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ABSTRACT 

A Retransmission Time Out (RTO) is inevitable, when the 

retransmission of a packet fails to reach the receiver. An RTO 

compels TCP to reduce packet flow drastically. However, in case 

of an RTO resulting from retransmission failure caused by the 

channel noise, reduction in the flow is inappropriate. The problem 

is compounded when a TCP sender is forbidden to continue 

transmission till the occurrence of the timeout. In this paper, we 

investigate the impact of such RTOs with the help of an empirical 

mathematical analysis. The analysis presented in the paper 

calculates the idle period of the sender in terms of number of 

RTTs, which depends on the value of congestion window before 

the timeout. The mathematical analysis is supported by the results 

of simulation based experiments and the evaluation of a scheme 

that improves TCP performance in case of avoidable timeouts 

caused by the loss of retransmission on an erroneous wireless link. 
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1. INTRODUCTION 
TCP [1] congestion control, which is based on principles of 

packet conservation, slow start and Additive Increase 

Multiplicative Decrease (AIMD), is responsible for the sustained 

stability of the Internet despite growth in traffic and topology 

[7][8]. If availability of resource is not a constraint in wireless 

environment, the multiplicative decrease to control congestion is 

inappropriate while facing a packet loss due to corruption with a 

poor channel quality [3][4]. Additionally, propagation delay is the 

dominant part in broadband satellite links as compared to other 

components of latency i.e. transmission delay and queuing delay. 

The connections traversing this kind of links will be penalized by 

the bias of TCP congestion control towards flows with high round 

trip time (RTT) [2]. Therefore, TCP exhibits poor performance 

over wireless networks with high delay and BER [14] [15]. 

TCP infers a packet loss based on two indications: (i) a timeout 

occurrence and (ii) the receipt of duplicate acknowledgments 

(dupack) [16]. To combat packet losses, fast recovery is initiated 

after arrival of three dupacks. The fast recovery mechanism does 

not help TCP loss recovery if a retransmitted packet is also  

 

dropped. Retransmission Time Out (RTO) becomes indispensable 

in this situation. Since retransmissions can also be caused by the 

packets lost on unreliable or error-prone transit paths, error prone 

transit paths can also lead to loss of retransmission [6]. Hence, the 

performance of TCP is severely degraded due to an unnecessary 

timeout, when the cause of failure of retransmission is also the 

channel noise. This kind of timeouts has been identified as 

avoidable timeouts [6].  

TCP may experience unnecessary RTO in any of the following 

situations: (i) Timeout because of insufficient dupacks available 

for attempting fast retransmit [9]. (ii) Spurious timeout, when no 

packets have been lost [12]. (iii) Timeout due to channel noise 

causing loss of retransmission. However, the solutions like F-RTO 

algorithm [12] do not enable TCP to utilize the time period before 

RTO, when the timeout is avoidable. In addition, the schemes like 

Eifel [10] [13] and others as mentioned above [9], do not address 

the issue of retransmission loss caused by channel noise, which in 

turn leads to RTO needlessly.  

RTO reduces packet flow drastically. Throughput of TCP is 

affected after RTO because of two major reasons: (i) cwnd is reset 

to one. (ii) A TCP sender is prevented from continuing 

transmission during loss recovery when the number of outstanding 

packets reaches the maximum window (Maxwnd) limit [6]. 

Without having pending retransmissions and permission to send 

new packets, a blocked TCP sender may waste considerable 

amount of time before timeout which could be a multiple of 500ms 

[9]. In this paper, we find out the idle period of a TCP sender 

remaining unutilized in terms of number of RTTs with the help of 

an empirical mathematical analysis.  

The mathematical analysis presented in section 2 quantifies the 

impact of an avoidable timeout in terms of the RTTs wasted by a 

TCP sender. A scheme to combat the channel errors leading to 

such timeout is discussed in section 3. We demonstrate 

improvement in the performance of TCP by utilizing these RTTs 

with the help of simulations in section 4.  

2. MATHEMATICAL ANALYSIS 
In this section, we derive the number of additional RTTs a TCP 

sender can  utilize during an  avoidable timeout, with the help of a 

mathematical analysis. The analysis also determines the new 

cwnd, which is updated in every RTT as per congestion 

avoidance. It is based on a premise that during entire timeout 

interval, the first packet transmission and its retransmission are 

corrupted by channel errors. Hence, RTO occurrence is not due to 

extreme congestion in the network.  

Before the timeout, TCP sender receives dupacks equal to one less 

than Maxwnd after a loss of retransmission in absence of any 

other loss. The number of RTTs utilized in turn, indicates the 
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number of RTTs remaining unutilized (WRTT) because the total 

number of RTTs is considered constant (i.e. 25 in this case) 1. 

Following analysis is carried out based on the assumption that 

WRTT is less than the RTTs required for incrementing cwnd up to 

Maxwnd limit. 

No. of outstanding packets at the end of fast recovery 

= Maxwnd – Retrans   (Packets retransmitted = 1) 

= no. of dupacks at the sender. 

Time utilized by a sender before the timeout  

= URTT x RTT  

(URTT = no. of RTTs the sender utilizes before the timeout) 

RTT is assumed constant keeping constant delay of satellite links 

into consideration [18]. The transmission of new packets in fast 

recovery is governed by pipe and cwnd relationship. 

cwndp   = cwnd  before fast recovery 

cwndf  = 
2

cwnd p
 =  cwnd after initiating fast recovery 

pipet   = cwndf  – 1  (transmission begins at pipet ) 

Once the pipe restriction is overcome, the sender receives dupacks 

equal to pipet. It transmits pipet packets in every RTT. dupacks 

arriving at the sender are divided in to two groups. (i) duprp: 

dupacks arriving before start of repetitive transmission of pipet 
packets and  (ii) dupacks arriving in each RTT due to transmission 

of pipet packets  (will be same as pipet).  

Number of RTTs utilized by the sender can be calculated by 

finding RTTs demanded by the above mentioned dupacks.  

Calculation of RTTs for duprp 
The number of dupacks received before the beginning of 

transmission period of pipet packets (duprp), depends on 

following factors. 

da  dupacks received from the window facing the loss 

db dupacks from the packets transmitted in response to 

normal acknowledgments for the window  

dc dupacks from the transmission triggered by first two 

dupacks  

dd dupacks resulting from the packets transmitted after 

overcoming pipe restriction in RTT immediately after 

entering fast recovery, if any. 

pol position of loss in window, cwndp 

Therefore,  duprp  = da + db + dc + dd  

Where, da    = cwndp – pol 

           db     = pol – 1 

           dc     = 2 

   dd    = dupacks in the RTT after loss – dupacks up to pipet  

                                                                 

1 Maximum number of RTTs = 

RTT

RTO
 = 

sec

sec

m40

1
 = 25 

 

        = dupacks in the RTT after loss – [dupacks required to        

reach  pipet  from pipei (dupt) + 2] 

pipet   = initial pipe (pipei)  -  dupt  =  cwndp - 1 - dupt 

cwndf – 1 = cwndp  -  1 – dupt 

dupt  = cwndf  

dupacks up to pipet   = dupt + 2  

(first two dupacks, before initiation of fast recovery) 

   = cwndf + 2 

dd  = cwndp – pol - (cwndf + 2) 

duprp  = (cwndp – pol) + (pol – 1) + 2 + [cwndp – pol - (cwndf 
+ 2)] 

           = cwndp + 1 + cwndf  – pol – 2  

( cwndp  -  pol) > 1 and (cwndf  – pol – 2) > 0 

           = cwndp + 1     

( cwndp  -  pol) > 1 and (cwndf – pol – 2) <= 0 

duprp  = 2cwndp – (pol  + 1) ( cwndp  -  pol) <= 1 

Therefore, the number of utilized RTTs before timeout, 

URTT  = 
1cwnd

duprptransMaxwnd

f −

−−Re
  ( cwndp  -  pol) <= 1 

URTT  = 








−

−−

1cwnd

duprptransMaxwnd

f

Re
 +1  

(cwndp  -  pol) > 1 …2.1 

Time wasted before Timeout = (RTO – URTT x RTT)  

No. of RTTs wasted in congestion episode, 

WRTT  = 
RTT

RTTURTTRTO ×−
   ... 2.2 

From equation 2.1 and 2.2,    

URTT = f(1/cwndf , Retrans)  

Since Retrans  = 1 i.e. constant,   

URTT = f(1/cwndf)  

As URTT and cwnd are inversely proportional, URTT will be 

large for small values of cwnd. On the other hand, for large values 

of cwnd, WRTT will be more.  

cwndu  =  updated cwnd after fast recovery 

When fast recovery is exited without RTO occurrence,   

cwndu = cwndf  

However, in conventional algorithm after RTO,  cwndu = 1 

In an attempt to avoid the negative impact of RTO, the sender 

should be allowed to continue transmission during the period of 

WRTT and cwnd should be simultaneously updated. 

Expected cwnd after RTO,   

cwndu  = (cwndf) + increments by WRTT utilization …  2.3 

Since  cwnd  is   incremented  by  one  at  the  end  of  each   RTT, 

during  the  period  utilized  beyond  URTT (WRTT) the additional 

increment in cwnd will be equal to WRTT. 

Using equation 2.3,  cwndu =  cwndf  + WRTT  



©2010 International Journal of Computer Applications (0975 – 8887)  

Volume 1 – No. 8 

7 

 

Therefore, cwndu =  f(WRTT , cwndf)               …2.4 

If the timeout is considered to be unavoidable because of 

possibility of congestion,  

WRTT  = 0 and cwndu = 1. 

From 2.4, we can observe that updated cwnd after timeout 

depends on number of wasted RTTs and cwndf means cwnd 

before fast recovery. If WRTT is large, more RTTs are wasted and 

proposed modifications performs better.  

3. MODIFICATIONS IN SACK TCP  
In wireless networks, channel noise dominates congestion. The 

TCP sender can “undo” the cwnd reduction as a possible response 

to packet corruption, after finding the fact that a single packet loss 

had been due to corruption rather than congestion [5]. Various 

approaches for modifying TCP to differentiate a random loss and 

avoid unnecessary reduction in cwnd have been proposed [5][14]. 

A new algorithm has been proposed earlier to combat the cases of 

loss of retransmission due to random losses, restore TCP 

performance by avoiding reduction of cwnd and utilize RTTs 

before RTO, which would have been wasted unnecessarily 

otherwise [6]. While SACK TCP is being widely deployed in the 

Internet, it is also a fact that SACK information is not used in 

making congestion control decision [17]. The algorithm employed 

for improving TCP performance while recovering from loss of 

retransmission over erroneous link is based on inferences made 

from implicit information conveyed by the SACK blocks, to 

utilize the RTTs of the interval before RTO when the bandwidth 

is available.  

The modifications shown in Figure 1 are introduced in the 

original SACK TCP [16] [29]. 

A new flag SACK_OK is initialized with one on arrival of the 

first dupack [14]. It is continuously updated with every new 

dupack. The SACK_OK flag remains one till SACK blocks 

arriving with dupack report continuous increment in the packets 

reaching the receiver following the first loss.  

If SACK_OK flag remains one throughout the fast recovery, the 

modified TCP increments cwnd and continues transmission. The 

transmission does not cease due to the fact that all packets 

following retransmitted one are selectively acknowledged and 

congestion is ruled out. cwnd is updated and transmission 

continued further at the end of every RTT till RTO as long as 

SACK_OK flag is one. Conversely in timeout, if SACK_OK flag 

is zero, cwnd is reset to one conventionally. 

4. SIMULATIONS & RESULTS  
The main objective of this paper is to evaluate effectiveness of the 

modified TCP particularly in presence of errors leading to 

retransmission loss. Simulations were carried out on ns2.26 

simulator [19]. The simulation topology shown in Figure 2 is 

designed to avoid congestion completely so that negative effect of 

loss of retransmission can be examined exclusively for random 

errors.  

A single file transfer protocol (FTP) flow is used to make 

diagnosing problem easier than attempting to diagnose the 

problem in a dynamic network with other competing traffics [20].  

 

Figure 1 State Transition Diagram for fast recovery 

NR: Normal State of TCP in absence of loss recovery 

FR: TCP in fast recovery, cwndf: cwnd in fast recovery, 

cwndu: cwnd after RTO 

 

Figure 2 Network with Erroneous Link 

It has been pointed out previously that with minimum RTO of 1 

sec., TCP is able to avoid bad timeouts without impairing 

performance significantly [11]. The results of simulation carried 

out with packet error rates varying from 0.01 to 0.03 in step of 

0.01 are discussed in this section. The total time of simulations 

was 300 seconds with each error rate affecting the link between 

nodes 1 and 2 for 100 seconds. Observations from the timeouts 

avoided with the help of modifications are given in Table 1 and 

Table 2.  

The original TCP stops transmission after sending 49 packets 

beyond the lost packets2. It can be seen in Table 1 that transmission 

continues for a longer time in case of the modified TCP by utilizing 

additional RTTs during the timeout interval in all cases. The time 

instant at which transmission stops in the modified TCP is very 

close to the instant of timeout in case of the avoidable timeout 

occurring at 152.99sec. This in turn results in to utilization of the 

maximum number of RTTs possible during this timeouts interval.  

Number of utilized RTTs in a timeout interval is proportional to 

cwnd as pointed out in the mathematical analysis presented in 

Section 2. As a result, all the time instants are very close in case of 

the timeout occurring at 282.25sec, where the minimum additional 

RTTs are utilized by the modified TCP. A small cwnd also allows 

                                                                 

2 In case of original TCP, the sender will get 49 dupacks unless it 

recovers from a loss by timeout, when the Maxwnd is 50 and 

retransmission is also lost. 
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the original TCP to utilize more RTTs to reach the limit of 

maximum outstanding packets decided by Maxwnd parameter. This 

leaves a very little scope for improvement. The corresponding 

values given in Table 2 confirm the observations.  

The maximum number of RTTs, which can be utilized, is 25 in the 

given topology with RTO interval equal to 1 second2. While 

continuing transmission during timeout interval, occurrence of 

another loss terminates the transmission and causes return to the 

conventional timeout-based recovery, as congestion cannot be ruled 

out. The modified TCP avoids utilizing additional RTTs further, in 

this situation. Because of this, the utilized RTTs of the modified 

TCP are usually less than 25 as seen in Table 2. 

Table 2 shows gain in packets delivered during RTO by avoiding 

cwnd reduction and utilizing RTTs for packet transmission with 

respect to each avoidable timeout indicated earlier in Table 1. It 

also indicates corresponding cwnd just before timeouts in the 

original TCP. The performance gain is enhanced further by 

updating cwnd, which is illustrated in Figure 3. As seen in Table 2, 

the RTO at 153.53sec utilizes 14 RTTs additionally. Since cwnd is 

updated in each additional RTT as per congestion avoidance 

scheme, rise in cwnd will be identical to additionally utilized RTTs. 

Thus, cwnd increments from 5 to 19 in this case, which can be seen 

in Figure 3. Note that original SACK TCP stops transmission after 

sending 49 packets beyond the lost packets, whereas modified 

scheme allows TCP to transmit 224 packets. This leads to 

approximately 350% improvement in the performance of the 

modified TCP, which is reflected in Table 2. 

Table 1 

RTO Time Instances 

Pkt. 

Error 

Rate 

cwnd in 

fast rec. 
Tco Sec. Tcu Sec. Tto Sec. 

0.01 7 60.25248 60.33416 60.97268 

0.02 5 152.9974 153.5385 153.5553 

0.02 6 181.4254 181.8832 182.1036 

0.02 5 194.3459 194.5499 194.9432 

0.03 3 282.1015 282.223 282.2568 

Tco  =  time instant where transmission stopped in original TCP 

Tcu  =  time instant where transmission stopped in modified TCP 

Tto  =  time instant of timeout occurrence 
 

Table 2 

Relative Performance Improvement 

Pkt. 

Error 

Rate 

Time 

out 

Instant 

Utilized RTTs  in 

TCP 

% imp.   

(Pkts) 

Org. Mod. 

0.01 60.97 7 9 34 

0.02 153.53 11 25 350 

0.02 182.1 8 19 264 

0.02 194.94 8 13 70 

0.03 282.25 21 24 30 

 

Figure 3 Updated cwnd  vs Time  

The difference in utilized RTTs and consequently performance of 

both schemes depend on detection of another loss as well as cwnd 

in fast recovery. Another loss will prevent the modified TCP from 

continuing transmission during timeout interval as described in 

the previous section. The gain in cwnd in Figure 3 is directly 

proportional to the additional RTTs utilized for the reasons 

discussed earlier. 

5. CONCLUSIONS 
The wireless links are often mainly characterized by link errors 

and also large propagation delay. Both factors decrease the 

acceleration of TCP transmission rate and subsequently, in the 

overall link utilization. This paper investigates the negative 

impact of an RTO resulting from a loss of retransmission caused 

by the channel errors with the help of a mathematical analysis. 

The analysis determines the RTTs during the timeout interval in 

which packet transmission ceases and increment in congestion 

window stops unnecessarily in absence of congestion. The 

analysis shows that performance enhancement can be higher when 

cwnd is substantially large. 

An approach to overcome this performance degradation by 

utilizing the RTTs and updating cwnd, is evaluated in this paper. 

Simulation based experiments conducted for different error rates 

revealed that number of avoidable timeouts increases in case of a 

higher error rate. However, a very high error rate creates a 

situation similar to congestion in the network. Since the algorithm 

depends on implicit information in SACK blocks, it reverts to 

conventional scheme in this situation. Nevertheless, results of 

simulations indicate improvement in the overall performance in 

presence of the modifications. Since this kind of RTO does not 

occur frequently, the performance gain may be localized.  
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