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ABSTRACT 

This paper relates generally to sliding mode control (SMC) 

system based on uncertainty and disturbance estimation (UDE) 

and more particularly to a system, with the presence of high 

frequency measurement noise and unmodeled dynamics. Higher 

order dynamics are difficult to identify and remain excluded from 

theoretical model of the system, generally the main cause of 

instability. The presence of unmodeled dynamics results in 

undesirable oscillations, affects overall stability and leads to 

limited control performance. Uncertainty and disturbance 

estimator is presented for estimating the perturbation. External 

low-pass filter is used to filter out the high frequency noise and 

UDE to reduce sensitivity to sensor noise and instability effect 

due to unmodeled dynamics up to certain limit. With the help of 

low-pass filter and UDE, the undesirable oscillations can be 

suppressed and the system stability can also be improved by 

proper selection of estimation filter time constant of uncertainty 

and disturbance estimator. 

Categories and Subject Descriptors 
J.7 Computers in other Systems – Command and control, 

Industrial control   

General Terms 

Algorithms, Design, Theory 
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1. INTRODUCTION 
Control design of linear systems with noise and unmodeled 

constitutes one of the important design problem to be faced in 

practice. Considerable theoretical work has been devoted to 

systems with attention mainly focused on improvement in 

stability and robustness. Kutay and others [1] addressed adaptive 

feedback control of uncertain nonlinear systems with noisy 

output measurements, while Wang et al. [2] developed sensor 

noise model for Advanced Vehicle Control Systems (AVCS). 

How and Tillerson [3] analyzed the impact of sensor noise on  

 

formation flying control. Systematic procedure for design of 

robust model following sliding mode load frequency controller 

for single area power system, with parametric uncertainties and 

external disturbance based on UDE has been presented [4, 5, 6]. 

Despite the current state of technology, when it comes to sensing 

devices; information transmitted by the instrumentation and 

control equipments is often noisy i.e. sensor will have certain 

range of inaccuracy and propagations of the signal from sensing 

device to the control panel is likely to contain some noise. In that 

sense, data about the state of world will be uncertain; affecting 

both the interface contents and the ways operators will cope with 

the noise equipment. Shendge and Patre [20] investigated the 

impact of sensor noise with uncertainty and disturbance 

estimation for continuous sliding mode control, where UDE filter 

time constant play vital role. Dynamic systems often exhibit 

resonance properties, which are associated with higher order 

dynamics that are unnecessary and undesirable for proper 

operation. In many practical situations, the higher order dynamics 

are difficult to identify and remain excluded from the theoretical 

model of the system. When feedback control is applied to 

enhance operation of a dynamic system, the presence of higher 

order dynamics results in undesirable oscillations, affects overall 

stability and leads to limited control performance.  

Different authors have handled unmodeled dynamics problem. 

Fu, Costa and Hsu [7, 8] developed some variable structure or 

switching control schemes to deal with a class of plants of 

unmodeled dynamics. Motivated with this work, Yan et al. [9] 

proposed a new variable structure robust model reference 

adaptive control scheme. For linear unmodeled dynamics, Krstic 

et al. [10] presented a redesign that ensures boundedness of the 

closed loop situations. Extensions to nonlinear unmodeled 

dynamics were made by Krstic and Kokotovic [11], Jiang and 

Marcels [12] where all these design require small gain condition 

on unmodeled dynamics. Considering the level of higher order 

dynamics contribution to the output of a dynamic system, two 

categories of control applications can be identified. In the first 

category, the effect of higher order dynamics under given 

operating condition exceeds acceptable errors in the output of the 

system; while the second category comprises dynamic output 

subject to control, remain within acceptable limits and therefore 

can be tolerated without sacrificing desired accuracy. Hosek et 
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al. [13] proposed a patented observer corrector control system for 

system with unmodeled dynamics; deals with the first category. 

Canale and Milanese [14] gave necessary and sufficient condition 

on internal mode controllers for robust closed loop stability in 

presence of unmodeled dynamics and actuator saturation. This 

paper deals with the first category. It is directed to a method of 

reducing destabilizing effects of higher order dynamics in a 

controlled system. Feedback signal includes a signal component 

that represents the dominant dynamics in the output signal of the 

controlled system, where in destabilizing effect of unmodeled 

dynamics in the dynamic system output is reduced. Stability, a 

preliminary requirement for the closed loop design, a effort has 

been devoted to give conditions for a linear system in presence of 

unmodeled dynamics. 

This paper is organized as follows: in the following section 

problem statement is defined. Section III presents analysis of 

system with noise and UDE, while controller transfer function is 

analyzed in Section IV. Controller transfer function and stability 

analysis is derived in Section IV and V. Numerical example is 

discussed in section VI, while section VII deals with simulation 

of second order linear system. Section VIII summarizes the 

conclusions. 

2. PROBLEM STATEMENT 
Figure 1 is schematic of a system with external disturbance, 

unmodeled dynamics and noise. As shown mu denotes reference 

signal, signal u refers to control action, d is external disturbance, 

N stands for measurement noise. 

 

Figure 1. System with noise and unmodeled dynamics 

Consider a single input, single output plant; 

   ( ) ( ) + ( ) ( )  + ( , )x Ax t b u t Ax t bu t d x t      (1) 

   ( )y C x t  (2) 

where ,A b  and C are known matrices, ,A b  are uncertainties, 

( , )d x t is an unmeasurable disturbance signal, ( )x t  is the state 

vector and ( )u t  is control input. 

Assumption 1 The uncertainties ,A b  and the disturbance 

( , )d x t  satisfy the matching conditions given by: 

, , ( , )  ( , )A bD b b E d x t b v x t      

where D and E are unknown matrices of appropriate dimensions 

and ( , )v x t is an unknown function. 

The system (1) can now be written as described by, 

 ( )  ( ) ( )  ( , )x t Ax t b u t be x t    (3) 

where ( , )      ( , )e x t Dx Eu v x t   and referred as lumped 

uncertainty in the system. 

This system (3) with states noise is represented as, 

 ( )  ( ( ) ) ( )  ( , )x t A x t N b u t be x t     (4) 

Let, 

   m m m m mx A x b u   (5) 

be a stable model satisfying the following conditions. 

Assumption 2  

,m mA A bL b bM    

where andL M are suitable known matrices. The objective is 

to design a control ' 'u so as to force the plant (1) to follow the 

model (5) inspite of the parameter variations. The assumptions 1 

and 2 are well known matching conditions required to guarantee 

invariance and are explicit statements of the structural 

constraints stated in [15]. 
Practical sensors itself have some noisy characteristics that carry 

with the measured signal causing uncertainty in the initial 

conditions. So the states of the plant, is represented as 

  nx x N  (instead of ' 'x ) where ' 'N is noise presented in the 

states i.e. sensor noise is considered for analysis. 

3. UNCERTAINTY AND DISTURBANCE 

ESTIMATION(UDE) WITH SENSOR NOISE 
Defining sliding plane equation [4, 6, 16, 17, 18] 

   Tb x z    (6) 

where ' 'z  is an auxiliary variable to be defined. The surface can 

be used for model following; if the auxiliary variable is defined 

as 

   ; (0) (0)T T T
m m mz b A x b b u z b x      (7) 

If the states are available, the control that ensures model 

following is derived in [4, 17]. Let the control be, 

    eq nu u u   (8) 

where equ caters to the known part of the system while nu caters 

to unknown disturbances and structured uncertainties in the 

system. 

  ( ( , ) ( ) )T
m m mb Ax AN bu be x t A x N b u         (9)

 ( ( , ) )T
m eq nb bLx bM u b u b u be x t bLN        

Selecting 1 ( ) ( )T
eq mu Lx M u b b K   

 

(10)where K is a positive constant 

3.1 Estimation of uncertainties and  

disturbances with noise 

 ( , )T T T
nb b u b bLN b be x t K    

 (11) 

Next we use the idea of UDE to estimate the uncertainty 

( , )e x t and use the estimate in nu to negate ( , )e x t  
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 1( , ) ( ) ( )  T
ne x t b b K u LN    

 (12) 

The estimate of ( , )e x t  can be obtained as explained before; 

 ( , ) ( , ) ( ) est fe x t e x t G s

 (13) 

where 1( ) = s+1fG s   

 1( , ) [( ) ( ) ] ( ) T
est n fe x t b b K u LN G s    

 (14) 

As the controller is defined as, 

 ( , )n estu e x t 

 (15) 

Then, some simple calculation gives, 

 
1( )T

n
b b K LN

u
s s




 


 

    
 

 (16) 

4. TRANSFER FUNCTION OF THE  

CONTROLLER WITH UNMODELED 

DYNAMICS 
Let the control be 

 ( ) ( ) ( )eq nu s u s u s 

 (17) 

where equ  takes care of known terms and nu caters for the 

uncertainty. 

 1( ) ( ) ( ) ( ) ( ) T
eq mu s Lx s Mu s b b K s   

 (18) 

 
1( ) ( )

( ) ( )
T

n
b b K s

u s s
s







 

  
 

 (19) 

As mu does not contribute to this transfer function and from Eqn. 

(18) and (19) 
1

1 ( ) ( )
( ) ( ) ( ) ( ) ( )

T
T b b K s

u s Lx s b b K s s
s


 




  

     
 

 (20) 

 1 1
( ) ( ) ( ) ( )T K
u s Lx s b b K s

s


 

  
     

 

 (21) 

From (7) 

 ( )   ( )T
mZ s s b A x s 

 (22) 

So from Eqn. (6) and (22) 

( ) ( ) ( ) ( )
T

T T m
m nxn

b A
s b x s A x s b I x s

s s


 
    

 

 (23) 

Inserting (23) in (21) and correctly writing of scalar matrix 

multiplication 

11
( ) ( ) ( )T T m

nxn
K A

u s L K b b b I x s
s s 

    
         

    

 (24) 

So the transfer function is 

1( 1) 1
( ) ( )T T

ux nxn m
K s s

G s L b b b I A
s s





   
     

  

 (25) 

where 

1 2

1 2

0 1 0 0

0 0 1 0
; [ ]m n

m m mn

A L l l l

a a a

 
 
  
 
 
    






 

 

 

4.1 Design of Control 
Let the control be 

 ( ) eq nu s u u 

 (26) 

From (24) total control required is, 

11
( ) ( ) ( )T T m

nxn
K A

u s L K b b b I x s
s s 

    
         

    

 (27) 

5. STABILITY ANALYSIS 
The total resultant transfer function of Figure 1 can be written as, 

 1 2 4

1 2 3 4

( )
1

Z Z Z
G s

Z Z Z Z




 (28) 

The transfer function of the actuator is 1
1

1( ) = s+1Z s  , plant is 

2
( )

( ) = ( )
nx s

Z s u s , while for low pass filter is 3
2

1( ) = s+1Z s  . 

4( )Z s is the controller transfer function. As the stability of 

resulting system consisting of plant, actuator, filter, controller the 

following theorem will be presented as a sufficient condition for 

the stability of the overall system. 

Theorem 1 The overall system with uncertainty and disturbance 

estimator and unmodeled dynamics is stable; if the eigenvalues 

 , of the following characteristic equation, lies in the left half 

of the s-plane. 

 1 2 3 4( ) 0; (1 )i n n Z Z Z Z    where

 (29) 

where ( 1,2,... )i i n  are eigenvalues of the matrix n . From 

( )i ndet    is the polynomial. 

6. NUMERICAL EXAMPLE 
The plant in continuous time form is; 

0 1 0 0 0 0
, , ,

2 3 1 1 2 0.4
A b A b

       
                       
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Disturbance is 2
1 22sin( ) cos( ) 1d t x t x   . The model to be 

followed is,
0 1 0

,
4 2.8 4m mA b

   
        

 

The initial conditions for plant and model is 

0 01 0 , 0 0T T
mx x        respectively and high frequency 

noise is added in the system states. The control gain K = 5. The 

reference input is a square wave with unity amplitude. 

7. SIMULATIONS 
Figure 2 – Figure 5 shows the different cases for the unmodeled 

dynamics effect on a system response in continuous sliding mode 

control. Figure 2 shows system with low unmodeled dynamics, 

which is stable. As dynamics increases system becomes unstable; 

can be easily verified with Figure 3. System can be made stable 

by decreasing control gain or increasing UDE filter time 

constant. 

Case 1: For low unmodeled dynamics system is stable. UDE filter time constant  = 1 msec. Actuator time constant 1 = 0.02 sec, 

filter time constant 2 = 1 msec, control gain K = 4. 

 

 
Figure 2. Response for Case 1 (a) plant and model state xp1 and xm1 (b) plant and model 

state xp2 and xm2 (c) system control (d) sliding variable 

 

Case 2: System becomes unstable for high-unmodeled dynamics. UDE filter time constant  = 1 msec. Actuator time constant 1 = 

0.2 sec, filter time constant 2 = 1 msec, control gain K = 4. 

 



©2010 International Journal of Computer Applications (0975 – 8887)  

Volume 1 – No. 9 

41 

 

 

Figure 3. Response for Case 2 (a) plant and model state xp1 and xm1 (b) plant and model 

state xp2 and xm2 (c) system control (d) sliding variable 

Case 3: Unstable system due to unmodeled dynamics can be make stable by decreasing control gain. UDE filter time constant  = 1 

msec. Actuator time constant 1 = 0.2 sec, filter time constant 2 = 1 msec, control gain K = 1. 

 

 
Figure 4. Response for Case 2 (a) plant and model state xp1 and xm1 (b) plant and model 

state xp2 and xm2 (c) system control (d) sliding variable 

 

 

 

Case 4: Unstable system due to unmodeled dynamics can be make stable by increasing UDE filter time constant. UDE filter time 

constant  = 2 msec. Actuator time constant 1 = 0.2 sec, filter time constant 2 = 1 msec, control gain K = 4. 
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Figure 5. Response for Case 2 (a) plant and model state xp1 and xm1 (b) plant and model 

state xp2 and xm2 (c) system control (d) sliding variable 

 

Table 1. Pole location with unmodeled dynamics for Case 1-4 

Sr. 

No. 

Case 1 Case 2 Case 3 Case 4 

10−3
 x 10−3

 x 10−3
 x 10−3

 x 

1 0 0 0 0 

2 0 0 0 0 

3 – 1.0298 – 1.0030 – 1.0030 – 1.0015 

4 – 1.0000 – 1.0000 – 1.0000 – 1.0000 

5 
– 0.0087 + 

0.1704i 

0.0004 + 

0.0547i 

– 0.0011 + 

0.0547i 

– 0.0004 + 

0.0387i 

6 
– 0.0087 – 

0.1704i 

0.0004 – 

0.0547i 

– 0.0011 – 

0.0547i 

– 0.0004 – 

0.0387i 

7 – 0.0500 – 0.0050 – 0.0005 – 0.0050 

8 – 0.0040 – 0.0040 0.0037 – 0.0040 

9 – 0.0037 – 0.0037 
– 0.0014 + 

0.0014i 
0.0037 

10 
– 0.0014 + 

0.0014i 

– 0.0014 – 

0.0014i 

– 0.0014 – 

0.0014i 

– 0.0014 + 

0.0014i 

11 
– 0.0014 – 

0.0014i 
– 0.001 – 0.0010 

– 0.0014 – 

0.0014i 

12 – 0.0003 – 0.0003 – 0.0003 – 0.0003 

 

8. CONCLUSION 
In this paper, the problem of robust sliding mode control design, 

for a nonlinear system, in presence of noise and unmodeled 

dynamics has been investigated. It ensures better transient 

performance and robustness with respect to unmodeled 

dynamics. Operation of a dynamic system in the presence of 

unmodeled dynamics results in undesirable oscillations affects 

overall stability and leads to limited control performance. With 

the help of uncertainty and disturbance estimation; it is possible 

to overcome this dynamic effect with the help of UDE filter time 

constant. By increasing estimation filter time constant, dynamic 

effect can be minimized. The results presented here are for a 

linear control structure in presence of nonlinear perturbation and 

unmodeled dynamics. The error converges towards zero in finite 

time; even in the presence of unmodeled dynamics, with the 

UDE. 
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