
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

60

A Framework for Software Architecture
Visualization and Evaluation

 Dr. S. Margret Anouncia Merin Cherian Anubhuti Parija
 Professor, M.S Software Engg M.S Software Engg
 School of Computing Sciences VITU, Vellore VITU, Vellore
 VITU, Vellore

Dulcy Sylvia.R Jayaprasanna. D
 M.S Software Engg. M.S Software Engg
 VITU, Vellore VITU, Vellore

ABSTRACT
This paper presents a framework for visualization and
evaluation of software architectural styles. There has been
significant research made to improve the software architecture

visualization and evaluation. Most of the tools developed for
this purpose don’t satisfy all the framework’s elements. Hence
the paper presents a framework that builds modules from
requirements, measure modularity, visualizes architecture and
evaluates the visualized architecture satisfying all elements.

INTRODUCTION

Software design is the process of applying various techniques
and principles for the purpose of defining a system in
sufficient detail to permit its physical realization.
Visualization makes people to understand

information presented in a shorter time or in a great depth.
The output of the design process is the design description. As
the design description is complex and difficult to understand,
there is a need for visualization method for better
understanding. There is no existing tool for proper
visualization.

1. MOTIVATION OF THE PAPER
Currently the most challenging problem is the transition from

software requirement to appropriate architecture design of
software system. Most of the requirements are conflicting and
unpredictable in nature. The absence of a proper automated
tool which can evaluate all the attributes for an architectural
style also adds to need for further research in design field.
Manually designed architectural styles are misleading and
time consuming. Hence there is a necessity for an automated
tool which should generate the appropriate architecture and its

evaluation.

2. RELATED WORK
The automated transformation of software requirements into
architectural design is one of the challenging fields. A lot of
research is being performed throughout. Some important ones
are specified below.
The main contribution of [1] by Koen Yskout, Riccardo
Scandariato, Bart De Win, Wouter Joosen DistriNet,

Katholieke Universiteit Leuven, Belgium is the elaboration of

a set of transformations for some important security

requirements, namely delegation, authorization, and auditing.
These transformations are based on an extensible meta-model
capturing the requirements-level concepts that are important
for transformation purposes. The second approach which falls
under this category is developed by Jorge Enrique Perez
Martinez and Almudene Sierra Alonso proposed an automated
methodology for the transition from analysis to architecture

styles using UML notations. [2].Another research group by
Hassan Reza, Dan Jurgens, Jamie White, Jason Anderson, and
Jay Peterson developed a tool based on a set of scenarios that
allows the user to select an architecture based on non-
functional requirements [3]. Non-functional requirements are
then mapped to tactics using weighting (or scoring
techniques). The architecture is then selected by its
compatibility. Researchers G.Zayaraz and P.Thambidurai

proposed a framework for choosing appropriate software
architecture based on the quality requirements of different
stakeholders [4].
A software architecture design provides a high-level
abstraction of system topology, functionality and behaviour. It
is source for early system understanding and analysis. It also
provides the foundation for subsequent detailed design and
implementation. .Researchers Keith Gallagher, Andrew Hatch
and Malcolm Munro proposed an approach focusing on the

improvement of software architecture visualization using
qualitative framework. The main objective is to compare and
evaluate the different software architecture visualization tools
using the key features of framework. The framework is
derived by the application of the Goal Question Metric
paradigm called GQM framework [2]..Another approach by
Liming Zhu, Muhammad Ali Babar and Ross Jeffery
improves the software architecture evaluation process by

systematic extraction and appropriate documentation of
architecture significant information[6]. Researchers
Muhammad Ali Babar, Liming Zhu and Ross Jeffery
describes a set of features for evaluation method which
provides guidance for selecting the most appropriate
evaluation method.[5].

3. OUR APPROACH

Software Architecture defines the overview of the system
which consists of various components and their relationship
among them. There has been a lot of demand for quality

software system which can be primarily achieved through
architectural design. Hence this paper proposes a framework

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

61

for a tool which is named as ‘Architecture Visualization and

Evaluation for Software Systems’ (AVESS) .

3.1. OVERALL FRAMEWORK

The architectural design adopted for the proposed framework
is pipe and filter which defines a continuous flow of

information. Pipe and filter architectural style comprises of
components and connectors. Each component has a set of
inputs and a set of outputs. A component reads stream of data
on its input and produces a stream of data on its output by
applying transformation to the input. Components are called
filters and connectors are called pipes.

The figure 3.1 explains the architectural design of the

proposed framework. The architecture design comprises of
eight modules. Each module performs distinct functions

required for visualization and evaluation of architectural
styles. The requirement extractor module extracts the
requirements from the functional requirements given by the
user by comparing with predefined requirement keywords.
The successor module, module builder groups the

requirements based on some predefined criteria and builds
modules. The modules are assigned names by user. The
generated modules are further refined by measuring
modularity which consists of cohesion and coupling. The
architecture of the application is determined using some
predefined questions. Then the appropriate architecture
diagram is generated by the tool. The needed attributes are
determined from the extracted requirement features. These

needed attributes are compared with predefined attributes of
architecture. Each attribute is assigned a value. Then total
weight is calculated by summing up the individual attribute
weights. Finally the evaluation result is displayed as bar chart.

Requirement

Extractor

Module

Builder

Modularity

Measurement

Comparative

Analysis

Architectural

Style Builder

Appropriate

Style
Determination of

Architectural

Style(Client Server

/ Layered)

Determination

of Attributes

Requirements Requirement

Features Modules

Assessment Based

on Metrics

Architecture

Design

Compared Features

Graphical

Representation of

Evaluated Result

Measured

Modules

Predefined

Features

Fig.3.1 Overall Framework

3.2 Use Case Model for AVESS

The overall functionality of this automated software
architecture visualization system is depicted using Use Case
Model as shown in fig.3.2. This describes a high level process
of what an actor will do with a system. An actor may perform
an event to start the system. This description does not

represent individual steps in the process but represents the
high level process itself.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

62

 Fig.3.2 Use Case Model for AVESS

3.3. DETAILED DESIGN

On analyzing the given requirements, it was found that
data flow diagram (DFD) is the most appropriate model to

be used. The level 4 gives detailed design. Context level
DFD (Fig.2), Level 1(Fig.3), level 2(Fig.4), level 3(Fig.5)
shows the systems decompositions and finally level
4(Fig.6) brings out the detailed design in which each

SOFTWARE ARCHITECT

SOFTWARE DESIGNER

SOFTWARE TESTER

PREDEFINED CRITERIA CATALOG

PREDEFINED QUESTIONS CATALOG

AUTOMATED TOOL

PREDEFINED FEATURES CATALOG PROVIDING

REQUIREMENTS

EXTRACTING

REQUIREMENT FEATURE

GROUPING AND

BUILDING MODULES

MEASURING

MODULARIZATION

DISPLAY

ARCHITECTURE DESIGN

MAPPING TO QUALITY

ATTRIIBUTES

DISPLAY EVALUATION

RESULT IN GRAPHICAL

REPRESENTATION

ASSIGNING METRICS

DETERMINING

ARCHITECTURE STYLE

PERFORMANCE

PERSPECTIVE INFORMATION

HELP TEST CASE

GENERATION

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

63

processing bubble performs a unit function. Context level
depicts the input and the output of the system. When the
level oriented decomposition is made, the bubbles in the

DFD are disintegrated to unit level functions. The complete
detailed design is clearly depicted in the level 4 DFD.

Figure 3.3:4th level DFD

The functional and non-functional requirements are given as
input by the user to the automated tool. These requirements
are stored in the database. The required features are retrieved
from database .These required features are grouped based on
the comparison with predefined keywords. These grouped
features are ranked and modules are built and naming of these
built modules is done by the user. The interaction among the

modules is determined and the modules are measured based
on cohesion and coupling. The most appropriate architectural
style is determined based on the measured modules and
grouped features. The user visualises the appropriate
architectural style. The quality attributes are determined from
the non-functional requirements. There is a comparison of
these attributes with predefined attributes based on
questionnaire approach. The compared attributes are

evaluated based on metrics. The evaluated attributes are
displayed in form of graphical representation.

3.4 IMPLEMENTATION OF

FRAMEWORK
A novel visualization and evaluation technique framework is
developed for most widely used architecture style. The
chapter discusses on the tool which automatically generates
and evaluates the architecture from requirements. The

implementation of each unit function within the system is
described in detail.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

64

3.4.1 Tools Used

 The entire software architecture visualization and evaluation
system is implemented using java with NetBeans 6.1. The
system is decided to be built using java because it is platform
independent as well as it holds many inbuilt functions and

string manipulation operations. The visualization of the
architecture style can be easily made using java frames.

3.4.2 Methodology

The implementation of three major modules of the system is
described in detail

3.4.2.1 Requirement Extractor

The requirement extractor module gets functional
requirements as input from the users, extracts the required
features based on comparison with predefined keywords and
stored in a database. The functional requirements, input,
output and dependency considering the requirements are

provided by the user in the text box. These requirements are
then compared with the predefined keywords stored in an
array. Along with this a table called freq is created in the
database. Further extracted features along with input, output
and dependency are stored in freq table.

3.4.2.2 Module Builder
The module builder groups the required features based on the
dependency of the extracted features and those grouped
features are considered as modules. It also allows users to
rename the modules. The features along with dependency are
fetched fro freq table. These features are then compared with

set of keywords stored in different arrays. Some of key arrays
are processing, display, authentication etc. If the dependency
is null, then the requirement is considered as separate module.
A module will have many requirements and is considered as
different module, only if those requirements have the same
dependency and belong to the same array. Otherwise they are
considered as distinct modules. These modules are stored in
modfun table along with output, input, link and module

function. Then these modules are displayed in rectangular
boxes along with module functionality. The user can rename
these modules. These renamed modules are stored in module
table in database. The module count is also found and stored
for further usage.

3.4.2.3 Modularity Measurement

This module refines modules by measuring cohesion and
coupling. The modules along with its fan-in / fan-out and
module count are retrieved from database. The modularity is
calculated with the help of fan-in and fan-out of each module.
i.e. by finding out the dependency between the fan-in and fan-
out of the module The type of fan-in and fan-out is
determined by finding whether it contains data or data

structure. Data coupling is found out by finding whether the
data is passed between the modules and Stamp coupling is
found out by finding whether the data structure is passed
between the modules. Then the overall coupling factor is
calculated by applying metrics for the data coupling and
stamp coupling.

4. CONCLUSION

Software Architecture defines the overview of the system.
This paper gives the proposal of the framework of a tool
which visualizes as well as evaluates Software Architectural

Styles. The tool will generate architectural design containing
Client Server Style and Layered style. So which ever
application given, it will either generate client server or

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

65

layered style. To evaluate the architectural style there is a
consideration of quality attributes and framework elements. In
future there can be a lot of improvement in the evaluation
criteria.

REFERENCES
1) Koen Yskout, Riccardo Scandariato, Bart De Win,
Wouter Joosen, "Transforming Security Requirements into
Architecture," ares, pp. 1421-1428, 2008 Third International
Conference on Availability, Reliability and Security, 2008.

2) Keith Gallagher, Andrew Hatch, Malcolm Munro,

"Software Architecture Visualization: An Evaluation
Framework and Its Application," IEEE Transactions on
Software Engineering, vol. 34, no. 2, pp. 260-270, Mar/Apr,
2008
1

3) Hassan Reza,Dan Jurgens,Janie White,Jason
Anderson,and Jay Peterson:, “An Architectural design
Selection Tool Design Based on design Tactics, Scenarios and

Non Functional Requirements “,eit, p. 6, 2005 IEEE
International Conference on Electro Information Technology
(EIT’05), 2005

4) G.Zayaraz and P.Thambidurai “Software Architecture
Selection Framework Based on Quality Attributes”, pp. 167-
170, IEEE Indicon Conference, 2005.

5) Muhammad Ali Babar, Liming Zhu, Ross Jeffery, "A

Framework for Classifying and Comparing Software
Architecture Evaluation Methods," aswec, p. 309, 2004
Australian Software Engineering Conference (ASWEC'04),
2004

6) Liming Zhu, Muhammad Ali Babar, Ross Jeffery,
"Mining Patterns to Support Software Architecture
Evaluation," wicsa, p. 25, Fourth Working IEEE/IFIP

Conference on Software Architecture (WICSA'04), 2004

7) Jorge Enrique Perez Martinez and Almudene Sierra
Alonso “Heuristics for the transition from Analysis to
Software Architecture” , p. 311,Proceedings of the Fourth
Working IEEE/IFIP Conference on Software Architecture,

2004

