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ABSTRACT 

We propose an algorithm to determine stable connected 

dominating sets (CDS), based on node velocities, for mobile ad 

hoc networks (MANETs). The proposed minimum velocity-based 

CDS (MinV-CDS) algorithm prefers slow-moving nodes with 

lower velocity, rather than the usual approach of preferring nodes 

with a larger number of uncovered neighbors, i.e., larger density 

(referred to as MaxD-CDS). The construction of the MinV-CDS 

starts with the inclusion of the node having the lowest velocity, 

into the CDS. Once a node is added to the CDS, all its neighbors 

are said to be covered. The covered nodes are considered in the 

increasing order of their velocity, for inclusion in the CDS. If a 

node has lower velocity and is the next candidate node to be 

considered for inclusion in the CDS, it is added to the CDS if it 

has at least one neighbor that is yet to be covered. This procedure 

is repeated until all the nodes in the network are covered. 

Simulation results illustrate that the MinV-CDS has a 

significantly longer lifetime compared to MaxD-CDS. MinV-

CDS also has a larger number of nodes and edges compared to 

MaxD-CDS and this helps to reduce the hop count as well as the 

end-to-end delay and improves the fairness of node usage.   
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Algorithms 
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1. INTRODUCTION 
A mobile Ad hoc network (MANET) is a dynamic distributed 

system of arbitrarily moving wireless nodes that operate on a 

limited battery charge. The network operates on a limited 

bandwidth and the transmission range of each node is limited. As 

a result, multi-hop communication is very common in MANETs. 

Route discovery in MANETs has been traditionally accomplished 

through a flooding-based Route-Request-Reply cycle in which all 

the wireless nodes are responsible for forwarding the Route-

Request (RREQ) messages from the source towards the 

destination and propagating the Route-Reply (RREP) messages 

on the discovered path from the destination back to the source. 

Recent studies (e.g., [1][2][3][4][5]) demonstrate the use of 

connected dominating set (CDS)-based virtual backbones to 

propagate the RREQ and RREP messages so that the routing 

control messages are exchanged only among the nodes in the 

CDS instead of being broadcast by all the nodes in the network, 

thus reducing the number of unnecessary retransmissions. 

Ad hoc networks are often represented as a unit disk graph [6], in 

which vertices represent wireless nodes and a bi-directional edge 

exists between two vertices if the corresponding nodes are within 

the transmission range of each other. A CDS is a sub graph of the 

undirected graph such that all nodes in the graph are included in 

the CDS or directly attached to a node (i.e., covered by the node) 

in the CDS. A minimum connected dominating set (MCDS) is 

the smallest CDS (in terms of number of nodes in the CDS) for 

the entire graph. For a virtual backbone-based route discovery, 

the smaller the size of the CDS, the smaller is the number of 

unnecessary retransmissions. If the RREQ packets are forwarded 

only by the nodes in the MCDS, we will have the minimum 

number of retransmissions. Unfortunately, the problem of 

determining the MCDS in an undirected graph like that of the 

unit disk graph is NP-complete. Efficient heuristics (e.g., 

[7][8][9]) that give preference to nodes with high neighborhood 

density (i.e., a larger number of uncovered neighbors) for 

inclusion in the MCDS have been proposed for wireless ad hoc 

networks. A common thread among these heuristics is to. The 

MaxD-CDS algorithm [10] studied in this paper is one such 

density-based heuristic earlier proposed by us. 

In this paper, we show that aiming for the minimum number of 

nodes for the CDS in MANETs, results in CDSs that are highly 

unstable. The CDS itself has to be frequently rediscovered and 

this adds considerable overhead to the resource-constrained 

network. Our contribution is a minimum-velocity based CDS 

construction algorithm that gives preference to include slow-

moving nodes (i.e., nodes with lower velocity) in the CDS rather 

than nodes that have high neighborhood density. The proposed 

algorithm, referred to as MinV-CDS, starts with the inclusion of 

the node having the lowest velocity, into the CDS. Once a node 

is added to the CDS, all its neighbors are said to be covered. The 

covered nodes are considered in the increasing order of their 

velocity, for inclusion in the CDS. If a node has lower velocity 

and is the next candidate node to be considered for inclusion in 

the CDS, it is added to the CDS if it has at least one neighbor 

that is yet to be covered. This procedure is repeated until all the 

nodes in the network are covered. The overall time complexity of 

the MinV-CDS algorithm is O(|E| + |V|log|V|) where |V| and |E| 

are the number of nodes and edges in the underlying ad hoc 

network graph, which could be a snapshot of the network at a 

particular time instant. A CDS is used as long as it exists. We 

outline an O(|CDS-Node-List|2 + |V|) algorithm to check the 

existence of a CDS at any particular time instant, where |CDS-

Node-List| is the number of nodes that are part of the CDS. Upon 

failure of the existing CDS, we again initiate the MinV-CDS 

algorithm to determine a new CDS. 
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We compare the performance of MinV-CDS with a maximum-

density (MaxD-CDS) based algorithm that gives preference to 

nodes that have a larger number of uncovered neighbors for 

inclusion in the CDS. Simulation results illustrate that MinV-

CDS has a significantly longer lifetime than MaxD-CDS. The 

tradeoff is an increase in the number of nodes and number of 

edges that are part of the MinV-CDS vis-à-vis MaxD-CDS. 

However, this helps the MinV-CDS to support a relatively lower 

hop count per source-destination path compared to MaxD-CDS.  

The rest of the paper is organized as follows: Section 2 reviews 

related work in the literature on stable CDSs. Section 3 describes 

our MinV-CDS algorithm and also the MaxD-CDS algorithm 

with which the former is compared to. In addition, we outline an 

algorithm to check the existence of a CDS at any time instant and 

also show an example to illustrate the working of the MinV-CDS 

and MaxD-CDS. Section 4 presents the simulation environment 

and describes the simulation results comparing the performance 

of MinV-CDS with that of MaxD-CDS. Section 5 concludes the 

paper and discusses future work. 

2. RELATED WORK 
Very few algorithms are proposed in the literature to determine a 

stable connected dominating set for MANETs. In [2], the authors 

propose a localized algorithm, called maximal independent set 

with multiple initiators (MCMIS), to construct stable virtual 

backbones. MCMIS consists of two phases: In the first phase, a 

forest consisting of multiple dominating trees rooted at multiple 

initiators is constructed. A dominating tree, rooted at an initiator 

node, comprises of a subset of the nodes in the network topology. 

Multiple dominating trees, each started by its initiator, are 

constructed in parallel. In the second phase, dominating trees, 

with overlapping branches are interconnected to form a complete 

virtual backbone. Nodes are ranked according to the tuple 

(stability, effective degree, ID) and are considered as candidate 

nodes to be initiators, in decreasing order of importance.  

A novel mobility handling algorithm proposed in [3] shortens the 

recovery time of CDS (i.e., CDS membership changes) in the 

presence of node mobility and also maintains a lower CDS size. 

In [4], the authors describe an algorithm to calculate stable CDS 

based on link-stability for MANETs. According to this algorithm, 

a link is said to be non-weak if the strength of the beacon signals 

received on that link is above a threshold. For inclusion in the 

stable CDS, nodes are considered in the decreasing order of the 

number of non-weak links associated with the node. 

In [5], the authors propose a distributed topology management 

algorithm that constructs and maintains a minimal dominating 

set (MDS) of the network. MDS members connect to form a 

CDS, used as the backbone infrastructure for network 

communication. Each node self-decides the membership of itself 

and its neighbors in the MDS based on the two-hop 

neighborhood information disseminated among neighboring 

nodes.  

In [10], we had proposed a centralized algorithm, referred to as 

OptCDSTrans, to determine a sequence of stable static connected 

dominating sets for MANETs. Algorithm OptCDSTrans operates 

according to a simple greedy principle, described as follows: 

whenever a new CDS is required at time instant t, we choose the 

longest-living CDS from time t. The above strategy when 

repeated over the duration of the simulation session yields a 

sequence of long-living stable static connected dominating sets 

such that the number of CDS transitions (change from one CDS 

to another) is the global minimum. Some of the distinguishing 

characteristics of OptCDSTrans are that the optimal number of 

CDS transitions does not depend on the underlying algorithm or 

heuristic used to determine the static CDSs and the greedy 

principle behind OptCDSTrans is very generic such that it can be 

applied to determine the stable sequence of any communication 

structure (for example, paths or trees) as long as there is a 

heuristic or algorithm to determine that particular communication 

structure in a given network graph [11]. 

3. ALGORITHMS TO DETERMINE MinV-

CDS AND MaxD-CDS 

3.1 Data Structures 
We maintain four principal data structures: 

(i) MinV-CDS-Node-List – includes all the nodes that are part 

of the minimum-velocity based CDS. 

(ii) Covered-Nodes-List – includes nodes that either in the 

MinV-CDS-Node-List or covered by a node in the MinV-

CDS-Node-List 

(iii) Uncovered-Nodes-List – includes all the nodes that are not 

covered by a node in the MinV-CDS-Node-List 

(iv) Priority-Queue – includes nodes that are in the Covered-

Nodes-List and are probable candidates for addition to the 

MinV-CDS-Node-List. This list is sorted in the decreasing 

order of the velocity of the nodes. A dequeue operation 

returns the node with the lowest velocity.  

3.2 Algorithm to Determine the Minimum 

Velocity-based Connected Dominating Set 

(MinV-CDS) 
The MinV-CDS (pseudo code in Figure 1) is primarily 

constructed as follows: The Start Node is the first node to be 

added to the MinV-CDS-Node-List. As a result of this, all the 

neighbors of the Start Node are said to be covered: removed from 

the Uncovered-Nodes-List and added to the Covered-Nodes-List 

and to the Priority-Queue. If both the Uncovered-Nodes-List and 

the Priority-Queue are not empty, we dequeue the Priority-

Queue to extract a node s that has the lowest velocity and is not 

yet in the MinV-CDS-Node-List. If there is at least one neighbor 

node u of node s that is yet to be covered, all such nodes u are 

removed from the Uncovered-Nodes-List and added to the 

Covered-Nodes-List and to the Priority-Queue; node s is also 

added to the MinV-CDS-Node-List. If all neighbors of node s are 

already covered, then node s is not added to the MinV-CDS-

Node-List. The above procedure is repeated until the Uncovered-

Nodes-List becomes empty or the Priority-Queue becomes 

empty. If the Uncovered-Nodes-List becomes empty, then all the 

nodes in the network are covered. If the Priority-Queue becomes 

empty and the Uncovered-Nodes-List has at least one node, then 

the underlying network is considered to be disconnected. During 

a dequeue operation, if two or more nodes have the same lowest 

velocity, we choose the node with the larger number of 

uncovered neighbors. If the tie cannot be still broken, we 

randomly choose to dequeue one of these candidate nodes. 
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Input: Snapshot of the Network Graph G = (V, E), where V is 

the set of vertices and E is the set of edges 

Auxiliary Variables and Functions:  

MinV-CDS-Node-List, Covered-Nodes-List, Uncovered-Nodes-

List, Priority-Queue, minVelocity 

Dequeue(Priority-Queue) – Extracts the node with the minimum 

velocity from the queue – if two or more nodes have the same 

minimum velocity, then a node is randomly chosen and extracted 

from the queue. 

Neighbors(s) – List of neighbors of node s in graph G 

velocity(u) – the velocity (in m/s) of node u 

startNode – the first node to be added to MinV-CDS-Node-List 

Output: MinV-CDS-Node-List // contains the list of nodes part 

of  

                                               the minimum velocity – based 

CDS. 

Initialization: 

MinV-CDS-Node-List = Φ; Covered-Nodes-List = Φ; Priority-

Queue = Φ; Uncovered-Nodes-List = V 

Begin Construction of MinV-CDS      

     // To Determine the Start Node     

    minVelocity = ∞ 

    for every vertex u V do      

       if (minVelocity > velocity(u)) then 

          minVelocity = velocity(u) 

          startNode = u 

       end if 

    end for 

    // Initializing the data structures 

     MinV-CDS-Node-List = {startNode} 

     Priority-Queue = {startNode} 

     Covered-Nodes-List = {startNode} 

     Uncovered-Nodes-List = Uncovered-Nodes-List – 

{startNode} 

    // Constructing the MinV-CDS-Node-List 

    while (Uncovered-Nodes-List ≠ Φ and Priority-Queue ≠ Φ) do    

        node s = Dequeue(Priority-Queue)              

        alreadyCovered = true  // to test whether all neighbors of   

                                     node s have already been covered or not 

          for all node u Neighbors(s) do 

              if (u Uncovered-Nodes-List) then 

                  alreadyCovered = false 

                  Uncovered-Nodes-List = Uncovered-Nodes-List – 

{u} 

                  Covered-Nodes-List = Covered-Nodes-List U {u}  

                  Priority-Queue = Priority-Queue U {u} 

              end if       

          end for 

          if (alreadyCovered = false) then 

                 MinV-CDS-Node-List = MinV-CDS-Node-List U {s} 

           end if 

        end while      

   return MinV-CDS-Node-List 

End Construction of MinV-CDS 

Figure 1. Pseudo Code for MinV-CDS Construction 

Algorithm 

3.3 Algorithm to Determine the Maximum 

Density-based Connected Dominating Set 

(MaxD-CDS) 
The MaxD-CDS algorithm works similar to that of the MinV-

CDS algorithm. The major difference is that the criterion for 

including nodes in the CDS is the number of uncovered 

neighbors and not the node velocity. The Start Node is the node 

with the maximum number of uncovered neighbors. In 

subsequent iterations, we dequeue the node with the maximum 

number of uncovered neighbors from the Priority-Queue. Ties 

are broken arbitrarily. The procedures to update the Covered-

Nodes-List and the Uncovered-Nodes-List are the same as in 

MinV-CDS.   

3.4 Time Complexity of MinV-CDS and 

MaxD-CDS 
If we use a binary heap for maintaining the Priority-Queue of |V| 

nodes, each dequeue and enqueue operation can be completed in 

O(log|V|) time; otherwise if the Priority-Queue is simply 

maintained as an array, each dequeue and enqueue operation 

takes O(|V|) time. Overall, all the |V| nodes and their associated 

|E| edges in the underlying network have to be explored for 

inclusion in the CDS. Assuming the Priority-Queue is 

implemented as a binary heap (as in our simulations), the overall 

time complexity of both the MinV-CDS and MaxD-CDS 

algorithms is O(|E| + |V|*log |V|). 

3.5 Algorithm to Check the Existence of a 

CDS at any Time Instant 
The algorithm to check the existence of a CDS (applicable for 

both MinV-CDS and MaxD-CDS) at a particular time instant t 

works as follows: Given the currently known list of nodes in the 

CDS (referred to as CDS-Node-List), we first construct the list of 

edges (referred to as CDS-Edge-List) that may exist at time 

instant t between any pair of nodes in the CDS-Node-List. An 

edge exists between any two nodes if and only if the Euclidean 

distance between the co-ordinates of these two nodes is less than 

or equal to the transmission range per node. We run the well-

known Breadth First Search (BFS) algorithm [12] on the CDS-

Node-List and CDS-Edge-List and examine whether the 

underlying CDS is connected or not. If the CDS is not connected, 

the algorithm returns false and a new run of the CDS 

construction algorithm is 
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               Figure 2.1. Initial Network                            Figure 2.2. Iteration # 1                               Figure 2.3. Iteration # 2 

 

             

                 Figure 2.4. Iteration # 3                              Figure 2.5. Final MinV-CDS                      Figure 2.6. Edge List of the 

                                                                                       (at the end of Iteration # 13)                              Final MinV-CDS 

Figure 2. Example to Illustrate the Construction of the Minimum Velocity-based CDS (MinV-CDS) 

 

             

               Figure 3.1. Initial Network                             Figure 3.2. Iteration # 1                               Figure 3.3. Iteration # 2 

 

             

                 Figure 3.4. Iteration # 3                            Figure 3.5. Final MinV-CDS                       Figure 3.6. Edge List of the 

                                                                                      (at the end of Iteration # 9)                               Final MaxD-CDS 

Figure 3. Example to Illustrate the Construction of the Maximum Density-based CDS (MaxD-CDS) 
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initiated. If the CDS is connected, we then test whether every 

non-CDS node in the network is a neighbor of at least one CDS 

node. If there exists at least one non-CDS node that is not a 

neighbor of any CDS node at time t, the algorithm returns false – 

necessitating the instantiation of the appropriate CDS 

construction algorithm. If every non-CDS node has at least one 

CDS node as neighbor, the algorithm returns true – the current 

CDS covers the entire network and there is no need to determine 

a new CDS. 

3.6 Example to Illustrate the Construction of 

MinV-CDS and MaxD-CDS 
Figures 2 and 3 illustrate examples to demonstrate the working 

of the MinV-CDS and MaxD-CDS algorithms respectively. In 

these figures, each circle represents a node. The integer outside 

the circle represents the node ID and the integer inside the circle 

represents the number of uncovered neighbors of the 

corresponding node. The real-number inside the circle represents 

the velocity (in m/s) for the particular node. The nodes that are 

part of the CDS have their circles bold. We shade the circles of 

nodes that are covered, but are not part of the CDS. The circles 

of nodes that are not yet covered are neither shaded nor made 

bold.  

On the 24-node network example considered in Figures 2 and 3, 

it takes respectively 13 and 9 iterations for the MinV-CDS and 

MaxD-CDS algorithms to find the CDS. The MinV-CDS 

includes 14 nodes and 16 edges; whereas the MaxD-CDS 

includes 9 nodes and 9 edges. Similar results have also been 

observed in our simulations. The MinV-CDS includes a 

relatively larger number of nodes and edges compared to the 

MaxD-CDS and this helps the former to sustain for a relatively 

longer lifetime as well as a lower hop count per source-

destination path. 

4. SIMULATIONS 
All of the simulations are conducted in a discrete-event simulator 

developed by the author in Java. This simulator has also been 

successfully used in recent studies (e.g., [13][14][15]). The 

network topology is of dimensions 1000m x 1000m. The network 

density is represented as a measure of the average neighborhood 

size, which is calculated as follows: N*πR2/A, where N is the 

number of nodes in the network, R is the transmission range of a 

node and A is the network area. The transmission range per node 

used in all of our simulations is 250 m. With a fixed 

transmission range and network area, the network density is 

varied from low to moderate and high by altering the number of 

nodes. We employ 50, 100 and 150 nodes to represent networks 

of low (average of 9.8 neighbors per node), moderate (average of 

19.6 neighbors per node) and high (average of 29.4 neighbors per 

node) respectively. The network connectivity observed for these 

three networks at different conditions of node mobility is 

illustrated in Figure 4. 

We use the Random Waypoint mobility model [16], according to 

which each node starts moving from an arbitrary location to a 

randomly selected destination with a randomly chosen speed in 

the range [vmin .. vmax]. Once the destination is reached, the node 

stays there for a pause time and then continues to move to 

another randomly selected destination with a different speed. We 

use vmin = 0 and pause time of a node is also set to 0. The values 

of vmax used are 5, 25 and 50 m/s representing low mobility, 

moderate mobility and high mobility levels respectively. 

 

Figure 4. Average Percentage Network Connectivity 

  

We obtain a centralized view of the network topology by 

generating mobility trace files for the simulation time (1000 

seconds) under each of the above conditions. We sample the 

network topology for every 0.25 seconds. Two nodes a and b are 

assumed to have a bi-directional link at time t, if the Euclidean 

distance between them at time t (derived using the locations of 

the nodes from the mobility trace file) is within the wireless 

transmission range of the nodes. If a CDS does not exist for a 

particular time instant, we take a snapshot of the network 

topology at that time instant and run the appropriate CDS 

algorithm.  

4.1 Performance Metrics 
We measure the following performance metrics. Each data point 

in Figures 4 – 8 is an average computed over 10 mobility trace 

files and 15 s-d pairs from each of the mobility trace files. The 

starting time for each s-d session is uniformly distributed 

between 1 to 20 seconds. 

 CDS Node Size: This is a time-averaged value of the number 

of nodes that are part of the CDS, determined by the MaxD-

CDS and MinV-CDS algorithms. For example, if there 

exists a CDS of size 20 nodes, 23 nodes and 18 nodes in the 

network for 5, 10 and 5 seconds respectively, then the 

average CDS Node Size is (20*5 + 23*10 + 18*5)/(5 + 10 + 

5) = 21.0 and not (20 + 23 + 18)/3 = 20.3. 

 CDS Edge Size: This is a time-averaged value of the number 

of edges connecting the nodes that are part of the CDS, 

determined by the MaxD-CDS and MinV-CDS algorithms. 

 CDS Lifetime: This is the time elapsed between the 

discovery of a CDS and its disconnection, averaged over the 

entire duration of the simulation. 

 Hop Count per Path: This is the time-averaged hop count of 

individual source-destination (s-d) paths involving the CDS 

nodes as source, intermediate and destination nodes, 

averaged across all s-d paths over the entire simulation 

time. 

4.2 CDS Node Size 
The MinV-CDS, based on node velocity, includes more nodes 

(refer Figure 5) compared to the MaxD-CDS, based on node 

density. The maximum density-based CDS attempts to minimize 
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the number of nodes that are part of the CDS as it gives 

preference to nodes that have a larger number of uncovered 

neighbors over nodes that have a smaller number of uncovered 

neighbors. But, the minimum velocity-based CDS does not give 

much importance to the number of uncovered neighbors of a 

node before including the node in the CDS-Node-List.   

            

                      Figure 5.1. vmax = 5 m/s                               Figure 5.2. vmax = 25 m/s                             Figure 5.3. vmax = 50 m/s 

Figure 5. CDS Node Size – Average Number of Nodes per MaxD-CDS and MinV-CDS 

 

            

                     Figure 6.1. vmax = 5 m/s                                Figure 6.2. vmax = 25 m/s                             Figure 6.3. vmax = 50 m/s 

Figure 6. CDS Edge Size – Average Number of Edges per MaxD-CDS and MinV-CDS 

 

               

                     Figure 7.1. vmax = 5 m/s                                  Figure 7.2. vmax = 25 m/s                             Figure 7.3. vmax = 50 m/s 

Figure 7. Average Lifetime per MaxD-CDS and MinV-CDS 

 

                

                      Figure 8.1. vmax = 5 m/s                                Figure 8.2. vmax = 25 m/s                               Figure 8.3. vmax = 50 m/s 

Figure 8. Average Hop Count per Path in a MaxD-CDS and MinV-CDS 

 

If a node has a lower velocity and is the next candidate node to 

be considered for inclusion (when the already covered nodes are 

considered in the increasing order of their velocity) in the CDS-

Node-List, the low velocity node is added to the CDS-Node-List 

if it has at least one neighbor that is yet to be covered. As a 

result, the number of nodes in the CDS-Node-List is relatively 

high for the CDS based on minimum velocity. 

With respect to the magnitude of the difference in the number of 

nodes in the CDS-Node-List, we observe that the Node Size for a 

MinV-CDS is 3.3 (low network density) to 5.8 (high network 

density) times larger than that of the Node Size for a MaxD-

CDS. In the case of a MaxD-CDS, for fixed node mobility, as we 

increase node density from low to high, there is only at most a 

10% increase in the Node Size. On the other hand, for the MinV-

CDS, for fixed node mobility, as we increase the node density 

from low to high, the Node Size can increase as large as by 

190%. This can be attributed to the relative insensitivity of the 

MinV-CDS based algorithm to consider the number of uncovered 

neighbors of a node before including the node in the CDS. A 

long-living stable CDS is eventually formed by including more 

nodes to be part of the CDS. While, even if the network density 
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is tripled, the MaxD-CDS algorithm manages to cover all the 

nodes in the high-density network by incurring only at most a 

10% increase in the CDS Node Size, compared to that for a low-

density network. For a given node density, as we increase the 

node mobility from low to high, the Node Size for a MaxD-CDS 

does not change appreciably, whereas the Node Size for a MinV-

CDS changes by at most 15%. 

4.3 CDS Edge Size 
The MaxD-CDS algorithm, in its attempt to minimize the CDS 

Node Size, chooses CDS nodes that are far away from each other 

such that each node covers as many uncovered neighbors as 

possible. As the CDS nodes are more likely to be away from each 

other, spanning the entire network, the number of edges (Edge 

Size) between the MaxD-CDS nodes is very low. On the other 

hand, since the MinV-CDS algorithm incurs a larger Node Size 

because of its relative insensitivity to the number of uncovered 

neighbors of a node, there is a corresponding increase in the 

number of edges (refer Figure 6) between these CDS nodes.  

With respect to the magnitude of the difference in the number of 

edges among the CDS nodes, we observe that the Edge Size for a 

MinV-CDS is 12.4 (low network density) to 46.0 (high network 

density) times larger than that of the Edge Size for a MaxD-CDS. 

In the case of a MaxD-CDS, for fixed node mobility, as we 

increase the node density from low to high, there is only at most 

a 7% increase in the Edge Size. On the other hand, for the 

MinV-CDS, at fixed node mobility, as we increase the node 

density from low to high, the Edge Size increases as large as by 

400%. This can be attributed to the huge increase (as large as by 

190%) in the MinV-CDS Node Size, with increase in network 

density. The increase in the number of edges and nodes 

significantly contribute to the increase in the MinV-CDS lifetime 

(refer Section 4.4) as the network density is increased. For a 

given node density, as we increase the node mobility from low to 

high, the Edge Size for a MaxD-CDS does not change 

appreciably, whereas the Edge Size for a MinV-CDS also 

changes by at most 40%. 

4.4 CDS Lifetime 
In the case of MinV-CDS, the relatively larger CDS Node Size 

and Edge Size significantly contribute to the lifetime of the CDS 

(refer Figure 7). As the constituent nodes of the MinV-CDS are 

chosen based on the minimum velocity metric, the edges between 

the CDS nodes are bound to exist for a relatively longer time and 

the connectivity of the nodes that are part of the MinV-CDS is 

likely to be maintained for a longer time. On the other hand, the 

MaxD-CDS algorithm chooses nodes that are far away from each 

other (but still maintain an edge between them) as part of the 

CDS. The edges between such nodes are likely to fail sooner, 

leading to loss of connectivity between the nodes that are part of 

the MaxD-CDS. We thus observe a tradeoff between the CDS 

Node Size and the CDS Lifetime. If we meticulously choose 

slow-moving nodes to be part of the CDS, the lifetime of the 

CDS could be significantly improved, at the expense of the Node 

Size. On the other hand, if we aim to select a CDS with the 

minimum number of nodes required to cover all the nodes in the 

network, the lifetime of the CDS would be significantly lower. 

With respect to the magnitude, the lifetime per MinV-CDS is 6 

(low network density) to 25 (high network density) times more 

than that of the MaxD-CDS. The relatively high stability of 

MinV-CDS at high network density can be attributed to the 

inclusion of a significantly larger number of slow-moving nodes 

and their associated edges as part of the CDS. The relatively 

poor stability of MaxD-CDS at high network density can be 

attributed to the need to cover a larger number of nodes in the 

network without any significant increase in the number of nodes 

that are part of the CDS. For both MaxD-CDS and MinV-CDS, 

for a fixed network density, as we increase node mobility from 

low (vmax = 5 m/s) to moderate (vmax = 25 m/s), and from low 

(vmax = 5 m/s) to high (vmax = 50 m/s), the lifetime per CDS 

decreases by a factor of 3.3 and 5.3 respectively.  

4.5 Hop Count per Path 
The average hop count per path (refer Figure 8) between an s-d 

pair through the nodes that are part of the MaxD-CDS is 1.06 (at 

low network density) to 1.15 (at moderate and high network 

density) more than that incurred with MinV-CDS. The relatively 

lower hop count per s-d path, in the case of a MinV-CDS, can be 

attributed to the larger CDS Node Size and the presence of a 

larger number of edges connecting the CDS nodes. Hence, the 

MinV-CDS can have several s-d paths between any two nodes s 

and d in the network and we choose the minimum hop s-d path 

among them while computing the average hop count per path. On 

the other hand, with fewer edges in the MaxD-CDS, the paths 

between any two nodes through the nodes of the MaxD-CDS will 

have a relatively larger hop count.  

The consequences of having larger hop count per path with a 

fewer number of nodes per MaxD-CDS are a larger end-to-end 

delay per data packet and unfairness of node usage. Nodes that 

are path of the MaxD-CDS could be relatively heavily used 

compared to the nodes that are not part of the MaxD-CDS. This 

could lead to premature failure of critical nodes, mainly nodes 

lying in the center of the network, resulting in reduction in 

network connectivity, especially in low-density networks. With 

MinV-CDS, as multiple nodes are part of the CDS, the packet 

forwarding load can be distributed across several nodes and this 

could enhance the fairness of node usage and help to incur a 

relatively lower end-to-end delay per data packet. 

5. CONCLUSIONS AND FUTURE WORK 
Ours is the first work to formulate an algorithm to determine 

stable connected dominating sets for mobile ad hoc networks, 

exclusively based on node velocity. Through extensive 

simulations, we demonstrate that the proposed algorithm, MinV-

CDS, can determine connected dominating sets that have a 

significantly longer lifetime compared to that of the maximum 

density-based MaxD-CDS algorithm. The MinV-CDS also has a 

relatively larger number of constituent nodes and edges and this 

helps to reduce the hop count per path as well as the end-to-end 

delay and improves the fairness of node usage. We thus observe 

a tradeoff between the CDS Node Size and the CDS Lifetime. If 

we meticulously choose slow-moving nodes to be part of the 

CDS, the lifetime of the CDS could be significantly improved, at 

the expense of the Node Size. On the other hand, if we aim to 

choose a CDS with the minimum number of nodes required to 
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cover all the nodes in the network, the lifetime of the CDS would 

be significantly lower.  

In terms of magnitude, the lifetime per MinV-CDS is 6 (low 

network density) to 25 (high network density) times more than 

that of MaxD-CDS. The Node Size for a MinV-CDS is 3.3 (low 

network density) to 5.8 (high network density) times larger than 

that of the Node Size for a MaxD-CDS. The Edge Size for a 

MinV-CDS is 12.4 (low network density) to 46.0 (high network 

density) times larger than that of the Edge Size for a MaxD-CDS. 

The average hop count per path between an s-d pair through the 

nodes that are part of the MaxD-CDS is 1.06 (at low network 

density) to 1.15 (at moderate and high network density) more 

than that incurred with MinV-CDS.  

As future work, we will study the performance of MinV-CDS 

along with that of the theoretically optimal OptCDSTrans 

algorithm and compare the lifetimes of the minimum velocity-

based connected dominating sets and the stable mobile connected 

dominating sets. Future work would also involve developing a 

distributed implementation of the MinV-CDS algorithm and 

explore its use as a virtual backbone for unicast, multicast and 

broadcast communication in MANETs. 
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