
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

9

Closed Pattern Mining from n-ary Relations

R V Nataraj
Department of Information Technology

PSG College of Technology
Coimbatore, India

 S Selvan
Department of Computer Science
Francis Xavier Engineering College,

Tirunelveli, India.

ABSTRACT

In this paper, we address the problem of closed pattern mining

from n-ary relations. We propose CnS-Miner algorithm which

enumerates all the closed patterns of the given n-dimensional

dataset in depth first manner satisfying the user specified

minimum size constraints. From the given input, the CnS-Miner

algorithm generates an n-ary tree and visits the tree in depth first

manner. We have proposed a generalized duplicate pruning

method which prunes the subtrees that generate duplicate patterns.

The space complexity of our algorithm is O(D+d) where D is the

n-ary dataset and d is the depth of the tree. We have

experimentally compared the proposed algorithm with DataPeeler,

a recently proposed algorithm for closed pattern mining from n-

ary relations.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data

Mining

General Terms
Algorithms, Design, Experimentation.

Keywords
Data Mining, Closed Patterns, Algorithms

1. INTRODUCTION
Closed pattern mining algorithms including LCM [6], DCI_Close

[9], FP-Close [8], AFOPT-Close [10] are limited to 2D datasets.

These algorithms were proposed in the context of association rule

mining and are optimized for transactional datasets. Closed

pattern mining algorithms optimized for gene expression data in

2D context have also been proposed including D-Miner [2], B-

Miner & C-Miner [5] and CARPENTER. Also, to efficiently

mine closed patterns from 2D symmetric adjacency matrix, LCM-

MBC [3] algorithm has been proposed. Closed pattern mining

has also been studied in 3D context [4] and two algorithms

(CubeMiner algorithm & Representative Slice Miner algorithm)

have been proposed to mine 3-dimensional closed patterns. A

generalized efficient algorithm for closed pattern mining from n-

dimensional data (alternatively n-ary relations) appears to be a

timely challenge. In the traditional market-basket scenario, it is

very common to collect data on 4 dimensions including customer,

location, time and item. Association analysis based on multiple

dimensions can reveal interesting patterns about how one

dimension influences the other dimensions. To enumerate closed

patterns from n-

dimensional datasets, DataPeeler algorithm [1] has been proposed

which enumerates all the n-dimensional closed patterns in depth

first manner using a binary tree enumeration strategy. Also, the

DataPeeler algorithm is memory efficient since it does not store

the previously computed patterns in main memory for duplicate

detection and closure checking.

This paper proposes CnS-Miner (Closed n-Set pattern Miner)

algorithm to enumerate closed patterns from n-dimensional

Boolean datasets. Similar to DataPeeler algorithm, the CnS-

Miner algorithm enumerates all the closed patterns in depth first

manner and the algorithm does not store the previously computed

closed patterns in main memory. Unlike DataPeeler algorithm,

which generates a binary tree, the CnS-Miner algorithm generates

an n-ary tree from the input dataset for mining closed patterns.

Also, the CnS-Miner algorithm prunes all the nodes which

generate duplicate patterns and the number of comparisons

required to prune a node is O(d) where d is the depth of the node

from the root node. The space complexity of CnS-Miner

algorithm is O(D+d) where D is the n-dimensional dataset and d

is the depth of the tree. Experiments involving several synthetic

datasets show that CnS-Miner algorithm outperforms DataPeeler

algorithm in certain cases where one of the dimensions contains

large number of elements when compared to other dimensions.

The rest of the paper is organized as follows. Section 2 presents

the preliminaries. Section 3 presents the duplicate pruning

method, CnS-Miner algorithm and the description of the

algorithm. Section 4 analyzes the experimental results while

section 5 concludes the paper.

2. PRELIMINARIES
This section presents the basic definitions followed by the

problem definition. Let D = { D1, D2, D3,.. Dn } be the n-

dimensional dataset where Di denote the i
th dimension elements.

An example 4-dimensional dataset with D1={ a1, a2, a3 }, D2 ={ b1,

b2, b3 }, D3={ c1, c2, c3 } and D4={ d1, d2 }is shown in Table 1.

An n-set, U = { P1, P2..Pn}, where Pi ⊆ Di , is said to be closed if

and only if (i) all the elements of each set of Pi are in relation with

all other elements of other dimensions and (ii) Pi cannot be

enlarged without violating (i). For example, d1d2 : c1c2c3 : b1b2 : a1

is a closed 4-set pattern in Table 1.

Problem Definition: Given an n-dimensional dataset, the problem

is to enumerate all the n-dimensional closed patterns satisfying the

user specified minimum size constraints.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

10

Table 1: An Example 4-Dimensional Dataset

 d1

c1

 a1 a2 a3

b1 1 0 0

b2 1 0 1

b3 0 1 1

c2

 a1 a2 a3

b1 1 0 0

b2 1 0 0

b3 1 1 1

c3

 a1 a2 a3

b1 1 1 1

b2 1 0 1

b3 1 1 1

d2

c1

 a1 a2 a3

b1 1 0 1

b2 1 0 1

b3 0 1 1

c2

 a1 a2 a3

b1 1 0 0

b2 1 0 0

b3 1 1 1

c3

 a1 a2 a3

b1 1 0 1

b2 1 0 1

b3 0 1 0

3. CLOSED n-Set PATTERN MINING
The proposed CnS-Miner algorithm is inspired by the D-Miner

algorithm [2] which enumerates all the closed patterns satisfying

the user specified minimal size constraints from two dimensional

datasets and CubeMiner algorithm [4] which enumerates all the

closed patterns from three dimensional datasets. The D-Miner

algorithm starts with the entire 2-set (entire set of row and column

elements) in the root node and generates a binary tree using

cutters. A cutter in D-Miner algorithm is a 2-set containing one

row element and a set of column elements such that none of the

column elements are in relation with the row element. The

proposed algorithm uses the same cutter concept but a cutter in

CnS-Miner algorithm is an n-set containing one element from

each dimension except the first dimension which contains a set of

elements (in this paper, the column is assumed to be the first

dimension). In closed 2-set pattern mining, the duplicate patterns

will not be generated because all the nodes of D-Miner’s binary

tree are unique with respect to each other except the nodes which

are in the same path from the root node i.e. only nodes in the same

path from the root can be related by subset-superset relationship

and no two nodes from different paths can be related by subset-

superset relationship. This is due to, if a cutter with a particular

row element is applied, then another cutter with the same row

element will not occur. Hence, no duplicate patterns are

generated in the closed 2-set pattern mining. However, the same

will not hold true in an n-ary tree that is generated using cutter

concept and duplicate patterns are likely to be generated. Hence,

an efficient duplicate pruning method is needed to prune duplicate

patterns.

3.1 Duplicate Pruning:
Let us recall why duplicate patterns are not generated in closed 2-

set pattern mining of D-Miner algorithm. The reason is that all

the nodes that are from different paths are unique with respect to

each other. Hence, in the n-ary tree of closed n-set pattern

mining, the uniqueness of all the nodes from different paths need

to be ensured. The following examines when a particular node

from a path becomes a subset to a node from a different path and

then a generalized solution is proposed to prune such nodes.

Let us consider the root node, its cutter and its child nodes for the

example dataset given in Table 1. The root node and its cutter are

{ d1d2 : c1c2c3 : b1b2b3 : a1a2a3 } and { d1 : c1 : b1 : a2 a3}

respectively. The child nodes are { d2 : c1c2c3 : b1b2b3 : a1a2a3 } {

d1d2 : c2c3 : b1b2b3 : a1a2a3 } { d1d2 : c1c2c3 : b2b3 : a1a2a3 } and

{ d1d2 : c1c2c3 : b1b2b3 : a1 }. A child node is denoted as kth child

if kth dimension cutter element is removed from that child. All the

child nodes of the root node are unique with respect to each

other. The nth child of the root node becomes a superset to a node

of other branches if and only if nth dimension cutter element is

removed in any of the nodes of the subtree of nth child’s sibling

nodes. In no other circumstances, the nth child of the root node

becomes a superset to a node generated in the subtree of sibling

nodes. Similarly, the (n-1)th child of the root node becomes a

superset to a node of other branches if and only if (n-1)th

dimension cutter element is removed in the subtree of (n-1)th

child’s sibling nodes. This holds true for all the nodes in the

entire tree. Hence, to ensure the unicity of all the nodes in the

entire tree, a kth dimension element of a cutter should not be

removed in the entire subtree of the kth node’s siblings. For

example, let Q denote an n-set of a node and Z denote an n-set

cutter of Q. Let Pn, Pn-1, ..P2, P1 be the child nodes of Q and the

kth dimension of cutter element is removed in the kth child. Then,

the kth dimension cutter element should not be removed in the

entire subtree of Pi where 1 ≤ i < k. In this way, the unicity can be

ensured. Also, for a node Pk, this constraint need not be enforced

in the subtree of p(k+1)
th node since P(k+1) is already unique to all

the nodes of the pk
th subtree by the same constraint since (k+1)th

cutter element of Z is never removed in the subtree of Pk
th node.

For example, considering the root node and its cutter, the removal

of cutter element c1 in the 4
th son subtree need not be checked

since all the nodes of 4th son subtree are already unique to the

nodes of 3rd son subtree because of d1, the 4
th dimension cutter

element. Based on this discussion the generalized unicity

constraint lemma is stated as follows.

Lemma 1: A kth son of a node (generated by applying a cutter Z)

can be pruned if there exists a cutter Z′ of type q in its path from

the root node where q<k and the kth-dimension-element(Z′) ∩ kth-

dimension-element(Z) ≠ null.

In a path, if a cutter generates a kth child, then the cutter is said to

be of type k. For example, the cutter { d1 : c1 : b1 : a2 a3 } of the

root node is said to be of type 3 for a node from the 3rd son

subtree of the root node. Similarly, the same cutter is said to be of

type 2 for a node from the 2nd son subtree of the root node. A

generalized notation for an n-dimension is given below. Let us

consider an n-dimensional data D = { Dn, Dn-1, Dn-2. … D2, D1 }.

Let the cutter for the root node be cn, cn-1, cn-2,.. c2, C1 (note that

only C1 contains more than one element and hence denoted using

uppercase). Then, the root node and its n child nodes are shown in

Figure 1.

The lemma says that the cutter element cn is never removed in the

entire subtree of qth son nodes where (n-1) ≥ q ≥ 1. Also, the

cutter element cn-1 is never removed in the entire subtree of mth

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

11

son nodes where (n-2) ≥ m ≥ 1. Similarly, the c2 cutter element is

never removed in the entire subtree of 1st son nodes. In Figure 1,

the root node cutter is of type n for all the nodes of the entire

subtree of nth son. Also, the root node cutter is of type (n-1) for

all the nodes of the entire subtree of (n-1)th son and so on. This

lemma is applicable for all the nodes of the entire n-ary tree.

Figure 1. A Node in the n-ary Tree and its Child Nodes

3.2 CnS-Miner Pseudo Code

INPUT: An n-dimensional dataset, size constraints for each of the

n dimensions (min_n, …. min_1).

OUTPUT: set of closed n-set patterns satisfying the size

constraints.

1. construct the dataset D in memory

2. Z = null (cutter elements are initialized to null)

3. ZL=null (cutter list is set to null)

4. Initialize QR (the root node)

5. Call CnS-Miner (QR, ZL, n)

6. CnS-Miner(Q, ZL, k)

7. {

8. while(k !=0)

9. generate a cutter Z for Q

10. if (cutter-exists)

11. if |Qk\Zk|≥ min_k //check for size constraint

 //check for duplicate

12. if ∃Z' ∈ ZL and type(Z')<k and Z'k ∩ Zk ≠ null

 //recursively generate the child nodes

13. call CnS-Miner(Q\Zk , ZL ∪ Z, n)

14. endif

15. endif

16. else

17. if (closed) //Perform Closure checking

18. write the closed n-set pattern to the disk

19. endif

20. endif

21. k=k-1

22. endwhile

23. }

The CnS-Miner algorithm starts with a root node containing the

entire n-set. The notation Q indicates an n-set and QR indicates

the entire n-set i.e. the root node. The notation Qk indicates the k
th

dimension elements of the corresponding n-set. The notation Z

indicates the current cutter and Zk indicates the k
th dimension

elements of Z. For the root node, the algorithm generates a cutter.

A cutter is also an n-set containing only one element in all the

dimensions except the first dimension which may contain more

than one element. If a cutter exists then left node (nth node) is

generated provided both size constraint (line no 11) and duplicate

constraint (line no 12) are satisfied. The algorithm uses a variable

(in the pseudo code, the variable is denoted as k) to determine

which child node is to be generated. Initially, when the CnS-

miner algorithm is called, the variable k is initialized to the value

of n. The value of k is decremented by 1 (line no 21) if a cutter

does not exist or size constraint is not satisfied or a node is a

duplicate or a recursive call is returned. When the value of k is

decremented by 1 (line no 21) for the first time, k will have the

value n-1 and the (n-1)th child will be generated. When k is

again decremented, the (n-2)th child will be generated. This

process gets repeated for all the nodes. When the value of k

reaches zero and the stack is empty, the entire procedure returns.

For duplicate checking, the algorithm maintains a variable named

ZL which stores the set of cutters of a path from the root node to

the current node. For a node, the closure checking (line no 17) is

done only if no more child node can be generated i.e. a cutter does

not exist for that node. If the n-set is found to be closed, then the

corresponding n-set pattern is written into the disk as closed n-set

pattern. Otherwise, the n-set is discarded. For the sake of

simplicity, maintaining the type of a cutter is not shown in the

pseudo code.

3.3 An Example
For the dataset given in Table 1, the root node of the 4-ary tree is

{ d1 d2 : c1 c2 c3 : b1 b2 b3 : a1 a2 a3 } and the cutter for the root

node is { d1 : c1 : b1 : a2a3 }. Applying a cutter on the root node

results in four child nodes namely { d2 : c1 c2 c3 : b1 b2 b3 : a1 a2 a3

}, { d1 d2 : c2 c3 : b1 b2 b3 : a1 a2 a3 }, { d1 d2 : c1 c2 c3 : b2 b3 : a1 a2

a3 } and { d1 d2 : c1 c2 c3 : b1 b2 b3 : a1 } respectively. Since the

example dataset contains four dimensions, there are four types of

cutters namely type 1, type 2, type 3 and type 4. The root node

cutter is of type 4 for the 4th son and its entire subtree. Similarly,

the root node cutter is of type 3, type2 and type 1 for the 3rd son,

2nd son and 1st son respectively and also for their entire subtree.

For the 4th son of the root node, all the child nodes are generated.

For the 4th son of the 3rd son of the root node, there exists a cutter

of type 3 in its path from the root with same 4th dimension

element and hence, according to lemma 1, the 4th son is pruned.

Similarly, the 4th son of the 2nd son of the root node and 4th son of

the 1st son of the root node are also pruned. This procedure is

repeated for all the nodes of the entire 4-ary tree. The unicity

constraint is applied for all the nodes of the entire n-ary tree.

3.4 Parallelization
Nodes of the n-ary tree generated by the CnS-Miner algorithm can

be processed parallelly and concurrently on several machines.

Each and every node along with a set of cutters in its path from

the root node constitutes an independent subtask. The availability

of the dataset in all the processors is the only requirement which

can be easily done without much overhead. To achieve better

load sharing in static context, an efficient approach would be to

generate as much number of nodes in the master processor in

breadth first manner and assign these nodes to the slave

processors. When a slave processor completes its execution,

another node from the master processor can be allocated to this

slave processor for processing. In this way, the overall running

time can be reduced and the load sharing among different

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

12

processors can be improved. The work stealing concept can also

be easily incorporated to achieve immediate load balancing. The

only data to be transferred to the free processor is a node and a set

of cutters in its path from the root node.

4. EXPERIMENTAL RESULTS
The CnS-Miner algorithm and DataPeeler algorithm are

implemented using C language and the code is compiled using 32-

bit Microsoft Visual C++ compiler. The data structures used in

both the algorithms are same i.e. the data structure used to

represent the n-set, the algorithm to access each elements of n-set,

the data structure used for the representing the stack (note that

both DataPeeler and CnS-Miner algorithm explores the tree in

depth first manner and hence a stack is needed) and the

methodology of stack manipulation are same in both CnS-Miner

and DataPeeler algorithm. All the experiments were conducted on

Pentium 4 machines with 1GB of main memory loaded with

Windows XP operating system. Several synthetic datasets created

using IBM synthetic dataset generator are used for experimental

analysis and the description of the datasets is given in Table 2.

The seven columns in Table 2 represent the total number of

elements in each dimension i.e. for example, Dataset-1 in Table 2

has a total of 5 dimensions with 5th to 3rd dimension containing 2

elements, 2nd dimension containing 20 elements and the first

dimension contains 5k elements. Similarly, the Dataset-2 contains

a total of 7 dimensions as shown in Table 2.

Table 2 Datasets Used

Dataset Number of

Dimensions

Total Elements in each dimension

 7 6 5 4 3 2 1

Dataset-1 5 - - 2 2 2 15 5K

Dataset-2 7 2 2 2 2 2 15 5K

Table 3 Total Running Time in Seconds for CnS-Miner

Algorithm and DataPeeler Algorithm

Dimension Size Constraints Running Time

Min-4 Min-3 Min-2 Min-1
CnS-

Miner

Data

Peeler

1 1 1 1 123.267 240.545

1 1 1 5 120.454 229.749

1 1 1 10 118.878 218.650

1 1 1 15 113.564 202.543

1 1 1 20 109.453 189.467

1 1 1 25 107.774 177.986

In Table 3 and Table 4, the Min-x represents the minimum size

constraint for the xth dimension. For example, in Table 3, the

values of the Min-3 column represent the minimum number of

elements that are to be present in the 3rd dimension for each of the

closed patterns.

Table 4 Total Running Time in Seconds for CnS-Miner

Algorithm and DataPeeler Algorithm

Dimension Size Constraints Running Time

Min-4 Min-3 Min-2 Min-1
CnS-

Miner

Data

Peeler

1 1 1 1 749.004 1043.878

1 1 1 5 740.057 1036.620

1 1 1 10 730.476 1024.398

1 1 1 15 731.860 1009.844

1 1 1 20 729.546 996.654

1 1 1 25 724.764 984.873

Memory efficiency: Both CnS-Miner algorithm and DataPeeler

algorithm are highly memory efficient. The space complexity of

both algorithms is O(D+d), where d is the depth of the tree (note

that both algorithms explores the tree in depth first manner) and D

is the input dataset.

Scalability: It is to be noted that both CnS-Miner and DataPeeler

algorithm are highly scalable. However, as the size of the dataset

increases, the running time of the algorithm also increases. For

very large dense datasets, both algorithms will not give the results

in reasonable amount of time. The parallelized execution is the

only way to get the results in reasonable amount of time and both

the algorithms can be easily parallelized to any number of

processors without much overhead i.e. the nodes of the tree

generated by the algorithms can be assigned to different

processors for their parallelized execution.

5. CONCLUSION
We have proposed CnS-Miner algorithm for mining closed n-set

patterns from n-ary relations. The recently proposed Data Peeler

algorithm uses a binary tree enumeration strategy to generate

closed n-set patterns whereas the CnS-Miner algorithm uses an n-

ary tree enumeration strategy. Our comprehensive experimental

analysis have shown that CnS-Miner algorithm outperforms

DataPeeler algorithm when the cardinality of one of the

dimensions is large in number whereas DataPeeler algorithm

outperforms CnS-Miner algorithm when more than one dimension

contain large number of elements.

ACKNOWLEDGMENT
We wish to thank the authors of DataPeeler algorithm, D-Miner

algorithm and CubeMiner algorithm for responding to our

queries.

6. REFERENCES
[1] Loïc Cerf, Jérémy Besson, Céline Robardet, and Jean-

François Boulicaut, “Closed Patterns meet n-ary relations”,

ACM Transactions on Knowledge Discovery from Data, Vol

3, Issue 1, March 2009. http://doi.acm.org/10.1145/

1497577.1497580

[2] J. Besson, C. Robardet, J.F. Boulicaut and S.

Rome,”Constraint Based Concept Mining and its Application

to Microarray Data Analysis”, Journal of Intelligent Data

Analysis, pp. 59-82, 2005.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

13

[3] Jinyan Li, Guimei Liu, Haiquan Li, Limsoon Wong,

"Maximal Biclique Subgraphs and Closed Pattern Pairs of

the Adjacency Matrix: A One-to-One Correspondence and

Mining Algorithms," IEEE Transactions on Knowledge and

Data Engineering, vol. 19, no. 12, pp. 1625-1637, Dec.

2007

[4] Ji Liping, K.L. Tan and A.K.H. Tung, ”Mining Frequent

Closed Cubes in 3D datasets,” Proc. 32nd int. conference on

very large data-bases, 2006

[5] Ji Liping, Kian-Lee Tan,K H. Tung, "Compressed

Hierarchical Mining of Frequent Closed Patterns from Dense

Data Sets," IEEE Trans. on Knowledge and Data

Engineering, Vol 19, No.9, Sept 2007.

[6] T. Uno, T. Asai, Y. Uchida, H. Arimura, "LCM: An Efficient

Algorithm for Enumerating Frequent Closed Item Sets," In

Proc. IEEE ICDM'03 Workshop FIMI'03, 2003.

[7] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal,

"Discovering Frequent Closed Itemsets for Association

Rules," Proc. 7th Int. Conf. Database Theory (ICDT'99),

pages 398-416, Jan 1999.

[8] G. Grahne, J.Zhu, "Fast Algorithms for Frequent Itemset

Mining Using FP-Trees," IEEE Transactions on Knowledge

and Data Engineering, Vol 17, No 10, pages 1347-1362,

October 2005.

[9] C. Lucchese,S. Orlando and R. Perego, "Fast and Memory

Efficient Mining of Frequent Closed Itemsets", IEEE

Transactions on Knowledge and Data Engineering, VOL 18,

No 1, pages 21-36, January 2006.

[10] G.Liu, “Supporting Efficient and Scalable Frequent Pattern

Mining,” PhD dissertation, Dept. of Computer Science.,

Hong Kong University., May 2005.

