with respect to its 

reference plane may be expressed as  

 { } [ ]{ }Dσ ε=                       (3). 

Where 
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With the help of Eqns. (2) and (5) the strain vector may be 

expressed in terms of the nodal displacement vector {δ} as  
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Where [B] is the strain displacement matrix containing 

interpolation functions and their derivatives and {δ} is the nodal 

displacement vector. 

Once the matrices [B] and [D] are obtained, the stiffness matrix of 

an element [K]e can be easily derived with the help of virtual work 

method which may be expressed as 

[ ] [ ] [ ][ ]
1 1

1 1

T

e
K B D B J d dξ η

+ +

− −
= ∫ ∫    (8) 

The degrees of freedom of the inclined edges have been 

transformed from global to local axes. This transformation has 

been done in element level. In the similar manner the load vector 

{Pe} may be expressed as  

{ } [ ]TeP q N J ξ η= ∂ ∂∫∫                (9) 

The integration of the above Eqns. (8) and (9) has been carried 

out numerically following Guass quadrature rule.    

The stiffness matrix and load vector having an order of forty five 

have been evaluated for all the elements and they have been 

assembled together to form the overall stiffness matrix [K] and 

load vector {P} respectively. 
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After incorporating the boundary conditions in the overall system 

of equations it has been solved to get the nodal displacements of 

the structure. Once nodal displacements have been obtained, the 

stresses at any point within an element can be evaluated with the 

above equations. 

3.Results and Discussions 
A simply supported isotropic skew plate as shown in Fig. 1 under 

uniform transverse distributed load with skew angle α = 300 and 

450, aspect ratio b/a= 1 and thickness ratio h/2a =0.01 has been 

analyzed. The present non-dimensional deflection and principal 

bending moments with different mesh divisions have been given 

in Table 1 with those of Butalia et al. [10] and Sengupta [11]. 

Butalia et al. [10] have used an eight node isoparametric element 

whereas Sengupta [11] has used a 16-node triangular element and 

fourth order polynomial for transverse displacement. Present 

results are close to the published results. This example has been 

presented to validate the present formulation for skewed plate 

only. 

In the next example a simply supported skewed cylindrical shell 

panel as shown in Fig. 2 subjected to uniform distributed load has 

been investigated. The study has been made considering the plan 

form of the skewed shell panel with thickness ratio h/a = 0.01 and 

b/a = 1.0. The deflection and principal bending moments have 

been presented in Table 2 with different values of shallowness 

ratios (a/R) and skewed angle (α) taking mesh size 20x20. 

Analytical and finite element solution [12] of a cylindrical shell 

panel has also been presented with the presented solution to 

validate the present formulation for shell analysis. It is seen that 

the present results are very close to the analytical solutions.  

In the third example a skewed cylindrical shell panel having left 

edge free and other three edges simply supported subjected to 

transverse hydrostatic load (zero at left edge and maximum at the 

right edge) has been investigated. The analysis has been 

performed considering b/a = 1.0 and different values of thickness 

ratio h/a, shallowness ratios a/R and skewed angles. The 

deflection and principal bending moments of the skewed shell 

panel have been presented in Table 3 with mesh size 20x20. The 

present formulation for hydrostatic load has been validated for a 

plate problem. 

A simply supported skewed cylindrical shell panel subjected to 

transverse doubly sinusoidal load has been investigated. To 

validate the present finite element formulation a rectangular plate 

has also been studied. The analysis has been performed 

considering different aspect and shallowness ratios with constant 

thickness ratio h/a = 0.01. The deflections and principal bending 

moments have been presented in Table 4 with the thin plate 

solution [13]. From the table it is seen that present plate solutions 

is very close to the analytical results. 

In the last example a skewed cylindrical shell panel subjected to 

transverse concentrated load at the centre of the panel has been 

analyzed. The study has been performed considering different 

boundary conditions and skewed angle with constant thickness, 

aspect and shallowness ratios. The deflection at the centre of the 

panel has been presented in Table 5. 

 

Table 1. Central deflection (w* = w100D/qa4) and bending 

moments (M*
max = 10Mman/qa

2, M*
min = 10Mmin/qa

2) of a simply 

supported skew plate under uniform distributed load. b/a=1.0, 

h/2a=0.01, ν = 0.3. 

Skew 

angle (α) 

Sources w* M*
max Mmin 

300 Present (12x12) 4.0990 1.8006 1.3922 

 Present (16x16) 4.0998 1.7775 1.3785 

 Present (20x20) 4.1000 1.7627 1.3693 

 Butalia et al. [10] 3.9832 1.6790 1.2980 

 Sengupta [11] 4.2824 1.7455 1.3670 

450 Present (12x12) 2.0965 1.5043 0.9924 

 Present (16x16) 2.1014 1.4757 0.9843 

 Present (20x20) 2.1029 1.4526 0.9747 

 Butalia et al. [10] 1.91125 1.2266 0.7803 

 Sengupta [11] 2.2028 1.3258 0.9008 

 

Table 2. Central deflection and bending moments of a simply 

supported skew plate/shell panels under uniform distributed 

load.  h/a = 0.01, b/a = 1.0, ν = 0.3. 

For cylindrical shell panel. a/R = 0.5  

a/R Sources 

 

α Deflection 

105wEh3/qa4 

104 x 

Mx/qa 

104 x 

Mx/qa 

0.5 Present 0 179.2 -13.172 5.689 

 Exact 

[12] 

 179.0 -13.0 6.0 

 FEM 

[12] 

 177 -12 5.0 

For skewed cylindrical shell panel. 

   Deflection 

w104D/qa4 

1000x 

Mman/qa
2 

1000 x 

Mmin/qa
2 

0.1 Present 150 22.168 284.46 240.46 

300 17.938 304.18 221.81 

450 11.008 30.217 194.12 

0.25 Present 150 6.9777 7.7555 4.8852 

300 6.8677 11.108 5.7806 

450 5.9367 15.964 8.2589 

0.5 Present 150 1.7745 1.2235 -0.9236 

300 2.0696 3.1624 0.0170 

450 2.2725 6.156 1.5196 

 

 

Table 3. Central deflection (w* = w104D/qa4) and bending 

moments (M*
max = 1000Mman/qa

2, M*
min = 1000Mmin/qa

2) of a 
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simply supported skew plate/shell panels under hydrostatic 

load. b/a=1.0,  ν = 0.3. 

a/R h/a Skew 

angle 

Sources w* M*
max Mmin 

0 0.01 0 Present 31.290 33.13 21.39 

T.S.[13]* 31.3 33.1 21.4 

0.5 0.01 15 Present 10.946 13.404 6.032 

30 Present 5.8302 14.547 -3.516 

45 Present 4.2829 22.937 -8.985 

0.5 0.1 15 Present 36.954 40.75 21.5 

  30 Present 31.423 56.175 10.00 

  45 Present 19.164 67.3 -7.137 

* T. S: Thin plate solution 

 

Table 4. Central deflection (w* = w104qa4/D) and bending 

moments (M*
max = 1000Mmanqa

2, M*
min = 1000Mminqa

2) of a 

simply supported skew plate/shell panels under double 

sinusoidal load. h/a = 0.01,  ν = 0.3. 

b/a α a/R Sources w* M*
max Mman 

1 0 0 Present 25.680 32.966 32.966 

T.S [13] 25.665 32.93 32.93 

30 0.1 Present 13.350 25.080 18.587 

0.3 Present 4.0453 8.5726 4.5509 

0.5 Present 1.7632 4.4555 1.7024 

2 0 0 Present 65.730 69.857 35.711 

T. S [13] 65.702 69.709 35.665 

30 0.1 Present 40.238 57.470 26.774 

0.3 Present 19.845 28.337 13.256 

0.5 Present 9.9995 14.302 6.5374 

3 30 0.1 Present 54.304 74.415 27.852 

0.3 Present 40.952 56.073 21.152 

0.5 Present 27.447 37.497 14.168 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Central deflection (w* = w100D/Pa2) of skew plate/ 

shell panel under concentrated load at the centre of the panel. 

h/a = 0.01, b/a = 1.0  ν = 0.3. 

Boundary 

Condition 

a/R Skewed 

angle  

Sources w* 

SSSS  

 

0 

150 Present 43.907 

Butalia et al. [10] 43.555 

300 Present 36.402 

Agarwal [14] 36.000 

450 Present 25.521 

Agarwal [14] 25.094 

FFSC  

0.5 

150 

300 

450 

Present 0.4894 

FFCC Present 0.2850 

CFFF Present 0.2189 

150 

300 

450 

Present 0.1239 

Present 0.1153 

Present 0.1057 

150 

300 

450 

Present 0.3374 

Present 0.3947 

Present 0.5388 
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Figure 1. Skew plate. 
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Fig. 3. Skew cylindrical shell panel 
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