
©2010 International Journal of Computer Applications (0975 – 8887)  

Volume 1 – No. 9 

9 

 

Closed Pattern Mining from n-ary Relations 
 

R V Nataraj 
Department of Information Technology 

PSG College of Technology 
Coimbatore, India 

  

 S Selvan 
Department of Computer Science 
Francis Xavier Engineering College, 

Tirunelveli, India. 

 

 

ABSTRACT 

In this paper, we address the problem of closed pattern mining 

from n-ary relations. We propose CnS-Miner algorithm which 

enumerates all the closed patterns of the given n-dimensional 

dataset in depth first manner satisfying the user specified 

minimum size constraints.  From the given input, the CnS-Miner 

algorithm generates an n-ary tree and visits the tree in depth first 

manner.  We have proposed a generalized duplicate pruning 

method which prunes the subtrees that generate duplicate patterns.   

The space complexity of our algorithm is O(D+d) where D is the 

n-ary dataset and d is the depth of the tree.  We have 

experimentally compared the proposed algorithm with DataPeeler, 

a recently proposed algorithm for closed pattern mining from n-

ary relations. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 

Mining 

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
Data Mining, Closed Patterns, Algorithms 

1. INTRODUCTION 
Closed pattern mining algorithms including LCM [6], DCI_Close 

[9], FP-Close [8], AFOPT-Close [10] are limited to 2D datasets. 

These algorithms were proposed in the context of association rule 

mining and are optimized for transactional datasets. Closed 

pattern mining algorithms optimized for gene expression data in 

2D context have also been proposed including D-Miner [2], B-

Miner & C-Miner [5] and CARPENTER.  Also, to efficiently 

mine closed patterns from 2D symmetric adjacency matrix, LCM-

MBC [3] algorithm has been proposed.  Closed pattern mining 

has also been studied in 3D context [4] and two algorithms 

(CubeMiner algorithm & Representative Slice Miner algorithm) 

have been proposed to mine 3-dimensional closed patterns. A 

generalized efficient algorithm for closed pattern mining from n-

dimensional data (alternatively n-ary relations) appears to be a 

timely challenge.  In the traditional market-basket scenario, it is 

very common to collect data on 4 dimensions including customer, 

location, time and item.  Association analysis based on multiple 

dimensions can reveal interesting patterns about how one 

dimension influences the other dimensions. To enumerate closed 

patterns from n- 

 

dimensional datasets, DataPeeler algorithm [1] has been proposed 

which enumerates all the n-dimensional closed patterns in depth 

first manner using a binary tree enumeration strategy. Also, the 

DataPeeler algorithm is memory efficient since it does not store 

the previously computed patterns in main memory for duplicate 

detection and closure checking.  

 

This paper proposes CnS-Miner (Closed n-Set pattern Miner) 

algorithm to enumerate closed patterns from n-dimensional 

Boolean datasets.  Similar to DataPeeler algorithm, the CnS-

Miner algorithm enumerates all the closed patterns in depth first 

manner and the algorithm does not store the previously computed 

closed patterns in main memory.  Unlike DataPeeler algorithm, 

which generates a binary tree, the CnS-Miner algorithm generates 

an n-ary tree from the input dataset for mining closed patterns.  

Also, the CnS-Miner algorithm prunes all the nodes which 

generate duplicate patterns and the number of comparisons 

required to prune a node is O(d) where d is the depth of the node 

from the root node. The space complexity of CnS-Miner 

algorithm is O(D+d) where D is the n-dimensional dataset and d 

is the depth of the tree. Experiments involving several synthetic 

datasets show that CnS-Miner algorithm outperforms DataPeeler 

algorithm in certain cases where one of the dimensions contains 

large number of elements when compared to other dimensions.   

 

The rest of the paper is organized as follows.  Section 2 presents 

the preliminaries.  Section 3 presents the duplicate pruning 

method, CnS-Miner algorithm and the description of the 

algorithm.  Section 4 analyzes the experimental results while 

section 5 concludes the paper. 

2. PRELIMINARIES 
This section presents the basic definitions followed by the 

problem definition. Let D = { D1, D2, D3,.. Dn } be the n-

dimensional dataset where Di denote the i
th dimension elements.  

An example 4-dimensional dataset with D1={ a1, a2, a3 }, D2 ={ b1, 

b2, b3 }, D3={ c1, c2, c3 }  and D4={ d1, d2 }is shown in Table 1.  

An n-set, U = { P1, P2..Pn}, where Pi ⊆ Di , is said to be closed if 

and only if (i) all the elements of each set of Pi are in relation with 

all other elements of other dimensions and  (ii) Pi cannot be 

enlarged without violating (i). For example, d1d2 : c1c2c3 : b1b2 : a1 

is a closed 4-set pattern in Table  1.   

Problem Definition:  Given an n-dimensional dataset, the problem 

is to enumerate all the n-dimensional closed patterns satisfying the 

user specified minimum size constraints. 
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Table 1: An Example 4-Dimensional Dataset 

  d1           

c1 

 

 a1  a2 a3 

b1 1 0 0 

b2 1 0 1 

b3 0 1 1 

  

c2 

 

 a1  a2 a3 

b1 1 0 0 

b2 1 0 0 

b3 1 1 1 

  

c3 

 

 a1  a2 a3 

b1 1 1 1 

b2 1 0 1 

b3 1 1 1 

   
 

d2 

c1 

 

 a1  a2 a3 

b1 1 0 1 

b2 1 0 1 

b3 0 1 1 

  

c2 

 

 a1  a2 a3 

b1 1 0 0 

b2 1 0 0 

b3 1 1 1 

  

c3 

 

 a1  a2 a3 

b1 1 0 1 

b2 1 0 1 

b3 0 1 0 

   
 

 

3. CLOSED n-Set PATTERN MINING 
The proposed CnS-Miner algorithm is inspired by the D-Miner 

algorithm [2] which enumerates all the closed patterns satisfying 

the user specified minimal size constraints from two dimensional 

datasets and CubeMiner algorithm [4] which enumerates all the 

closed patterns from three dimensional datasets.  The D-Miner 

algorithm starts with the entire 2-set (entire set of row and column 

elements) in the root node and generates a binary tree using 

cutters.  A cutter in D-Miner algorithm is a 2-set containing one 

row element and a set of column elements such that none of the 

column elements are in relation with the row element. The 

proposed algorithm uses the same cutter concept but a cutter in 

CnS-Miner algorithm is an n-set containing one element from 

each dimension except the first dimension which contains a set of 

elements (in this paper, the column is assumed to be the first 

dimension).  In closed 2-set pattern mining, the duplicate patterns 

will not be generated because all the nodes of D-Miner’s binary 

tree are unique with respect to each other except the nodes which 

are in the same path from the root node i.e. only nodes in the same 

path from the root can be related by subset-superset relationship 

and no two nodes from different paths can be related by subset-

superset relationship.  This is due to, if a cutter with a particular 

row element is applied, then another cutter with the same row 

element will not occur.  Hence, no duplicate patterns are 

generated in the closed 2-set pattern mining.  However, the same 

will not hold true in an n-ary tree that is generated using cutter 

concept and duplicate patterns are likely to be generated.  Hence, 

an efficient duplicate pruning method is needed to prune duplicate 

patterns. 

 

 

3.1 Duplicate Pruning: 
Let us recall why duplicate patterns are not generated in closed 2-

set pattern mining of D-Miner algorithm.  The reason is that all 

the nodes that are from different paths are unique with respect to 

each other.  Hence, in the n-ary tree of closed n-set pattern 

mining, the uniqueness of all the nodes from different paths need 

to be ensured. The following examines when a particular node 

from a path becomes a subset to a node from a different path and 

then a generalized solution is proposed to prune such nodes.   

Let us consider the root node, its cutter and its child nodes for the 

example dataset given in Table 1.  The root node and its cutter are 

{ d1d2 : c1c2c3 : b1b2b3 : a1a2a3 } and { d1 : c1 : b1 : a2 a3} 

respectively.  The child nodes are { d2 : c1c2c3 : b1b2b3 : a1a2a3 } { 

d1d2 : c2c3 : b1b2b3 : a1a2a3 } { d1d2 : c1c2c3 : b2b3 : a1a2a3 } and     

{ d1d2 : c1c2c3 : b1b2b3 : a1 }. A  child node is denoted  as kth child 

if kth dimension cutter element is removed from that child.  All the 

child nodes of  the root node are unique with respect to each 

other.  The nth child of the root node becomes a superset to a node 

of other branches if and only if nth dimension cutter element is 

removed in any of the nodes of the subtree of nth child’s sibling 

nodes.  In no other circumstances, the nth child of the root node 

becomes a superset to a node generated in the subtree of sibling 

nodes.  Similarly, the (n-1)th child of the root node becomes a 

superset to a node of other branches if and only if (n-1)th 

dimension cutter element is removed in the subtree of (n-1)th 

child’s sibling nodes.  This holds true for all the nodes in the 

entire tree.  Hence, to ensure the unicity of all the nodes in the 

entire tree, a kth dimension element of a cutter should not be 

removed in the entire subtree of the kth node’s siblings.  For 

example, let Q denote an n-set of a node and Z denote an n-set 

cutter of Q.  Let Pn, Pn-1, ..P2, P1 be the child nodes of Q and the 

kth dimension of cutter element is removed in the kth child. Then, 

the kth dimension cutter element should not be removed in the 

entire subtree of Pi where 1 ≤ i < k.  In this way, the unicity can be 

ensured.  Also, for a node Pk, this constraint need not be enforced 

in the subtree of p(k+1)
th node since P(k+1) is already unique to all 

the nodes of the pk
th subtree by the same constraint since (k+1)th 

cutter element of Z is never removed   in the subtree of Pk
th node.  

For example, considering the root node and its cutter, the removal 

of cutter element c1 in the 4
th son subtree need not be checked 

since all the nodes of 4th son subtree are already unique to the 

nodes of 3rd son subtree because of d1, the 4
th dimension cutter 

element.  Based on this discussion the generalized unicity 

constraint lemma is stated as follows. 

 

Lemma 1: A kth son of a node (generated by applying a cutter Z) 

can be pruned if there exists a cutter  Z′ of type q  in its path from 

the root node where q<k and the kth-dimension-element(Z′) ∩ kth-

dimension-element(Z) ≠ null. 

 

In a path, if a cutter generates a kth child, then the cutter is said to 

be of type k.  For example, the cutter { d1 : c1 : b1 : a2 a3 } of the 

root node is said to be of type 3 for a node from the 3rd son 

subtree of the root node. Similarly, the same cutter is said to be of 

type 2 for a node from the 2nd son subtree of the root node.   A 

generalized notation for an n-dimension is given below. Let us 

consider an n-dimensional data D = { Dn, Dn-1, Dn-2. … D2, D1 }.  

Let the cutter for the root node be cn, cn-1, cn-2,.. c2, C1 (note that 

only C1 contains more than one element and hence denoted using 

uppercase). Then, the root node and its n child nodes are shown in 

Figure 1.  

The lemma says that the cutter element cn is never removed in the 

entire subtree of qth son nodes where (n-1) ≥ q ≥ 1.  Also, the 

cutter element cn-1 is never removed in the entire subtree of mth 
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son nodes where (n-2) ≥ m ≥ 1.  Similarly, the c2 cutter element is 

never removed in the entire subtree of 1st son nodes. In Figure 1, 

the root node cutter is of type n for all the nodes of the entire 

subtree of nth son.  Also, the root node cutter is of type (n-1) for 

all the nodes of the entire subtree of (n-1)th son and so on. This 

lemma is applicable for all the nodes of the entire n-ary tree. 

 
Figure 1.  A Node in the n-ary Tree and its Child Nodes 

 

3.2  CnS-Miner Pseudo Code  

INPUT: An n-dimensional dataset, size constraints for each of the 

n dimensions (min_n, …. min_1). 

OUTPUT: set of closed n-set patterns satisfying the size 

constraints. 

1. construct the dataset D  in memory  

2. Z = null (cutter elements  are initialized to null) 

3. ZL=null (cutter list is set to null) 

4. Initialize QR  (the root node)  

5. Call CnS-Miner (QR, ZL, n ) 

 

6. CnS-Miner(Q, ZL, k) 

7. { 

8.      while(k !=0) 

9.           generate a cutter Z  for  Q 

10.           if (cutter-exists) 

11.               if |Qk\Zk|≥ min_k //check for size constraint 

                           //check for duplicate 

12.                    if  ∃Z' ∈ ZL and type(Z')<k and Z'k ∩ Zk  ≠ null   

                                  //recursively generate the child nodes 

13.                           call CnS-Miner(Q\Zk , ZL ∪ Z, n) 

14.                     endif 

15.                endif 

16.            else 

17.                if (closed)  //Perform Closure checking 

18.                      write the closed n-set pattern to the disk 

19.                endif 

20.           endif 

21.          k=k-1 

22.      endwhile 

23. } 

 

The CnS-Miner algorithm starts with a root node containing the 

entire n-set.  The notation Q indicates an n-set and QR indicates 

the entire n-set i.e. the root node. The notation Qk indicates the k
th 

dimension elements of the corresponding n-set.  The notation Z 

indicates the current cutter and Zk indicates the k
th dimension 

elements of Z.  For the root node, the algorithm generates a cutter.  

A cutter is also an n-set containing only one element in all the 

dimensions except the first dimension which may contain more 

than one element. If a cutter exists then left node (nth node) is 

generated provided both size constraint (line no 11) and duplicate 

constraint (line no 12) are satisfied. The algorithm uses a variable 

(in the pseudo code, the variable is denoted as k) to determine 

which child node is to be generated.  Initially, when the CnS-

miner algorithm is called, the variable k is initialized to the value 

of n.  The value of k is decremented by 1 (line no 21) if a cutter 

does not exist or size constraint is not satisfied or a node is a 

duplicate or a recursive call is returned.  When the value of k is 

decremented by 1 (line no 21) for the first time, k will have the 

value   n-1 and the (n-1)th child  will be generated. When k is 

again decremented, the (n-2)th child will be generated.  This 

process gets repeated for all the nodes.  When the value of k 

reaches zero and the stack is empty, the entire procedure returns.  

For duplicate checking, the algorithm maintains a variable named 

ZL which stores the set of cutters of a path from the root node to 

the current node.  For a node, the closure checking (line no 17)  is 

done only if no more child node can be generated i.e. a cutter does 

not exist for that node.  If the n-set is found to be closed, then the 

corresponding n-set pattern is written into the disk as closed n-set 

pattern. Otherwise, the n-set is discarded.  For the sake of 

simplicity, maintaining the type of a cutter is not shown in the 

pseudo code. 

 

3.3  An Example 
For the dataset given in Table 1, the root node of the 4-ary tree is 

{ d1 d2 : c1 c2 c3 : b1 b2 b3 : a1 a2 a3 } and the cutter for the root 

node is { d1 : c1 : b1 : a2a3 }.  Applying a cutter on the root node 

results in four child nodes namely { d2 : c1 c2 c3 : b1 b2 b3 : a1 a2 a3 

}, { d1 d2 : c2 c3 : b1 b2 b3 : a1 a2 a3 }, { d1 d2 : c1 c2 c3 : b2 b3 : a1 a2 

a3 } and { d1 d2 : c1 c2 c3 : b1 b2 b3 : a1 } respectively.  Since the 

example dataset contains four dimensions, there are four types of 

cutters namely type 1, type 2, type 3 and type 4. The root node 

cutter is of type 4 for the 4th son and its entire subtree.  Similarly, 

the root node cutter is of type 3, type2 and type 1 for the 3rd son, 

2nd son and 1st son respectively and also for their entire subtree.  

For the 4th son of the root node, all the child nodes are generated. 

For the 4th son of the 3rd son of the root node, there exists a cutter 

of type 3 in its path from the root with same 4th dimension 

element and hence, according to lemma 1, the 4th son is pruned.  

Similarly, the 4th son of the 2nd son of the root node and 4th son of 

the 1st son of the root node are also pruned.  This procedure is 

repeated for all the nodes of the entire 4-ary tree. The unicity 

constraint is applied for all the nodes of the entire n-ary tree.  

 

3.4  Parallelization 
Nodes of the n-ary tree generated by the CnS-Miner algorithm can 

be processed parallelly and concurrently on several machines.  

Each and every node along with a set of cutters in its path from 

the root node constitutes an independent subtask.  The availability 

of the dataset in all the processors is the only requirement which 

can be easily done without much overhead.   To achieve better 

load sharing in static context, an efficient approach would be to 

generate as much number of nodes in the master processor in 

breadth first manner and assign these nodes to the slave 

processors. When a slave processor completes its execution, 

another node from the master processor can be allocated to this 

slave processor for processing.  In this way, the overall running 

time can be reduced and the load sharing among different 
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processors can be improved. The work stealing concept can also 

be easily incorporated to achieve immediate load balancing.  The 

only data to be transferred to the free processor is a node and a set 

of cutters in its path from the root node. 

4. EXPERIMENTAL RESULTS 
The CnS-Miner algorithm and DataPeeler algorithm are 

implemented using C language and the code is compiled using 32-

bit Microsoft Visual C++ compiler.  The data structures used in 

both the algorithms are same i.e. the data structure used to 

represent the n-set, the algorithm to access each elements of n-set, 

the data structure used for the representing the stack (note that 

both DataPeeler and CnS-Miner algorithm explores the tree in 

depth first manner and hence a stack is needed) and the 

methodology of stack manipulation are same in both CnS-Miner 

and DataPeeler algorithm.  All the experiments were conducted on 

Pentium 4 machines with 1GB of main memory loaded with 

Windows XP operating system. Several synthetic datasets created 

using IBM synthetic dataset generator are used for experimental 

analysis and the description of the datasets is given in Table 2.  

The seven columns in Table 2 represent the total number of 

elements in each dimension i.e. for example, Dataset-1 in Table 2 

has a total of 5 dimensions with 5th to 3rd dimension containing 2 

elements, 2nd dimension containing 20 elements and the first 

dimension contains 5k elements.  Similarly, the Dataset-2 contains 

a total of 7 dimensions as shown in Table 2.   

 

Table 2  Datasets Used 

Dataset Number of 

Dimensions 

Total Elements in each dimension 

 

  7 6 5 4 3 2 1 

Dataset-1 5 - - 2 2 2 15 5K 

Dataset-2 7 2 2 2 2 2 15 5K 

 

Table 3  Total Running Time in Seconds for CnS-Miner 

Algorithm and DataPeeler Algorithm 

Dimension Size Constraints Running Time 

Min-4 Min-3 Min-2 Min-1 
CnS- 

Miner 

Data 

Peeler 

1 1 1 1 123.267 240.545 

1 1 1 5 120.454 229.749 

1 1 1 10 118.878 218.650 

1 1 1 15 113.564 202.543 

1 1 1 20 109.453 189.467 

1 1 1 25 107.774 177.986 

 

In Table 3 and Table 4, the Min-x represents the minimum size 

constraint for the xth dimension. For example, in Table 3, the 

values of the Min-3 column represent the minimum number of 

elements that are to be present in the 3rd dimension for each of the 

closed patterns. 

 

 

 

 

 

 

 

Table 4  Total Running Time in Seconds for CnS-Miner 

Algorithm and DataPeeler Algorithm 

Dimension Size Constraints Running Time 

Min-4 Min-3 Min-2 Min-1 
CnS- 

Miner 

Data 

Peeler 

1 1 1 1 749.004 1043.878 

1 1 1 5 740.057 1036.620 

1 1 1 10 730.476 1024.398 

1 1 1 15 731.860 1009.844 

1 1 1 20 729.546 996.654 

1 1 1 25 724.764 984.873 

 

 

Memory efficiency: Both CnS-Miner algorithm and DataPeeler 

algorithm are highly memory efficient.  The space complexity of 

both algorithms is O(D+d), where d is the depth of the tree (note 

that both algorithms explores the tree in depth first manner) and D 

is the input dataset. 

 

Scalability:  It is to be noted that both CnS-Miner and DataPeeler 

algorithm are highly scalable.  However, as the size of the dataset 

increases, the running time of the algorithm also increases.  For 

very large dense datasets, both algorithms will not give the results 

in reasonable amount of time.  The parallelized execution is the 

only way to get the results in reasonable amount of time and both 

the algorithms can be easily parallelized to any number of 

processors without much overhead i.e. the nodes of the tree 

generated by the algorithms can be assigned to different 

processors for their parallelized execution.    

5. CONCLUSION 
We have proposed CnS-Miner algorithm for mining closed n-set 

patterns from n-ary relations.  The recently proposed Data Peeler 

algorithm uses a binary tree enumeration strategy to generate 

closed n-set patterns whereas the CnS-Miner algorithm uses an n-

ary tree enumeration strategy. Our comprehensive experimental 

analysis have shown that CnS-Miner algorithm outperforms 

DataPeeler algorithm when the cardinality of one of the 

dimensions is large in number whereas DataPeeler algorithm 

outperforms CnS-Miner algorithm when more than one dimension 

contain large number of elements.  
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