
International Journal of Computer Applications (0975 – 8887)

Volume 1– No.9

26

Multi-Agent Systems for Adaptive and Efficient Job

Scheduling Service in Grids

Pooja Sapra
Lecturer (CSE)

Apeejay College of Engineering
Vill. Silani, Distt. Sohna, Gurgaon

Minakshi Memoria
Lecturer (CSE)

Apeejay College of Engineering
Vill. Silani, Distt. Sohna, Gurgaon

Sunaina
Lecturer (CSE)

Apeejay College of Engineering
Vill. Silani, Distt. Sohna, Gurgaon

ABSTRACT

In this paper we propose an adaptive efficient job scheduling

service model on Grids using multi agent systems and a market

like Service level Agreement (SLA) negotiation protocol based

on the Contract Net model. This job scheduling service model

involves four types of agents: service user agents, service

provider agents, local scheduler agents and inter-grid agents.

Service provider agents provide services to service user agents by

allocating resources using local scheduler agents. Service

provider agents provide services to service user agents by

allocating resources using local scheduler agents. The service

provider agents may contact the inter-grid agents if enough

resources are not available in their own grid. Inter-grid agents

provide resources from the neighboring grid. The service

provider agent may adapt the dedicated service according to its

interactions with service user agent.

The SLA negotiation protocol is a hierarchical bidding

mechanism involving negotiations between the four agents. In

this protocol, the agents exchange SLA announcements, SLA-bid,

and SLA-awards to negotiate the schedule of jobs on Grid

Compute resources. To deal with the presence of uncertainties,

re-negotiation is used to allow the agents to re-negotiate the SLA

in failure

Categories and Subject Descriptors

[Computer Network]: General – Sharing, Agents, Scheduling

General Terms

Networking, Grid Computing, Multi-Agent

Keywords

Scheduling, SLA, Multi-Agent, Grid Computing

1. INTRODUCTION
One of the challenges for a service Grid is to efficiently process

users’ requests to Grid services in large numbers. This is

essentially a problem of optimal scheduling of the Grid resources

to complete the requested services within a given time slot

through effective job scheduling. Scheduling jobs in a Grid

computing environment is a complex problem as resources are

geographically distributed having different usage policies and

may exhibit highly non-uniform performance characteristics,
heterogeneous in nature, and have varying loads and availability.

In recent years, Multi-agent systems and the Contract Net

Protocol [6] have achieved successful results in solving the

scheduling problem in a wide range of applications such as

flexible manufacturing systems [5, 6], e-commerce, railway

scheduling, healthcare etc. In this paper we propose the

extention of fundamental infrastructure for efficient job

scheduling on Grids based on multi-agent systems, and a Service

Level Agreement (SLA) negotiation protocol based on the

Contract Net Protocol proposed by D. Ouelhadj et al. [15]. The

proposed grid infrastructure is adaptive and inter-grid services

can also be provided.

Service Level Agreements (SLAs) [1, 2, 3] are emerging as the

standard concept by which work on the Grid can be arranged and

coordinated. An SLA is a bilateral agreement, typically between

a service provider and a service consumer. An SLA can be

designed to include the agreed constraints for individual jobs

such as acceptable start and end time bounds and a simple

description of resource requirements.

A multi-agent system is a network of agents that work together to

solve problems that are beyond their individual capabilities [7].

Multi-agent systems are distributed and autonomous systems

made up of autonomous agents that support reactivity, and are

robust against failures locally and globally [8]. Due to the highly

heterogeneous, distributed, dynamic, and complex Grid

computing environments, multi-agent systems appear to be a

suitable approach to solve the Grid scheduling problem.

2. RELATED WORK
A number of initiatives to apply agents in computational Grids

have appeared and they are still in their early development.

Abramson et al. [9] developed a resource management system for

scheduling computations on distributed resources (Nimrod-G). In

Nimrod-G resource agents manage the execution of jobs on

resources, and a central resource broker performs resource

discovery, trading and discovery. Cao et al. [10, 11] developed an

agent-based resource management system (ARMS) for Grid

computing, where each agent represents a local Grid resource

and acts as a service provider of high performance computing

power. Agents cooperate with each other using a technique of

service advertisement and discovery. Rana and Walker [12]

proposed an agent-based approach to integrate services and

resources in which service and resource agents contain

behavioral rules, and can modify these rules based on their

interaction with other agents and with the environment in which

International Journal of Computer Applications (0975 – 8887)

Volume 1– No.9

27

they operate. Frey et al. (2002) developed CONDOR-G, a
computation management agent for Grid scheduling. The

scheduling is centralized and performed by a remote agent.

Buyya et al. [13] discussed economic models for resource

allocation and for regulating supply and demand in Grid

computing environments.

Most of these agent based Grid scheduling systems are

centralized as scheduling is performed by a Grid high-

performance scheduler (broker), and resource agents manage

only the execution of jobs on resources. In a Grid environment

resources are geographically distributed and owned by different

individuals. It is not practical that a single point in the virtual

system retains entire Grid's information that can be used for job

scheduling. Therefore, distributed scheduling would be more

efficient and robust.

3. THE PROPOSED SLA BASED

EFFICIENT AND ADAPTIVE GRID

SCHEDULING MULTI-AGENT SYSTEM

INFRASTRUCTURE
Fig.1. shows the multi-agent infrastructure for SLA based Grid

scheduling. The infrastructure involves four types of agents:

Service User Agents, Local Scheduler (LS) Agents, Service

Provider (SS) Agents and Inter-grid Agents. Four databases are

also used in this architecture to store SLAs information, LSA

agents’ information, resource description and Inter-Grid agents’

information.

Fig.1. SLA based Grid Scheduling System Infrastructure

The proposed infrastructure is adaptive. The service provider

agents may change the dedicated service according to its

interactions with service user agent or may offer another service

to change or adapt the original service (meta-level) or may use

dynamic intelligent reflection rules to change the service it is

currently providing.

3.1 Service User Agent
The service user agent requests the execution of services on the

Grid and negotiates SLAs with the SS agents. The user agent can

also submit services locally to SS agents.

3.2 Local Scheduler Agent
Each Computer resource within each institution is assigned to a

LS agent. The set of Compute resources and their corresponding

LS agents constitute a cluster. The LS agents are responsible for

scheduling jobs, usually assigned by the SS agents, on Compute

resources within the cluster.

3.3 Service Provider Agent
SS agents are distributed in the Grid, one at each institution, and

act as mediators between the service user agents and the LS

agents. Each cluster of LS agents of the same institution is

coordinated by one SS agent. The user agent usually submits jobs

to the SS agents. SS agents negotiate SLAs with the user agent

and the LS agents to schedule the jobs on Compute resources.

3.4 Inter Grid Agent
Inter grid agent is one per grid and interact with service user

agents and service provider agents. Inter grid agent is used for

job scheduling among different LS agent clusters when none of

the cluster is having enough resources for performing the job

submitted by user agents. They can also be used for inter grid job

scheduling.

3.5 Databases
The databases used in the architecture are the following:

Resource record: holds information about the Compute

resources on which the jobs are executed by a LS agent.
SLA storage: stores the description of the SLAs.
State info about LS agents: holds the status of LS agents and

the loading/usage information about their local resources which

is used by the SS agents.

Inter-Grid Agent Information: is collection of meta-SLA bids

submitted by various SS agents. This information is stored at

Inter grid agent.

4. SLA NEGOTIATION PROTOCOL
We propose an SLA negotiation protocol based on the Contract

Net Protocol to allow the SS agents to negotiate the schedule of

jobs on the distributed Computer resources with the user agents

and the LS agents. The Contract Net Protocol is a high level

protocol for achieving efficient cooperation introduced by Smith

[6] based on a market-like protocol. Smith took his inspiration

from the way that companies organize the process of putting

contracts out to tender in public markets. It is the most common

and best-studied mechanism for distributed task allocation in

Inter-grid

agent

Meta-

SLA

bids

datab

ase

International Journal of Computer Applications (0975 – 8887)

Volume 1– No.9

28

agent-based systems [8, 14]. In this protocol, a decentralized

market structure is assumed and agents can take on two roles: a

manager and a contractor. The manager agent advertises the task

by a task announcement to other agents in the net. In response,

contracting agents evaluate the task with respect to their abilities

and engagements and submit bids. A bid indicates the

capabilities of the bidder that are relevant to the execution of the

announced task. The manager agent evaluates the submitted bids,

and selects the most appropriate bidder to execute the task,

which leads to awarding a contract to the contractor with the

most appropriate bid. The contractor assumes the responsibility

for the execution of the task. After a task has been completed, a

report is sent to the manager. The advantages of the contract net

protocol include the following: dynamic task allocation via self-

bidding which leads to better agreements; it provides natural

load balancing (as busy agents need not bid); agents can be

introduced and removed dynamically; and it is a reliable

mechanism for distributed control and failure recovery.

The proposed SLA negotiation protocol is a hierarchical bidding

mechanism. Due to the dynamic nature of Grid Computing where

desired tasks and available resources may be continuously

changing, a commitment duration is attached to the negotiation

messages, to allow the agents to specify the time windows by

which the agents must respond to a given negotiation message.

The SLA negotiation protocol involves two different negotiation

levels:

• Meta-SLA negotiation

• Sub-SLA negotiation

4.1 Meta-SLA contents
The meta-SLA contents under negotiation are initiated using

information and constraints provided by the user. During meta-

SLA negotiation these values may be refined, and information

may be added in the final agreed SLA such as proposed

compensation package.

The possible user inputs are:

 Required resources over a time period.

 Time constraint: job start time and end time.

 Cost constraint: the cost the user is ready to pay.

 Required execution host information.
A meta-SLA may have the following information:

Meta-SLA identifier: an identity tag assigned by the SS agent in

order for the system to keep track of SLAs and is later used for

accessing SLA repository for information.

Resource information: the required capability of the resource

for the application. It is usually very high level description of a

resource metric containing resource details such as machine

information and the range of processors.

 Estimated due date: the time by which the job should be

finished.

 Estimated cost: it is the maximum cost limit pre-set by the user

for any given job execution request. The system will use this

parameter to set a limit on its search for resources.

Required execution host information [Optional]: users may

choose preferred execution host for their jobs.

Book-keeping information: miscellaneous information.

4.2 Sub-SLA contents
In this level the SS agents negotiate sub-SLA with the LS agents.

The SS agents decompose the meta-SLA into its low level

resource attributes, sub-SLAs which contain low level raw

resource description such as processes, memory processors, etc.

A sub-SLA may have the following information:

 Low level raw resource descriptions such as number of

nodes, architecture, memory, disk size, CPU, network,

OS, application (if any needed).

 Time constraint.

 Cost constraint.

 Meta-SLA identifier to keep truck of the meta-SLA.

 Storage Requirement - e.g.: 1GB may be used during

execution and the output to be stored at Temp

directory.

 User with whom the meta-SLA is made.

 LS agent with whom the sub-SLA is agreed.

4.3 Steps of the SLA Negotiation Protocol
The steps of the SLA negotiation protocol are described below

(Fig. 2):

a) User agent-SS agents Meta-SLA negotiation steps:

a1) Meta-SLA-request: the user agent submits a meta-SLA to

the nearest SS agent to request the execution of a job.

a2) Meta-SLA-announcement: upon receiving the meta-SLA

request from the user agent, the SS agent advertises the meta-

SLA to the neighboring SS agents in the net by sending a meta-

SLA announcement.

a3) Meta-SLA-bidding: in response to the meta-SLA-

announcement, each SS agent queries the LS agents’ state

information database to check the availability of required

resources for the job response time to identify suitable set of

resources. Cost is then evaluated for each potential resource. The

SS agents select the best resources which satisfy the availability

and cost constraints of the job. Each SS agent submits a meta-

SLA-bid to the user agent and the inter-grid agent. The meta-

SLA-bid describes the new estimated response time and cost, and

other additional information such as proposed compensation

package.

a4) Meta-SLA-award: the user agent, upon receiving the meta-

SLA-bids, selects the most appropriate SS agent with the best

meta-SLA-bid and sends a notification agreement to its. The

selected SS agent stores the agreed meta-SLA in SLAs database.
The user now has an agreement with the Grid provider to use its

resources.

It may happen that none of the LS agents cluster has enough

resources for performing the job. Then the user agent can contact

the inter-grid agent. Inter-grid agent has collection of meta-SLA

bids information submitted by the SS agent of each institution.

Inter grid agent makes different combinations of resources from

different clusters and then evaluates the cost for each potential

combination. After that the Inter-grid agent offers the user agent

the best possible combination of meta-SLA bids. If the user agent

agrees, it sends a notification agreement to this. . The selected

SS agents store the agreed meta-SLA in SLAs database.

International Journal of Computer Applications (0975 – 8887)

Volume 1– No.9

29

b) SS agents-LS agents Sub-SLA negotiation steps:

b1) Sub-SLA-announcement: now the SS agent awarded

agreement begins the process of decomposing the meta-SLA by

generating one or more sub-SLAs. The sub-SLAs will have low
level raw resource descriptions. The SS agent sends the sub-

SLA-announcements to the identified suitable LS agents within

the cluster under its control.

b2) Sub-SLA-bidding: the LS agents, upon receiving the sub-

SLA-announcements, query the resource record for information

such as load average, CPU speed, memory size, to identify

suitable resources and submit bids to the SS agent.

Fig.2. Steps of the SLA Negotiation Protocol

b3) Sub-SLA-award: the SS agent evaluates the best sub-SLA

in accordance to time and cost criteria and sends a notification

agreement to the most appropriate LS agent with the best

resources. The SS agent stores the sub-SLA in the SLAs database

and updates the LS agents.

d) Task execution steps

The basic steps for task execution are the following:

d1) The LS agent sends a notification of initiation of job

execution to the user agent.

d2) At the end of job execution, a final report including the

output file details is sent to the user agent.

d3) LS agent sends a notification end job execution to the SS

agent.

d4) LS agent updates information held in the Resource Record

database.

d5) SS agent updates LS agents’ state information database.

d6) SS agent updates the status of the SLAs in the SLAs

database.

5. SLA RE-NEGOTIATION IN THE

PRESENCE OF UNCERTAINTIES

Even once a SLA has been agreed, re-negotiation is required for

multiple reasons: to extend the running time of an increasingly

interesting simulation; to increase the computational resources

dedicated to either the simulation, thereby accelerating the

experiment, or to the visualization, in order to improve the

resolution of the rendering; resources might also be given back

when the improved speed or picture quality was no longer

required. Also, more generally, resources may fail unpredictably,

high-priority jobs may be submitted, etc. In a busy Grid

environment, SLAs would be constantly being added, altered or

withdrawn, and hence scheduling would need to be a continual,

dynamic and uncertain process. The introduction of re-

negotiation, permitted during job execution (as well as before it

commences) makes the schedule more dynamic, requiring more

frequent rebuilding of the schedule.

In the presence of failures, the SS agents re-negotiate the SLAs

in failure at the local, inter-cluster and global levels in order to

find alternative LS agents to execute the jobs in failure. The

basic steps of failure recovery are the following, as shown in

Fig.3.

Fig.3. Re-negotiation in the presence of resource failure

f1) LS agent11 notifies SS agent1 of the failure.

f2) SS agent1 re-negotiates the sub-SLAs in failure to find

alternative LS agents locally within the same cluster by initiating

a Sub-SLA negotiation session with the suitable LS agents.

Inter-grid

agent
Met

a-

SLA

bids

data

base

Inter-grid

Agent

f7

International Journal of Computer Applications (0975 – 8887)

Volume 1– No.9

30

f3) If it cannot manage to do so, the SS agent1 re-negotiates the

meta-SLAs with the neighboring SS agents by initiating a Meta-

SLA negotiation session with SS agent2 to execute the job in

failure.

f4) SS agent2, …, SS agentn re-negotiate the sub-SLAs in failure

to find alternative LS agents.

f5) SS agent2 located LS agent22 to execute the job in failure.

There are two possible cases for continuing the task execution:

The job may be restarted with the last saved status. Otherwise

the job restarts from the beginning.

f6) At the end of task execution, LS agent22 sends a final report

including the output file details to the user agent.

f7) In case the SS agent1 could not find alternative LS agents at

the local and inter-cluster levels, the SS agent1 sends an alert

message to the inter-grid agent to inform that the meta-SLA

cannot be fulfilled within the current grid. Then Inter-grid agent

interacts with other neighboring grids to find the available

resources to execute the job.

6. CONCLUSION
In this paper we have proposed a new infrastructure for adaptive

and efficient job scheduling on the Grid using multi-agent

systems and a SLA negotiation protocol based on the Contract

Net Protocol. The SLA negotiation protocol proposed based on

the Contract Net Protocol allows the service user agent a flexible

negotiation with service provider agent for execution of jobs on

the Grid. The SLA negotiation protocol is a hierarchical bidding

mechanism which yields many advantages relevant to Grid

scheduling, such as dynamic task allocation, natural load-

balancing, dynamic introduction and removal of resources, and

robustness against failures. Re-negotiation is used to allow the

agents to re-negotiate the SLAs in failure.

7. REFERENCES
[1] Choi, H. R., Kim, H. S., Park, B. J., Park, Y. J., Whinston,

A.B.: An agent for selecting optimal order set in EC

marketplace. Decision Support Systems, 53(2003) 39-58.

[2] Czajkowski, K., Dan, A., Rofrano, J., Tuecke, S., Xu, M.:

Agreement-based Service Management (WS-Agreement).

Draft Global Grid Forum Recommendation Document

(2003).

[3] Keller, A., Kar, G., Ludwig, H., Dan, A., Hellerstein, J.L.:

Managing Dynamic Services: A Contract Based Approach to

a Conceptual Architecture. Proceedings of the 8th IEEE/IFIP

Network Operations and Management Symposium (2002)

513–528.

[4] Ouelhadj, D., Hanachi, C., Bouzouia, B.: Multi-agent

architecture for distributed monitoring in flexible

manufacturing systems (FMS). Proceedings of the IEEE

International Conference on Robotics and Automation, San

Francisco, USA (2000) 1120-1126.

[5] Ouelhadj, D., Cowling, P., Petrovic, S.: Contract net

protocol for cooperative optimisation and dynamic

scheduling of steel production. In: Ajith, Ibraham, Katrin,

Franke and Mario, Koppen, (eds.): Intelligent Systems

Design and Applications, Springer-Verlag (2003) 457-470.

[6] Smith, R.: The contract net protocol: high level

communication and control in distributed problem solver.

IEEE Transactions on Computers, 29 (1980) 1104-1113.

[7] O’Hare, G., Jennings, N. (Eds.): Foundations of Distributed

Artificial Intelligence, Wiley, New York (1996).

[8] Shen, W., Norrie, D., Barthes, J. (eds.): Multi-agent systems

for concurrent intelligent design and manufacturing, Taylor

& Francis, London (2001).

[9] Abramson, D., Buyya, R., Giddy, J.: A computational

economy for Grid computing and its implementation in the

Nimrod-G resource broker. Future generation Computer

Systems, 18 (2002) 1061-1074.

[10] Cao, J., Kerbyson, D., Nudd, G.: Performance evaluation of

an agent-based resource management infrastructure for Grid

computing. Proceedings of the First IEEE/ACM

International Symposium on Cluster Computing and the

Grid (2001) 311-318.

[11] Cao, J., Jarvis, S.: ARMS: An agent-based resource

management system for Grid computing. Scientific

Programming, 10(2002) 135-148.

[12] Rana, O. and Walker, D.: The Agent Grid: Agent-based

resource integration in PSEs. Proceedings of the 16th

IMACS World Congress on Scientific Computing, Applied

Mathematics and Simulation, Lausanne, Switzerland

(2000).

[13] Buyya, R., Abramson, D., Giddy, J., Stocking, H.: Economic

models for resource management and scheduling in Grid

computing. Concurrency and Computation: Practice and

Experience, 14 (2002) 1507-1542.

[14] Wooldridge, M. (eds.): An introduction to multi-agent

systems. John Wiley & Sons, Ltd., Chichester, England

(2002).

[15] “A Multi-agent Infrastructure and a Service Level

agreementNegotiation Protocol for Robust Scheduling in

Grid Computing” by 1 D. Ouelhadj, 2J. Garibaldi, 3J.

MacLaren, 4R. Sakellariou, 5K. Krishnakumar, 6Amnon

Meisels

