
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

5

Analysis of RTO Caused by Retransmission Loss to

Combat Channel Noise

Bhavika Gambhava
Dharmsinh Desai University,

Nadiad, Gujarat, India

N. J. Kothari
Dharmsinh Desai University,

Nadiad, Gujarat, India

 Dr. K. S. Dasgupta
Space Application Centre,

Ahmedabad, India

ABSTRACT

A Retransmission Time Out (RTO) is inevitable, when the

retransmission of a packet fails to reach the receiver. An RTO

compels TCP to reduce packet flow drastically. However, in case

of an RTO resulting from retransmission failure caused by the

channel noise, reduction in the flow is inappropriate. The problem

is compounded when a TCP sender is forbidden to continue

transmission till the occurrence of the timeout. In this paper, we

investigate the impact of such RTOs with the help of an empirical

mathematical analysis. The analysis presented in the paper

calculates the idle period of the sender in terms of number of

RTTs, which depends on the value of congestion window before

the timeout. The mathematical analysis is supported by the results

of simulation based experiments and the evaluation of a scheme

that improves TCP performance in case of avoidable timeouts

caused by the loss of retransmission on an erroneous wireless link.

General Terms
Algorithm, Experimentation, Verification, Performance.

Keywords
RTO, SACK_OK, cwnd, dupacks

1. INTRODUCTION
TCP [1] congestion control, which is based on principles of

packet conservation, slow start and Additive Increase

Multiplicative Decrease (AIMD), is responsible for the sustained

stability of the Internet despite growth in traffic and topology

[7][8]. If availability of resource is not a constraint in wireless

environment, the multiplicative decrease to control congestion is

inappropriate while facing a packet loss due to corruption with a

poor channel quality [3][4]. Additionally, propagation delay is the

dominant part in broadband satellite links as compared to other

components of latency i.e. transmission delay and queuing delay.

The connections traversing this kind of links will be penalized by

the bias of TCP congestion control towards flows with high round

trip time (RTT) [2]. Therefore, TCP exhibits poor performance

over wireless networks with high delay and BER [14] [15].

TCP infers a packet loss based on two indications: (i) a timeout

occurrence and (ii) the receipt of duplicate acknowledgments

(dupack) [16]. To combat packet losses, fast recovery is initiated

after arrival of three dupacks. The fast recovery mechanism does

not help TCP loss recovery if a retransmitted packet is also

dropped. Retransmission Time Out (RTO) becomes indispensable

in this situation. Since retransmissions can also be caused by the

packets lost on unreliable or error-prone transit paths, error prone

transit paths can also lead to loss of retransmission [6]. Hence, the

performance of TCP is severely degraded due to an unnecessary

timeout, when the cause of failure of retransmission is also the

channel noise. This kind of timeouts has been identified as

avoidable timeouts [6].

TCP may experience unnecessary RTO in any of the following

situations: (i) Timeout because of insufficient dupacks available

for attempting fast retransmit [9]. (ii) Spurious timeout, when no

packets have been lost [12]. (iii) Timeout due to channel noise

causing loss of retransmission. However, the solutions like F-RTO

algorithm [12] do not enable TCP to utilize the time period before

RTO, when the timeout is avoidable. In addition, the schemes like

Eifel [10] [13] and others as mentioned above [9], do not address

the issue of retransmission loss caused by channel noise, which in

turn leads to RTO needlessly.

RTO reduces packet flow drastically. Throughput of TCP is

affected after RTO because of two major reasons: (i) cwnd is reset

to one. (ii) A TCP sender is prevented from continuing

transmission during loss recovery when the number of outstanding

packets reaches the maximum window (Maxwnd) limit [6].

Without having pending retransmissions and permission to send

new packets, a blocked TCP sender may waste considerable

amount of time before timeout which could be a multiple of 500ms

[9]. In this paper, we find out the idle period of a TCP sender

remaining unutilized in terms of number of RTTs with the help of

an empirical mathematical analysis.

The mathematical analysis presented in section 2 quantifies the

impact of an avoidable timeout in terms of the RTTs wasted by a

TCP sender. A scheme to combat the channel errors leading to

such timeout is discussed in section 3. We demonstrate

improvement in the performance of TCP by utilizing these RTTs

with the help of simulations in section 4.

2. MATHEMATICAL ANALYSIS
In this section, we derive the number of additional RTTs a TCP

sender can utilize during an avoidable timeout, with the help of a

mathematical analysis. The analysis also determines the new

cwnd, which is updated in every RTT as per congestion

avoidance. It is based on a premise that during entire timeout

interval, the first packet transmission and its retransmission are

corrupted by channel errors. Hence, RTO occurrence is not due to

extreme congestion in the network.

Before the timeout, TCP sender receives dupacks equal to one less

than Maxwnd after a loss of retransmission in absence of any

other loss. The number of RTTs utilized in turn, indicates the

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

6

number of RTTs remaining unutilized (WRTT) because the total

number of RTTs is considered constant (i.e. 25 in this case) 1.

Following analysis is carried out based on the assumption that

WRTT is less than the RTTs required for incrementing cwnd up to

Maxwnd limit.

No. of outstanding packets at the end of fast recovery

= Maxwnd – Retrans (Packets retransmitted = 1)

= no. of dupacks at the sender.

Time utilized by a sender before the timeout

= URTT x RTT

(URTT = no. of RTTs the sender utilizes before the timeout)

RTT is assumed constant keeping constant delay of satellite links

into consideration [18]. The transmission of new packets in fast

recovery is governed by pipe and cwnd relationship.

cwndp = cwnd before fast recovery

cwndf =
2

cwnd p
 = cwnd after initiating fast recovery

pipet = cwndf – 1 (transmission begins at pipet)

Once the pipe restriction is overcome, the sender receives dupacks

equal to pipet. It transmits pipet packets in every RTT. dupacks

arriving at the sender are divided in to two groups. (i) duprp:

dupacks arriving before start of repetitive transmission of pipet
packets and (ii) dupacks arriving in each RTT due to transmission

of pipet packets (will be same as pipet).

Number of RTTs utilized by the sender can be calculated by

finding RTTs demanded by the above mentioned dupacks.

Calculation of RTTs for duprp
The number of dupacks received before the beginning of

transmission period of pipet packets (duprp), depends on

following factors.

da dupacks received from the window facing the loss

db dupacks from the packets transmitted in response to

normal acknowledgments for the window

dc dupacks from the transmission triggered by first two

dupacks

dd dupacks resulting from the packets transmitted after

overcoming pipe restriction in RTT immediately after

entering fast recovery, if any.

pol position of loss in window, cwndp

Therefore, duprp = da + db + dc + dd

Where, da = cwndp – pol

 db = pol – 1

 dc = 2

 dd = dupacks in the RTT after loss – dupacks up to pipet

1 Maximum number of RTTs =

RTT

RTO
 =

sec

sec

m40

1
 = 25

 = dupacks in the RTT after loss – [dupacks required to

reach pipet from pipei (dupt) + 2]

pipet = initial pipe (pipei) - dupt = cwndp - 1 - dupt

cwndf – 1 = cwndp - 1 – dupt

dupt = cwndf

dupacks up to pipet = dupt + 2

(first two dupacks, before initiation of fast recovery)

 = cwndf + 2

dd = cwndp – pol - (cwndf + 2)

duprp = (cwndp – pol) + (pol – 1) + 2 + [cwndp – pol - (cwndf
+ 2)]

 = cwndp + 1 + cwndf – pol – 2

(cwndp - pol) > 1 and (cwndf – pol – 2) > 0

 = cwndp + 1

(cwndp - pol) > 1 and (cwndf – pol – 2) <= 0

duprp = 2cwndp – (pol + 1) (cwndp - pol) <= 1

Therefore, the number of utilized RTTs before timeout,

URTT =
1cwnd

duprptransMaxwnd

f −

−−Re
 (cwndp - pol) <= 1

URTT = 








−

−−

1cwnd

duprptransMaxwnd

f

Re
 +1

(cwndp - pol) > 1 …2.1

Time wasted before Timeout = (RTO – URTT x RTT)

No. of RTTs wasted in congestion episode,

WRTT =
RTT

RTTURTTRTO ×−
 ... 2.2

From equation 2.1 and 2.2,

URTT = f(1/cwndf , Retrans)

Since Retrans = 1 i.e. constant,

URTT = f(1/cwndf)

As URTT and cwnd are inversely proportional, URTT will be

large for small values of cwnd. On the other hand, for large values

of cwnd, WRTT will be more.

cwndu = updated cwnd after fast recovery

When fast recovery is exited without RTO occurrence,

cwndu = cwndf

However, in conventional algorithm after RTO, cwndu = 1

In an attempt to avoid the negative impact of RTO, the sender

should be allowed to continue transmission during the period of

WRTT and cwnd should be simultaneously updated.

Expected cwnd after RTO,

cwndu = (cwndf) + increments by WRTT utilization … 2.3

Since cwnd is incremented by one at the end of each RTT,

during the period utilized beyond URTT (WRTT) the additional

increment in cwnd will be equal to WRTT.

Using equation 2.3, cwndu = cwndf + WRTT

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

7

Therefore, cwndu = f(WRTT , cwndf) …2.4

If the timeout is considered to be unavoidable because of

possibility of congestion,

WRTT = 0 and cwndu = 1.

From 2.4, we can observe that updated cwnd after timeout

depends on number of wasted RTTs and cwndf means cwnd

before fast recovery. If WRTT is large, more RTTs are wasted and

proposed modifications performs better.

3. MODIFICATIONS IN SACK TCP
In wireless networks, channel noise dominates congestion. The

TCP sender can “undo” the cwnd reduction as a possible response

to packet corruption, after finding the fact that a single packet loss

had been due to corruption rather than congestion [5]. Various

approaches for modifying TCP to differentiate a random loss and

avoid unnecessary reduction in cwnd have been proposed [5][14].

A new algorithm has been proposed earlier to combat the cases of

loss of retransmission due to random losses, restore TCP

performance by avoiding reduction of cwnd and utilize RTTs

before RTO, which would have been wasted unnecessarily

otherwise [6]. While SACK TCP is being widely deployed in the

Internet, it is also a fact that SACK information is not used in

making congestion control decision [17]. The algorithm employed

for improving TCP performance while recovering from loss of

retransmission over erroneous link is based on inferences made

from implicit information conveyed by the SACK blocks, to

utilize the RTTs of the interval before RTO when the bandwidth

is available.

The modifications shown in Figure 1 are introduced in the

original SACK TCP [16] [29].

A new flag SACK_OK is initialized with one on arrival of the

first dupack [14]. It is continuously updated with every new

dupack. The SACK_OK flag remains one till SACK blocks

arriving with dupack report continuous increment in the packets

reaching the receiver following the first loss.

If SACK_OK flag remains one throughout the fast recovery, the

modified TCP increments cwnd and continues transmission. The

transmission does not cease due to the fact that all packets

following retransmitted one are selectively acknowledged and

congestion is ruled out. cwnd is updated and transmission

continued further at the end of every RTT till RTO as long as

SACK_OK flag is one. Conversely in timeout, if SACK_OK flag

is zero, cwnd is reset to one conventionally.

4. SIMULATIONS & RESULTS
The main objective of this paper is to evaluate effectiveness of the

modified TCP particularly in presence of errors leading to

retransmission loss. Simulations were carried out on ns2.26

simulator [19]. The simulation topology shown in Figure 2 is

designed to avoid congestion completely so that negative effect of

loss of retransmission can be examined exclusively for random

errors.

A single file transfer protocol (FTP) flow is used to make

diagnosing problem easier than attempting to diagnose the

problem in a dynamic network with other competing traffics [20].

Figure 1 State Transition Diagram for fast recovery

NR: Normal State of TCP in absence of loss recovery

FR: TCP in fast recovery, cwndf: cwnd in fast recovery,

cwndu: cwnd after RTO

Figure 2 Network with Erroneous Link

It has been pointed out previously that with minimum RTO of 1

sec., TCP is able to avoid bad timeouts without impairing

performance significantly [11]. The results of simulation carried

out with packet error rates varying from 0.01 to 0.03 in step of

0.01 are discussed in this section. The total time of simulations

was 300 seconds with each error rate affecting the link between

nodes 1 and 2 for 100 seconds. Observations from the timeouts

avoided with the help of modifications are given in Table 1 and

Table 2.

The original TCP stops transmission after sending 49 packets

beyond the lost packets2. It can be seen in Table 1 that transmission

continues for a longer time in case of the modified TCP by utilizing

additional RTTs during the timeout interval in all cases. The time

instant at which transmission stops in the modified TCP is very

close to the instant of timeout in case of the avoidable timeout

occurring at 152.99sec. This in turn results in to utilization of the

maximum number of RTTs possible during this timeouts interval.

Number of utilized RTTs in a timeout interval is proportional to

cwnd as pointed out in the mathematical analysis presented in

Section 2. As a result, all the time instants are very close in case of

the timeout occurring at 282.25sec, where the minimum additional

RTTs are utilized by the modified TCP. A small cwnd also allows

2 In case of original TCP, the sender will get 49 dupacks unless it

recovers from a loss by timeout, when the Maxwnd is 50 and

retransmission is also lost.

 1
100 Mbps 100 Mbps

0 1 2

10 ms 10 ms

 FR

 NR

wait

Time

 out

cwndf

++

cwndu=
1

cwndu

=

cwndf

SACK_OK

! SACK_OK

! SACK_OK

SACK_OK

Timer
Expiration

Timer Expiration

highst_ack
_

dupack <

Maxwnd -1

dupack =
Maxwnd -1

dupack
= cwndf

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

8

the original TCP to utilize more RTTs to reach the limit of

maximum outstanding packets decided by Maxwnd parameter. This

leaves a very little scope for improvement. The corresponding

values given in Table 2 confirm the observations.

The maximum number of RTTs, which can be utilized, is 25 in the

given topology with RTO interval equal to 1 second2. While

continuing transmission during timeout interval, occurrence of

another loss terminates the transmission and causes return to the

conventional timeout-based recovery, as congestion cannot be ruled

out. The modified TCP avoids utilizing additional RTTs further, in

this situation. Because of this, the utilized RTTs of the modified

TCP are usually less than 25 as seen in Table 2.

Table 2 shows gain in packets delivered during RTO by avoiding

cwnd reduction and utilizing RTTs for packet transmission with

respect to each avoidable timeout indicated earlier in Table 1. It

also indicates corresponding cwnd just before timeouts in the

original TCP. The performance gain is enhanced further by

updating cwnd, which is illustrated in Figure 3. As seen in Table 2,

the RTO at 153.53sec utilizes 14 RTTs additionally. Since cwnd is

updated in each additional RTT as per congestion avoidance

scheme, rise in cwnd will be identical to additionally utilized RTTs.

Thus, cwnd increments from 5 to 19 in this case, which can be seen

in Figure 3. Note that original SACK TCP stops transmission after

sending 49 packets beyond the lost packets, whereas modified

scheme allows TCP to transmit 224 packets. This leads to

approximately 350% improvement in the performance of the

modified TCP, which is reflected in Table 2.

Table 1

RTO Time Instances

Pkt.

Error

Rate

cwnd in

fast rec.
Tco Sec. Tcu Sec. Tto Sec.

0.01 7 60.25248 60.33416 60.97268

0.02 5 152.9974 153.5385 153.5553

0.02 6 181.4254 181.8832 182.1036

0.02 5 194.3459 194.5499 194.9432

0.03 3 282.1015 282.223 282.2568

Tco = time instant where transmission stopped in original TCP

Tcu = time instant where transmission stopped in modified TCP

Tto = time instant of timeout occurrence

Table 2

Relative Performance Improvement

Pkt.

Error

Rate

Time

out

Instant

Utilized RTTs in

TCP

% imp.

(Pkts)

Org. Mod.

0.01 60.97 7 9 34

0.02 153.53 11 25 350

0.02 182.1 8 19 264

0.02 194.94 8 13 70

0.03 282.25 21 24 30

Figure 3 Updated cwnd vs Time

The difference in utilized RTTs and consequently performance of

both schemes depend on detection of another loss as well as cwnd

in fast recovery. Another loss will prevent the modified TCP from

continuing transmission during timeout interval as described in

the previous section. The gain in cwnd in Figure 3 is directly

proportional to the additional RTTs utilized for the reasons

discussed earlier.

5. CONCLUSIONS
The wireless links are often mainly characterized by link errors

and also large propagation delay. Both factors decrease the

acceleration of TCP transmission rate and subsequently, in the

overall link utilization. This paper investigates the negative

impact of an RTO resulting from a loss of retransmission caused

by the channel errors with the help of a mathematical analysis.

The analysis determines the RTTs during the timeout interval in

which packet transmission ceases and increment in congestion

window stops unnecessarily in absence of congestion. The

analysis shows that performance enhancement can be higher when

cwnd is substantially large.

An approach to overcome this performance degradation by

utilizing the RTTs and updating cwnd, is evaluated in this paper.

Simulation based experiments conducted for different error rates

revealed that number of avoidable timeouts increases in case of a

higher error rate. However, a very high error rate creates a

situation similar to congestion in the network. Since the algorithm

depends on implicit information in SACK blocks, it reverts to

conventional scheme in this situation. Nevertheless, results of

simulations indicate improvement in the overall performance in

presence of the modifications. Since this kind of RTO does not

occur frequently, the performance gain may be localized.

6. ACKNOWLEDGMENTS
We acknowledge the sincere support provided by Ms. Miral Patel

during simulation based experiments. We are also heartily

thankful to Mr. N. G. Vasantkumar of Space Application Centre,

ISRO, Ahmedabad.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

9

7. REFERENCES
[1] J. Postel. Transmission Control Protocol. RFC 793; Sep

1981.

[2] G. Xylomenos. Multi Service Link Layers: An Approach to

Enhancing Internet Performance over Wireless Links. Ph. D.

thesis, University of California ; 1999.

[3] M. Allman, S. Dawkins, D. Glover, J. Griner, D. Tran, T.

Henderson, J. Heidemann, J. Touch, H. Kruse, S. Ostermann,

K. Scott, J. Sanke. Ongoing TCP Research related to

Satellites. RFC 2760 ; February 2000.

[4] C. Parsa, J. Garcia-Luna-Aceves. Improving TCP

Performance over Wireless Networks at the Link Layer.

ACM Mobile Networks and Applications Journal ; 1999.

[5] K. Pentkousis. TCP in Wired-Cum-Wireless Environments.

IEEE Communications Surveys & Tutorials ; 2000.

[6] N. J. Kothari, B. M. Gambhava, K. S. Dasgupta. RTT

Utilization by Detecting Avoidable Timeouts. 14th IEEE

International Conference on Networks ; September 2006.

[7] W. Stevens. TCP Slow start, Congestion Avoidance, Fast

Retransmit, Fast Recovery. RFC 2001; January 1997.

[8] M. Allman, V. Paxson, W. Stevens. TCP Congestion

Control. RFC 2581 ; April 1999.

[9] M. Allman, H. Balakrishnan, S. Floyd. Enhancing TCP’s

Fast Recovery using Limited Transmit. RFC 3042 ; 2000.

[10] A. Gurtov, R. Ludwig. Evaluating the Eifel Algorithm for

TCP in a GPRS Network. In Proc. of European Wireless.

Florence, Italy, February 2002.

[11] A. Kesselman1, Y. Mansour. Optimizing TCP

Retransmission Timeout, P. Lorenz and P. Dini (Eds.): ICN

2005 ; Springer-Verlag Berlin Heidelberg ; 3421 : 133–140.

[12] P. Sarolahti, M. Kojo. Forward RTO-Recovery (F-RTO): An

Algorithm for Detecting Spurious Retransmission Timeouts

with TCP and the Stream Control Transmission Protocol

(SCTP). RFC 4138 ; August 2005.

[13] R. Ludwig, R. H. Katz. The Eifel Algorithm: Making TCP

Robust Against Spurious Retransmissions. Computer

Communications Review. January 2000 ; 30 : 30 – 36.

[14] N. J. Kothari, K. S. Dasgupta. Performance Enhancement of

SACK TCP Protocol for wireless Network by Delaying Fast

Recovery. IEEE International Conference on Wireless &

Optical Communication Networks ; April 2006.

[15] F. Hu, N. Sharma. Enhancing Wireless internet Performance.

IEEE Communications Surveys; 2002.

[16] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow. TCP

Selective Acknowledgement Options. RFC 2018; Oct 1996.

[17] E. Blanton, M. Allman, K. Fall, L. Wang. A Conservative

Selective Acknowledgment (SACK)-based Loss Recovery

Algorithm for TCP. RFC 3517; April 2003.

[18] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky. An Extension

to the Selective Acknowledgement (SACK) Option for TCP.

RFC 2883; July 2000.

[19] K. Fall ,K. Varadhan. ns Notes and Documentation, 2000.

[20] M. Allman, A. Falk. On the Effective Evaluation of TCP.

ACM Computer Communication Review, Oct 1999.

