
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

50

Adding Threat during Software Requirements
Elicitation and Prioritization

 Mohd. Sadiq

Computer Engineering Section,
University Polytechnic, Faculty of

Engineering and Technology,

Jamia Millia Islamia (A Central
University), New Delhi-25 (India)

Mohd. Shahid
M. Tech. Scholar, Department of

CSE, Al-Falah School of
Engineering and Technology,

Dhauj, Faridabad, MDU

Rohtak, Haryana (India)

Shabbir Ahmad
Electronics Engineering Section,
University Polytechnic, Faculty

of
Engineering and Technology,
Jamia Millia Islamia (A Central
University) New Delhi-25 (India)

ABSTRACT

Requirements may be defined as a demand or need. In software

engineering, a requirement is a description of what a system

should do. System may have dozen to thousands of

requirements. Software requirements stipulate what must be

accomplished, transformed, produced or provided. In the field of

software engineering researchers, academicians and scientist

have developed many models and framework to elicit and

prioritize the software requirements. It is well documented that

requirement engineering saves money. There are several

techniques to elicit the software requirements like JAD, misuse,

RAD etc. In this paper we have used the JAD approach to elicit

the software requirements. In this paper we have proposed a

framework to elicit the software requirements and also to

prioritize the software requirements. The proposed framework

will rank the requirements by the relative level of threat

associated with each requirement.

Keywords:
Software Requirements, Elicitation Techniques, Analytic

Hierarchy Process, and Quality Function Deployment.

Category and Subject Descriptors: D2.9

[Software Engineering] Management, Cost Estimation,

Productivity, and Programming Team.

General Terms:

Measurement, Experimentation

1. INTRODUCTION
 Elicitation is all about determining the needs of stakeholders

and learning, uncovering extracting and /or discovering needs of

the users and other potential stakeholders [2]. Requirement

elicitation is recognized as one of the most critical knowledge

intensive activities of the development of software. Studies by

[3] indicate that 70% of the system errors are due to the

inadequate system specification and 30% of the system errors

are due to design issue. The analysis of secure software system

based on the system requirements elicited in the form of use

case and misuse case. Use cases have proven helpful for

elicitation of communication about, and documentation of the

function requirements. The integral development of use and

misuse cases [8, 10, and 11] provides a systematic way for the

elicitation of both the functional and non functional

requirements [13]. Using an elicitation method can help in

producing a consistent and complete set of security

requirements. However, brainstorming and elicitation methods

used for ordinary functional (end-user) requirements usually are

not oriented toward security requirements and do not result in a

consistent and complete set of security requirements. The

resulting system is likely to have fewer security exposures when

security requirements are elicited in a systematic way. In this

paper we have used the JAD approach to elicit the software

requirements. A number of requirements elicitations techniques

have been developed to extract requirements from a user. The

goal of JAD (Joint Application Development) is to involve all

stakeholders in the design phase of the product via highly

structured and focused meetings. Typical participants in the

session include a facilitator, end users of the product, main

developers, and observers. In the preliminary phases of JAD, the

requirements-engineering team is tasked with fact finding and

information gathering. Typically, the outputs of this phase, as

applied to security requirements elicitation, are security goals

and artifacts. The actual JAD session is then used to validate this

information by establishing an agreed-on set of security

requirements for the product. If JAD has some advantages so it

has also some disadvantages. The important disadvantage of

JAD is that if there are too many JAD sessions while the project

is progressing then user may develop a feeling that the developer

are shifting their work and responsibility onto the users. To get

the detailed description about the remaining techniques please

refer to [2] [18] [21]. The paper is organized as follows: In

section 2 we present the background and related work. In section

3 we have proposed the framework that will rank the

requirements by the relative level of threat associated with each

requirement. In section 4, experimental work is carried out, and

finally we conclude the paper in section 5.

2. BACKGROUND AND RELATED

WORK:
D. Firesmith [6], have worked for prioritization dimensions,

prioritization approach, prioritization techniques and processes.

This paper does not explain how the software requirements will

be prioritize mathematically? It has only a list of prioritization

techniques. In [5] C. Kuloor and A. Eberlrin have explained the

requirements engineering for software product lines. It has

limited number of elicitation techniques. This paper does not

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

51

include ontology framework, misuse cases, rapid application

development etc. In [12] J.Karlsson, C Wohlin, and B.Regnell

have evaluated six different methods for prioritization software

requirements. In this paper, authors have found that Analytic

Hierarchy Process to be the most promising method. But in

literature we have found the some weaknesses of the AHP. The

limitation of the AHP is that it only works because the matrices

are all of the same mathematical form-known as positive

reciprocal matrix. To create such a matrix requires that, if we

use the number 9 to represent A is absolutely more important

than B then we have to use 1/9 to define the relative importance

of B with respect to A. Some people regard that as reasonable:

others are less happy about it. This paper does not include any

elicitation technique. We know that without eliciting any

requirements we can not prioritize it. So in order to prioritize the

requirements, there should be a list of elicitation techniques.

Researchers, scientist and academician in the field of software

engineering have proposed several techniques to elicit the

software requirements. In [19] authors have proposed an

approach for the software requirements elicitation. They have

used the several steps like training sessions to eliminate “lack of

user input” and “poor understanding”, recording keywords,

pictorial representation of needs and wants to reduce language

barriers etc. but this approach does not have the information that

how we will prioritize the requirements? In [1] the authors have

provided the different elicitation technique and criteria for its

selection. In [15] the authors have proposed a framework to

elicit and prioritize the software requirements using AHP and

QFD [16, 17, and 22] but this framework does not rank the

requirements by the relative level of threat. In [23] the authors

have presented an approach for requirements prioritization using

B tree. In this paper the authors have mentioned that AHP is

most promising method, although it may be problematic to scale

up and they have also discussed that AHP are not useful for

project that have large number of requirements. They have

included AHP, Hierarchical AHP, spanning tree matrix, bubble

sort, binary search tree, priority groups, and B tree in the same

category. But with out having any data we can not prioritize

anything. So AHP is a technique which is used to find out the

importance weight of the requirements, after applying the AHP

on the given set of requirements, we can use spanning tree

matrix, bubble sort, binary search tree, priority groups, and B

tree. It means we have to divide the given approaches into 2

groups. In the first group we have considered only AHP and

Hierarchical AHP, and in the second category we will have to

consider the spanning tree matrix, bubble sort, binary search

tree, priority groups, and B tree. In the continuation of the earlier

work we have proposed a framework that will elicit the software

requirements and also prioritize it and also rank the

requirements by the relative level of threat associated with each

requirement.

3. PROPOSED FRAMEWORK
3.1 In this section we have proposed a framework that will rank

the requirements by the relative level of threat associated with

each requirement. This framework overcomes the problems that

we had discussed in the last section.

1. Elicit the software requirements with the help of the

following

1.1 Collect information about user expectations.

1.2) Train the Clients, Users and Managers.

1.3 Write the description of the user need for the

proposed system.

1.4 Now you can apply Misuse cases or JAD or RAD,

or Ontology framework.

2. In this framework we are using AHP technique for

prioritization.

For using AHP

{

Create the overall performance matrix

}

Then calculate the Eigen vector (Importance

Weight)

3. Find out the risk associated with each requirement.

4. Compare the values of the importance weight of

software requirements with step 3 and then rank or

prioritize the requirements.

 (Proposed Framework)

1 Elicit the Software Requirements with the help of the

following [15]:

1.1 Collect information about user expectations: Software

Requirement Specification is the first step in the software

development which is used to capture the requirement of the

client. Before the designing phase SRS team write the user

manual i.e. SRS and from this SRS we collect the information

about the user need and expectations. This careful compilation

of information will be used in the next phase to train the clients/

user and make them aware of what they can and can not expect

from the software developers. In this stage stakeholder also learn

about the limitations of the computer resources and

functionalities, and availability of other resources.

1.2 Train the Clients, Users, and Managers: Once we have

collected the information about the user need and expectation;

the next step is to train the clients, users and managers. At this

stage, missing user input can be supplemented.

1.3 Write the description of the user need for the proposed

system: After the successful completion of the above steps, each

stakeholder will write the description of his/ her needs of the

system that the clients want to develop. Since the clients and

customers are already educated about the computer limitations

and availability of resources through the training sessions. In

this stage expectations of the development process become

clearer.

3.2. Analytic Hierarchy Process: In this paper we have used

Analytic Hierarchy Process. The Analytic Hierarchy Process

(AHP) is a structured technique for dealing with complex

decisions. Rather than prescribing a "correct" decision, the AHP

helps the decision makers find the one that best suits their needs

and their understanding of the problem. Based on mathematics

and psychology, it was developed by Thomas L. Saaty [20] in

the 1970s and has been extensively studied and refined since

then. The AHP provides a comprehensive and rational

framework for structuring a decision problem, for representing

and quantifying its elements, for relating those elements to

overall goals, and for evaluating alternative solutions. It is used

around the world in a wide variety of decision situations, in

fields such as government, business, industry, healthcare, and

education. In this section we have first explain how the AHP

would be used to prioritize the software requirements. Suppose a

university wishes to buy a piece of software of certain type and

has four aspects in mind which will govern its purchasing

choice. (i) Expense, E (ii) Operability, O (iii) Reliability, R (iv)

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

52

Adaptability for other uses or Flexibility , F. Competing

manufactures of that equipment have offered three options, X,

Y, and Z . The software engineers have looked at these options

and decided that X is cheap and easy to operate but is very

reliable and could not easily be adapted to other users. Y is

somewhat more expensive, is reasonable and easy to operate,

and is very reliable and not very adaptable. Finally, Z is very

expensive, not easy to operate, is a little less reliable than Y but

is claimed by the manufacturer to have a wide range of

alternatives uses. Each of X, Y, and Z will satisfy the firm’s

requirements to differing extents so which, overall, best meets

this firm’s needs? This is clearly an important and common class

of problem and AHP have numerous applications. We first

provide an initial matrix for the firm’s pair wise comparisons in

which the principal diagonal contains entries of 1, as each factor

is as important as itself [16].

Table-1

 E O R F

E 1

O 1

R 1

F 1

There is no standard way to make the pair wise comparison but

let us suppose that the firm decide that O is slightly more

important than cost. In the next matrix that is rated as 3 in the

cell O, E and I/3 in E, O. They also decide that reliability is far

more important than cost, giving 9 in R, E and 1/9 in E, R.

Similarly we enter the information into the given matrix on the

basis of the Saaty Rating scale. This forms the completed

matrix, which we will term the Overall Preference matrix

(OPM) is

Table- 2

 E O R F

E 1 1/3 1/9 1/5

O 3 1 1 1

R 9 1 1 3

F 5 1 1/3 1

The eigenvector (importance weight) of the relative importance

or value of E, O, R, and F is (0.058, 0.2620, 0. 454, and 0.226).

Thus R is most valuable, O and F are behind, but roughly equal

and E is very much less significant. So in this way we can easily

prioritize the customer’s requirements.

3.3. Software Risk: In the previous section we have explained

how AHP would be used to prioritize the software requirements.

Risk management is a process that is systematically and

continuous and it can be best described by the SEI risk

management paradigm. There are six paradigm of risk

management: (i) Identify (ii) Analyze (iii) Plan (iv) Track (v)

Control and (vi) Communication. Risk management is a

discipline for living with the possibility that future events may

cause adverse effects. Risk management partly means reducing

uncertainty [7]. Reducing uncertainty has a cost associated

with it. We need to balance such costs we could incur if the risk

is not addressed. It may not be cost effective to reduce

uncertainty too much. Risk management standard is the result of

work by a team drawn from the major risk management

organization. It is a central part of any organizations strategic

management. It is the process whereby organizations

methodically address the risk attaching to their activities with

the goal of achieving sustained benefit within each activity and

across the portfolio of all the activities .There are three

dimension of software risk. (i) Technical risk (ii) Organizational

risk (iii) Environmental risk. The technical dimension results

from uncertainty in the task and procedure. The organizational

dimension results from poor communication and organizational

structure. The environmental dimension results from rapidly

changing environment and problems with external relationship

with software developers and/or users.

Suppose in a software project we identified three different types

of risk i.e. products recall situation, significant product rejection

and competitive strike. The information about probability of

risks occurring and the total loss if it occurs are given in the

table-3.

Table-3

Risk Probability of

Occurring

Total loss

 if it

occurs

Product recall

situation

2% 80K

Significant product

rejection

0.1% 1000K

Competitive Strike 10% 25K

The rank of risk is estimated using risk exposure and the value

of the highest risk exposure indicate the most serious risk.

Table-4 contains the calculated values of risk exposure and the

ranking of risk.

Table-4

Risk Probability

of

Occurring

Total

loss

 if it

occurs

RE RP

Product

recall

situation

2% 80K 1600 II

Significant

 product

rejection

0.1% 1000K 1000 III

Competitive

Strike

10% 25K 2500 I

In the above table RE is the Risk Exposure and RP indicates the

risk priority. We have explained the step 4 in section 4.

4. EXPERIMENTAL WORK:
AHP provides a good quantitative basis for making a decision

about the relative priority of a given set of requirements.

However it does not factor in the additional dimensions of the

risks. In order to that all risks associated with each requirement

have to be identified and assessed for likelihood and impact

[24]. Consider the following overall performance matrix (OPM)

that is derived from customer needs statement for MSNI i.e. a

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

53

Mini Software for Numerical Integration. We have elicited the

software requirements for MSNI and the important list of

software requirements are given below. (a) Total numbers of

existing algorithm like Simpson’s 1/3 rule, Simpson’s 3/8 and

Trapezoidal rule. (EA); (b) Total numbers of algorithms

proposed by the researchers (PA); (c) Accuracy (AC); (d)

Graphical User Interface (GI); (e) Functionality of the algorithm

(FA); (f) Passwords (PW) (g) Risk (RI); (h) Number of

inquiries (NI).

Table-5 (OPM)

C PA AC EA FA GI RI PW NI

1 PA 1 1/5 1/3 1/7 3 3 1/5 1/3

2 AC 5 1 1/5 1/9 3 3 1/3 1/5

3 EA 3 5 1 1/7 3 3 3 5

4 FA 7 9 7 1 9 1/5 1/3 5

5 GI 1/3 1/3 1/3 1/9 1 5 3 1/5

6 RI 1/3 1/3 1/3 5 1/5 1 3 5

7 PW 5 3 1/3 3 1/3 1/3 1 5

8 NI 3 5 1/5 1/5 5 1/5 1/5 1

After applying the AHP we have got the importance (I) weights

and it is summarized in table- 6.

Table-6

Category I. Weight

1 0.0569

2 0.0674

3 0.221

4 0.2667

5 0.0627

6 0.100

7 0.141

8 0.083

In the above table functionality of the algorithm has the highest

priority because its importance weight is 0.2667 i. e. category 4.

As we have already discussed that there are several techniques

that are used to prioritize the software requirements like

Spanning tree, Binary search tree, B trees etc. According to [23]

B tree is better than the remaining techniques so we have used B

tree in order to prioritize the value distribution and cost

distribution of the requirements. According to figure 1, three

most valuable requirements are SR-3, SR-4 and SR-7. The three

least valuable requirements are SR-1, SR-2, and SR-5. Figure –

1 and figure-2 shows the value distribution and Cost distribution

of the requirements respectively.

Value distribution of requirements

0

0.05

0.1

0.15

0.2

0.25

0.3

SR-

1

SR-

2

SR-

3

SR-

4

SR-

5

SR-

6

SR-

7

SR-

8

Requirements identifier

A
d
d
e
d
 V
a
lu
e

Series1

Figure 1. Value distribution of requirements

Figure-2 shows that requirements SR-2, SR-5, and SR-8 are

three most expensive and the three least expensive requirements

are SR-1, SR-3, SR-6

Cost distribution of the requirements

0

10

20

30

40

50

SR-

1

SR-

2

SR-

3

SR-

4

SR-

5

SR-

6

SR-

7

SR-

8

Requirements Identifer

A
d
d
e
d
 C
o
s
t

Series1

Figure 2. Cost distribution of requirements

From Figure-1 and Figure-2 we conclude, in terms of Cost-

Value ratio distribution that SR-1, SR-3, SR-4, SR-6 are

identified as high priority and SR-2, SR-5, and SR-8 are

identified as low priority. In our study we have computed the

value of the RE for each requirement. Figure-3 represents the

comparative threat levels per requirements. Referring to the

result of AHP ranking it is possible to think about these

requirements in a different way. SR-1 which was identified as

high priority is also a high risk. SR-3 and SR-6 which were

identified as high priority are shown only to represent the

moderate risk. SR-4 which is high priority requirements is a low

risk.

Comparative Threat Levels Per

Requirements

0

20

40

60

80

100

SR-

1

SR-

2

SR-

3

SR-

4

SR-

5

SR-

6

SR-

7

SR-

8

Requirements

V
a
lu
e

Series1

Figure-3

With the help of above result, decision makers want to revisit or

perhaps re-prioritize on potential risk. It suggests that SR-1

which is approaching high risk must be revisited. We can

Prioritize SR-3, SR-4, and SR-6 based on their threat index and

due o high risk we can drop SR-2, SR-5 and SR-6, if resources

constraint arises.

5. CONCLUSION
In this paper we have proposed a framework to elicit and

prioritize the software requirements. In this paper we have

shown that AHP is used only to evaluate the importance weight

of the requirements not to prioritize the requirements, after this

we apply the existing prioritizing techniques. We have used B

tree in order to prioritize the software requirements. After this

we have add the threat level analysis during the requirements

prioritization. After adding threat with the requirements we

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

54

conclude that prioritizations through AHP results are not only

suitable for decision makers, they must think about the

prioritization of the requirements using threat level analysis.

This analysis will give the clear picture that how many

requirements should be neglected and how many should be

included, and it will also give the picture that how many

requirements would be re-prioritize.

6. ACKNOWLEDGEMENTS:
The authors would like to thank Mr. Iqbal Azam, Principal,

University Polytechnic, Faculty of Engineering and Technology,

Jamia Millia Islamia (A Central University), New Delhi-25,

India ; and Mr. Jawad Ahmad Siddiqui, Chairman, Al-Falah

School of Engineering and Technology, Dhauj, Faridabad,

Haryana, India, for his valuable support , guidance and

encouragement

REFERENCES:
1. A.M. Hickey, A.M. Davis, “Elicitation Technique

Selection: How Do Experts Do It?” Proceedings of the

11th IEEE International Requirements Engineering

Conference, 2003.

2. Ann M. Hickey, Alan M. Davis, “Requirements

Elicitation and Elicitation technique selection: A

Model for Two knowledge-Intensive Software

development Process”, Proceedings of the 36th IEEE

International Conference on System Sciences, 2002.

3. Beichter F. et al, “ SLAN-4-A Software Specification

and Design Language”, IEEE Transaction on Software

Engineering, SE- 10,2, 1994, pp 155-162.

4. Bruce White, “QFD for small business”, Transaction

from the 18 Symposium on QFD, 2006.

5. C.Kuloor, Armin Eberlein, “Requirements

Engineering for Software Product Lines”, The

University of Calgary, Canada.

6. D. Firesmith, “ Prioritizing Requirements”, Journal of

Object Technology, Volume 3, No.8, September 2004

7. Daya Gupta, Mohd Sadiq, “Software Risk Assessment

and Estimation Model”, International Conference on

Computer Science and Information Technology, IEEE

Computer Society, Singapore, 2008. pp 963-967

8. Gunnar Peterson, John Steven, “Defining Misuse

within the Development Process”, IEEE Security and

Privacy, 2006.

9. http://en.wikipedia.org/wiki/Analytic_Hierarchy_Proc

ess

10. Ian Alexander, “Misuse Cases Help to Elicit Non-

functional Requirements”, Computing and Control

Engineering 2003.

11. J. Karlsson, “Software Requirements Prioritizing”,

Proceedings of the International Conference on

Requirement Engineering, 1996.

12. J. Karlsson, C. Wohlin, B. Regnell, “An Evaluation of

Methods for Prioritizing Software Requirements”,

Elsvier Journal of Information and Software

Technology, 1998, pp. 939-947.

13. J.J.Pauli, D.Xu, “Misuse Case-Based design and

Analysis of secure Software Architecture”,

Proceedings of the IEEE International Conference on

Information Technology: Coding and Computing

(ITCC05), 2005.

14. LI Zong-yong, WANG Zhi-xue, YANG-ying, WU

Yue, LIU Ying, “ Towards multiple ontology

Framework for Requirements Elicitation and Reuse”,

31st IEEE Annual International Computer Software

and Application Conference, 2007.

15. Mohd. Sadiq, Mohd. Shahid, “Elicitation and

Prioritization of Software requirements”, International

Journal of Recent Trends in Engineering, Finland,

2009.

16. Mohd. Sadiq, Shabina Ghafir, Mohd. Shahid, “An

Approach for Eliciting Software Requirements and its

Prioritization using Analytic Hierarchy Process”,

IEEE International Conference on Advances in

Recent Technologies in Communication and

Computing, 2009, ACEEE annual world congress on

Engineering and Technology , Kerala, India.

17. Mohd. Sadiq, Shabina Ghafir, Mohd. Shahid,” A

Framework to Prioritize the software Requirements

using Quality Function Deployment”, National

Conference on Recent Development in Computing and

its Application, 2009, organized by Jamia Hamdard,

Delhi, India.

18. Nancy R. Mead, “Requirements Elicitation

Introduction”, Software Engineering Institute

Carnegie Mellon University, 2008-2009.

19. P.Rajagopal, R.Lee, Thomas Ahlswede, Chia-Chu

Chiang, D. Karolak, “ A New Approach for Software

Requirements Elicitation”, Proceedings of the 6th

IEEE International Conference on Software

Engineering, Artificial Intelligence, Networking and

Parallel/ Distributed Computing, 2005.

20. T. L. Saaty, “The Analytic Hierarchy process”, New
York, McGraw-Hill, 1980.

21. W.R. Friedrich, J. A. Van der Poll, “Towards a

Methodology to Elicit Tacit Domain knowledge from

Users”, Interdisciplinary Journal of Information,

Knowledge, and Management, Volume2, 2007.

22. Xiaoqing frank Liu, “Software Quality Development”,

IEEE Potentials, 2008.

23. Md. Rizwan Beg, Qamar Abbas, Ravi Prakash Verma,

“ An approach for Requirements Prioritization using

B-Tree”, IEEE First International Conference on

Emerging Trends in Engineering and Technology

2008.

24. Nancy R. Mead, Dan Shoemaker, Jeffrey Ingalsbe, “

Ensuring Cost Efficient and Secure Software through

Student Case Studies in Risk and Requirements

Prioritization”, IEEE Proceedings of the 42 Hawaii

International Conference on System Sciences-2009.

