
IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

89

Use of Minimum Node Velocity Based Stable Connected

Dominating Sets for Mobile Ad hoc Networks

Natarajan Meghanathan
Jackson State University

P. O. Box 18839, 1400 J. Lynch St
Jackson, MS 39217, USA

ABSTRACT

We propose an algorithm to determine stable connected

dominating sets (CDS), based on node velocities, for mobile ad

hoc networks (MANETs). The proposed minimum velocity-based

CDS (MinV-CDS) algorithm prefers slow-moving nodes with

lower velocity, rather than the usual approach of preferring nodes

with a larger number of uncovered neighbors, i.e., larger density

(referred to as MaxD-CDS). The construction of the MinV-CDS

starts with the inclusion of the node having the lowest velocity,

into the CDS. Once a node is added to the CDS, all its neighbors

are said to be covered. The covered nodes are considered in the

increasing order of their velocity, for inclusion in the CDS. If a

node has lower velocity and is the next candidate node to be

considered for inclusion in the CDS, it is added to the CDS if it

has at least one neighbor that is yet to be covered. This procedure

is repeated until all the nodes in the network are covered.

Simulation results illustrate that the MinV-CDS has a

significantly longer lifetime compared to MaxD-CDS. MinV-

CDS also has a larger number of nodes and edges compared to

MaxD-CDS and this helps to reduce the hop count as well as the

end-to-end delay and improves the fairness of node usage.

General Terms

Algorithms

Keywords

Connected Dominating Set, Mobile Ad hoc Network, Node

Velocity, Density

1. INTRODUCTION
A mobile Ad hoc network (MANET) is a dynamic distributed

system of arbitrarily moving wireless nodes that operate on a

limited battery charge. The network operates on a limited

bandwidth and the transmission range of each node is limited. As

a result, multi-hop communication is very common in MANETs.

Route discovery in MANETs has been traditionally accomplished

through a flooding-based Route-Request-Reply cycle in which all

the wireless nodes are responsible for forwarding the Route-

Request (RREQ) messages from the source towards the

destination and propagating the Route-Reply (RREP) messages

on the discovered path from the destination back to the source.

Recent studies (e.g., [1][2][3][4][5]) demonstrate the use of

connected dominating set (CDS)-based virtual backbones to

propagate the RREQ and RREP messages so that the routing

control messages are exchanged only among the nodes in the

CDS instead of being broadcast by all the nodes in the network,

thus reducing the number of unnecessary retransmissions.

Ad hoc networks are often represented as a unit disk graph [6], in

which vertices represent wireless nodes and a bi-directional edge

exists between two vertices if the corresponding nodes are within

the transmission range of each other. A CDS is a sub graph of the

undirected graph such that all nodes in the graph are included in

the CDS or directly attached to a node (i.e., covered by the node)

in the CDS. A minimum connected dominating set (MCDS) is

the smallest CDS (in terms of number of nodes in the CDS) for

the entire graph. For a virtual backbone-based route discovery,

the smaller the size of the CDS, the smaller is the number of

unnecessary retransmissions. If the RREQ packets are forwarded

only by the nodes in the MCDS, we will have the minimum

number of retransmissions. Unfortunately, the problem of

determining the MCDS in an undirected graph like that of the

unit disk graph is NP-complete. Efficient heuristics (e.g.,

[7][8][9]) that give preference to nodes with high neighborhood

density (i.e., a larger number of uncovered neighbors) for

inclusion in the MCDS have been proposed for wireless ad hoc

networks. A common thread among these heuristics is to. The

MaxD-CDS algorithm [10] studied in this paper is one such

density-based heuristic earlier proposed by us.

In this paper, we show that aiming for the minimum number of

nodes for the CDS in MANETs, results in CDSs that are highly

unstable. The CDS itself has to be frequently rediscovered and

this adds considerable overhead to the resource-constrained

network. Our contribution is a minimum-velocity based CDS

construction algorithm that gives preference to include slow-

moving nodes (i.e., nodes with lower velocity) in the CDS rather

than nodes that have high neighborhood density. The proposed

algorithm, referred to as MinV-CDS, starts with the inclusion of

the node having the lowest velocity, into the CDS. Once a node

is added to the CDS, all its neighbors are said to be covered. The

covered nodes are considered in the increasing order of their

velocity, for inclusion in the CDS. If a node has lower velocity

and is the next candidate node to be considered for inclusion in

the CDS, it is added to the CDS if it has at least one neighbor

that is yet to be covered. This procedure is repeated until all the

nodes in the network are covered. The overall time complexity of

the MinV-CDS algorithm is O(|E| + |V|log|V|) where |V| and |E|

are the number of nodes and edges in the underlying ad hoc

network graph, which could be a snapshot of the network at a

particular time instant. A CDS is used as long as it exists. We

outline an O(|CDS-Node-List|2 + |V|) algorithm to check the

existence of a CDS at any particular time instant, where |CDS-

Node-List| is the number of nodes that are part of the CDS. Upon

failure of the existing CDS, we again initiate the MinV-CDS

algorithm to determine a new CDS.

IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

90

We compare the performance of MinV-CDS with a maximum-

density (MaxD-CDS) based algorithm that gives preference to

nodes that have a larger number of uncovered neighbors for

inclusion in the CDS. Simulation results illustrate that MinV-

CDS has a significantly longer lifetime than MaxD-CDS. The

tradeoff is an increase in the number of nodes and number of

edges that are part of the MinV-CDS vis-à-vis MaxD-CDS.

However, this helps the MinV-CDS to support a relatively lower

hop count per source-destination path compared to MaxD-CDS.

The rest of the paper is organized as follows: Section 2 reviews

related work in the literature on stable CDSs. Section 3 describes

our MinV-CDS algorithm and also the MaxD-CDS algorithm

with which the former is compared to. In addition, we outline an

algorithm to check the existence of a CDS at any time instant and

also show an example to illustrate the working of the MinV-CDS

and MaxD-CDS. Section 4 presents the simulation environment

and describes the simulation results comparing the performance

of MinV-CDS with that of MaxD-CDS. Section 5 concludes the

paper and discusses future work.

2. RELATED WORK
Very few algorithms are proposed in the literature to determine a

stable connected dominating set for MANETs. In [2], the authors

propose a localized algorithm, called maximal independent set

with multiple initiators (MCMIS), to construct stable virtual

backbones. MCMIS consists of two phases: In the first phase, a

forest consisting of multiple dominating trees rooted at multiple

initiators is constructed. A dominating tree, rooted at an initiator

node, comprises of a subset of the nodes in the network topology.

Multiple dominating trees, each started by its initiator, are

constructed in parallel. In the second phase, dominating trees,

with overlapping branches are interconnected to form a complete

virtual backbone. Nodes are ranked according to the tuple

(stability, effective degree, ID) and are considered as candidate

nodes to be initiators, in decreasing order of importance.

A novel mobility handling algorithm proposed in [3] shortens the

recovery time of CDS (i.e., CDS membership changes) in the

presence of node mobility and also maintains a lower CDS size.

In [4], the authors describe an algorithm to calculate stable CDS

based on link-stability for MANETs. According to this algorithm,

a link is said to be non-weak if the strength of the beacon signals

received on that link is above a threshold. For inclusion in the

stable CDS, nodes are considered in the decreasing order of the

number of non-weak links associated with the node.

In [5], the authors propose a distributed topology management

algorithm that constructs and maintains a minimal dominating

set (MDS) of the network. MDS members connect to form a

CDS, used as the backbone infrastructure for network

communication. Each node self-decides the membership of itself

and its neighbors in the MDS based on the two-hop

neighborhood information disseminated among neighboring

nodes.

In [10], we had proposed a centralized algorithm, referred to as

OptCDSTrans, to determine a sequence of stable static connected

dominating sets for MANETs. Algorithm OptCDSTrans operates

according to a simple greedy principle, described as follows:

whenever a new CDS is required at time instant t, we choose the

longest-living CDS from time t. The above strategy when

repeated over the duration of the simulation session yields a

sequence of long-living stable static connected dominating sets

such that the number of CDS transitions (change from one CDS

to another) is the global minimum. Some of the distinguishing

characteristics of OptCDSTrans are that the optimal number of

CDS transitions does not depend on the underlying algorithm or

heuristic used to determine the static CDSs and the greedy

principle behind OptCDSTrans is very generic such that it can be

applied to determine the stable sequence of any communication

structure (for example, paths or trees) as long as there is a

heuristic or algorithm to determine that particular communication

structure in a given network graph [11].

3. ALGORITHMS TO DETERMINE MinV-

CDS AND MaxD-CDS

3.1 Data Structures
We maintain four principal data structures:

(i) MinV-CDS-Node-List – includes all the nodes that are part

of the minimum-velocity based CDS.

(ii) Covered-Nodes-List – includes nodes that either in the

MinV-CDS-Node-List or covered by a node in the MinV-

CDS-Node-List

(iii) Uncovered-Nodes-List – includes all the nodes that are not

covered by a node in the MinV-CDS-Node-List

(iv) Priority-Queue – includes nodes that are in the Covered-

Nodes-List and are probable candidates for addition to the

MinV-CDS-Node-List. This list is sorted in the decreasing

order of the velocity of the nodes. A dequeue operation

returns the node with the lowest velocity.

3.2 Algorithm to Determine the Minimum

Velocity-based Connected Dominating Set

(MinV-CDS)
The MinV-CDS (pseudo code in Figure 1) is primarily

constructed as follows: The Start Node is the first node to be

added to the MinV-CDS-Node-List. As a result of this, all the

neighbors of the Start Node are said to be covered: removed from

the Uncovered-Nodes-List and added to the Covered-Nodes-List

and to the Priority-Queue. If both the Uncovered-Nodes-List and

the Priority-Queue are not empty, we dequeue the Priority-

Queue to extract a node s that has the lowest velocity and is not

yet in the MinV-CDS-Node-List. If there is at least one neighbor

node u of node s that is yet to be covered, all such nodes u are

removed from the Uncovered-Nodes-List and added to the

Covered-Nodes-List and to the Priority-Queue; node s is also

added to the MinV-CDS-Node-List. If all neighbors of node s are

already covered, then node s is not added to the MinV-CDS-

Node-List. The above procedure is repeated until the Uncovered-

Nodes-List becomes empty or the Priority-Queue becomes

empty. If the Uncovered-Nodes-List becomes empty, then all the

nodes in the network are covered. If the Priority-Queue becomes

empty and the Uncovered-Nodes-List has at least one node, then

the underlying network is considered to be disconnected. During

a dequeue operation, if two or more nodes have the same lowest

velocity, we choose the node with the larger number of

uncovered neighbors. If the tie cannot be still broken, we

randomly choose to dequeue one of these candidate nodes.

IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

91

Input: Snapshot of the Network Graph G = (V, E), where V is

the set of vertices and E is the set of edges

Auxiliary Variables and Functions:

MinV-CDS-Node-List, Covered-Nodes-List, Uncovered-Nodes-

List, Priority-Queue, minVelocity

Dequeue(Priority-Queue) – Extracts the node with the minimum

velocity from the queue – if two or more nodes have the same

minimum velocity, then a node is randomly chosen and extracted

from the queue.

Neighbors(s) – List of neighbors of node s in graph G

velocity(u) – the velocity (in m/s) of node u

startNode – the first node to be added to MinV-CDS-Node-List

Output: MinV-CDS-Node-List // contains the list of nodes part

of

 the minimum velocity – based

CDS.

Initialization:

MinV-CDS-Node-List = Φ; Covered-Nodes-List = Φ; Priority-

Queue = Φ; Uncovered-Nodes-List = V

Begin Construction of MinV-CDS

 // To Determine the Start Node

 minVelocity = ∞

 for every vertex u V do

 if (minVelocity > velocity(u)) then

 minVelocity = velocity(u)

 startNode = u

 end if

 end for

 // Initializing the data structures

 MinV-CDS-Node-List = {startNode}

 Priority-Queue = {startNode}

 Covered-Nodes-List = {startNode}

 Uncovered-Nodes-List = Uncovered-Nodes-List –

{startNode}

 // Constructing the MinV-CDS-Node-List

 while (Uncovered-Nodes-List ≠ Φ and Priority-Queue ≠ Φ) do

 node s = Dequeue(Priority-Queue)

 alreadyCovered = true // to test whether all neighbors of

 node s have already been covered or not

 for all node u Neighbors(s) do

 if (u Uncovered-Nodes-List) then

 alreadyCovered = false

 Uncovered-Nodes-List = Uncovered-Nodes-List –

{u}

 Covered-Nodes-List = Covered-Nodes-List U {u}

 Priority-Queue = Priority-Queue U {u}

 end if

 end for

 if (alreadyCovered = false) then

 MinV-CDS-Node-List = MinV-CDS-Node-List U {s}

 end if

 end while

 return MinV-CDS-Node-List

End Construction of MinV-CDS

Figure 1. Pseudo Code for MinV-CDS Construction

Algorithm

3.3 Algorithm to Determine the Maximum

Density-based Connected Dominating Set

(MaxD-CDS)
The MaxD-CDS algorithm works similar to that of the MinV-

CDS algorithm. The major difference is that the criterion for

including nodes in the CDS is the number of uncovered

neighbors and not the node velocity. The Start Node is the node

with the maximum number of uncovered neighbors. In

subsequent iterations, we dequeue the node with the maximum

number of uncovered neighbors from the Priority-Queue. Ties

are broken arbitrarily. The procedures to update the Covered-

Nodes-List and the Uncovered-Nodes-List are the same as in

MinV-CDS.

3.4 Time Complexity of MinV-CDS and

MaxD-CDS
If we use a binary heap for maintaining the Priority-Queue of |V|

nodes, each dequeue and enqueue operation can be completed in

O(log|V|) time; otherwise if the Priority-Queue is simply

maintained as an array, each dequeue and enqueue operation

takes O(|V|) time. Overall, all the |V| nodes and their associated

|E| edges in the underlying network have to be explored for

inclusion in the CDS. Assuming the Priority-Queue is

implemented as a binary heap (as in our simulations), the overall

time complexity of both the MinV-CDS and MaxD-CDS

algorithms is O(|E| + |V|*log |V|).

3.5 Algorithm to Check the Existence of a

CDS at any Time Instant
The algorithm to check the existence of a CDS (applicable for

both MinV-CDS and MaxD-CDS) at a particular time instant t

works as follows: Given the currently known list of nodes in the

CDS (referred to as CDS-Node-List), we first construct the list of

edges (referred to as CDS-Edge-List) that may exist at time

instant t between any pair of nodes in the CDS-Node-List. An

edge exists between any two nodes if and only if the Euclidean

distance between the co-ordinates of these two nodes is less than

or equal to the transmission range per node. We run the well-

known Breadth First Search (BFS) algorithm [12] on the CDS-

Node-List and CDS-Edge-List and examine whether the

underlying CDS is connected or not. If the CDS is not connected,

the algorithm returns false and a new run of the CDS

construction algorithm is

IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

92

 Figure 2.1. Initial Network Figure 2.2. Iteration # 1 Figure 2.3. Iteration # 2

 Figure 2.4. Iteration # 3 Figure 2.5. Final MinV-CDS Figure 2.6. Edge List of the

 (at the end of Iteration # 13) Final MinV-CDS

Figure 2. Example to Illustrate the Construction of the Minimum Velocity-based CDS (MinV-CDS)

 Figure 3.1. Initial Network Figure 3.2. Iteration # 1 Figure 3.3. Iteration # 2

 Figure 3.4. Iteration # 3 Figure 3.5. Final MinV-CDS Figure 3.6. Edge List of the

 (at the end of Iteration # 9) Final MaxD-CDS

Figure 3. Example to Illustrate the Construction of the Maximum Density-based CDS (MaxD-CDS)

IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

93

initiated. If the CDS is connected, we then test whether every

non-CDS node in the network is a neighbor of at least one CDS

node. If there exists at least one non-CDS node that is not a

neighbor of any CDS node at time t, the algorithm returns false –

necessitating the instantiation of the appropriate CDS

construction algorithm. If every non-CDS node has at least one

CDS node as neighbor, the algorithm returns true – the current

CDS covers the entire network and there is no need to determine

a new CDS.

3.6 Example to Illustrate the Construction of

MinV-CDS and MaxD-CDS
Figures 2 and 3 illustrate examples to demonstrate the working

of the MinV-CDS and MaxD-CDS algorithms respectively. In

these figures, each circle represents a node. The integer outside

the circle represents the node ID and the integer inside the circle

represents the number of uncovered neighbors of the

corresponding node. The real-number inside the circle represents

the velocity (in m/s) for the particular node. The nodes that are

part of the CDS have their circles bold. We shade the circles of

nodes that are covered, but are not part of the CDS. The circles

of nodes that are not yet covered are neither shaded nor made

bold.

On the 24-node network example considered in Figures 2 and 3,

it takes respectively 13 and 9 iterations for the MinV-CDS and

MaxD-CDS algorithms to find the CDS. The MinV-CDS

includes 14 nodes and 16 edges; whereas the MaxD-CDS

includes 9 nodes and 9 edges. Similar results have also been

observed in our simulations. The MinV-CDS includes a

relatively larger number of nodes and edges compared to the

MaxD-CDS and this helps the former to sustain for a relatively

longer lifetime as well as a lower hop count per source-

destination path.

4. SIMULATIONS
All of the simulations are conducted in a discrete-event simulator

developed by the author in Java. This simulator has also been

successfully used in recent studies (e.g., [13][14][15]). The

network topology is of dimensions 1000m x 1000m. The network

density is represented as a measure of the average neighborhood

size, which is calculated as follows: N*πR2/A, where N is the

number of nodes in the network, R is the transmission range of a

node and A is the network area. The transmission range per node

used in all of our simulations is 250 m. With a fixed

transmission range and network area, the network density is

varied from low to moderate and high by altering the number of

nodes. We employ 50, 100 and 150 nodes to represent networks

of low (average of 9.8 neighbors per node), moderate (average of

19.6 neighbors per node) and high (average of 29.4 neighbors per

node) respectively. The network connectivity observed for these

three networks at different conditions of node mobility is

illustrated in Figure 4.

We use the Random Waypoint mobility model [16], according to

which each node starts moving from an arbitrary location to a

randomly selected destination with a randomly chosen speed in

the range [vmin .. vmax]. Once the destination is reached, the node

stays there for a pause time and then continues to move to

another randomly selected destination with a different speed. We

use vmin = 0 and pause time of a node is also set to 0. The values

of vmax used are 5, 25 and 50 m/s representing low mobility,

moderate mobility and high mobility levels respectively.

Figure 4. Average Percentage Network Connectivity

We obtain a centralized view of the network topology by

generating mobility trace files for the simulation time (1000

seconds) under each of the above conditions. We sample the

network topology for every 0.25 seconds. Two nodes a and b are

assumed to have a bi-directional link at time t, if the Euclidean

distance between them at time t (derived using the locations of

the nodes from the mobility trace file) is within the wireless

transmission range of the nodes. If a CDS does not exist for a

particular time instant, we take a snapshot of the network

topology at that time instant and run the appropriate CDS

algorithm.

4.1 Performance Metrics
We measure the following performance metrics. Each data point

in Figures 4 – 8 is an average computed over 10 mobility trace

files and 15 s-d pairs from each of the mobility trace files. The

starting time for each s-d session is uniformly distributed

between 1 to 20 seconds.

 CDS Node Size: This is a time-averaged value of the number

of nodes that are part of the CDS, determined by the MaxD-

CDS and MinV-CDS algorithms. For example, if there

exists a CDS of size 20 nodes, 23 nodes and 18 nodes in the

network for 5, 10 and 5 seconds respectively, then the

average CDS Node Size is (20*5 + 23*10 + 18*5)/(5 + 10 +

5) = 21.0 and not (20 + 23 + 18)/3 = 20.3.

 CDS Edge Size: This is a time-averaged value of the number

of edges connecting the nodes that are part of the CDS,

determined by the MaxD-CDS and MinV-CDS algorithms.

 CDS Lifetime: This is the time elapsed between the

discovery of a CDS and its disconnection, averaged over the

entire duration of the simulation.

 Hop Count per Path: This is the time-averaged hop count of

individual source-destination (s-d) paths involving the CDS

nodes as source, intermediate and destination nodes,

averaged across all s-d paths over the entire simulation

time.

4.2 CDS Node Size
The MinV-CDS, based on node velocity, includes more nodes

(refer Figure 5) compared to the MaxD-CDS, based on node

density. The maximum density-based CDS attempts to minimize

IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

94

the number of nodes that are part of the CDS as it gives

preference to nodes that have a larger number of uncovered

neighbors over nodes that have a smaller number of uncovered

neighbors. But, the minimum velocity-based CDS does not give

much importance to the number of uncovered neighbors of a

node before including the node in the CDS-Node-List.

 Figure 5.1. vmax = 5 m/s Figure 5.2. vmax = 25 m/s Figure 5.3. vmax = 50 m/s

Figure 5. CDS Node Size – Average Number of Nodes per MaxD-CDS and MinV-CDS

 Figure 6.1. vmax = 5 m/s Figure 6.2. vmax = 25 m/s Figure 6.3. vmax = 50 m/s

Figure 6. CDS Edge Size – Average Number of Edges per MaxD-CDS and MinV-CDS

 Figure 7.1. vmax = 5 m/s Figure 7.2. vmax = 25 m/s Figure 7.3. vmax = 50 m/s

Figure 7. Average Lifetime per MaxD-CDS and MinV-CDS

 Figure 8.1. vmax = 5 m/s Figure 8.2. vmax = 25 m/s Figure 8.3. vmax = 50 m/s

Figure 8. Average Hop Count per Path in a MaxD-CDS and MinV-CDS

If a node has a lower velocity and is the next candidate node to

be considered for inclusion (when the already covered nodes are

considered in the increasing order of their velocity) in the CDS-

Node-List, the low velocity node is added to the CDS-Node-List

if it has at least one neighbor that is yet to be covered. As a

result, the number of nodes in the CDS-Node-List is relatively

high for the CDS based on minimum velocity.

With respect to the magnitude of the difference in the number of

nodes in the CDS-Node-List, we observe that the Node Size for a

MinV-CDS is 3.3 (low network density) to 5.8 (high network

density) times larger than that of the Node Size for a MaxD-

CDS. In the case of a MaxD-CDS, for fixed node mobility, as we

increase node density from low to high, there is only at most a

10% increase in the Node Size. On the other hand, for the MinV-

CDS, for fixed node mobility, as we increase the node density

from low to high, the Node Size can increase as large as by

190%. This can be attributed to the relative insensitivity of the

MinV-CDS based algorithm to consider the number of uncovered

neighbors of a node before including the node in the CDS. A

long-living stable CDS is eventually formed by including more

nodes to be part of the CDS. While, even if the network density

IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

95

is tripled, the MaxD-CDS algorithm manages to cover all the

nodes in the high-density network by incurring only at most a

10% increase in the CDS Node Size, compared to that for a low-

density network. For a given node density, as we increase the

node mobility from low to high, the Node Size for a MaxD-CDS

does not change appreciably, whereas the Node Size for a MinV-

CDS changes by at most 15%.

4.3 CDS Edge Size
The MaxD-CDS algorithm, in its attempt to minimize the CDS

Node Size, chooses CDS nodes that are far away from each other

such that each node covers as many uncovered neighbors as

possible. As the CDS nodes are more likely to be away from each

other, spanning the entire network, the number of edges (Edge

Size) between the MaxD-CDS nodes is very low. On the other

hand, since the MinV-CDS algorithm incurs a larger Node Size

because of its relative insensitivity to the number of uncovered

neighbors of a node, there is a corresponding increase in the

number of edges (refer Figure 6) between these CDS nodes.

With respect to the magnitude of the difference in the number of

edges among the CDS nodes, we observe that the Edge Size for a

MinV-CDS is 12.4 (low network density) to 46.0 (high network

density) times larger than that of the Edge Size for a MaxD-CDS.

In the case of a MaxD-CDS, for fixed node mobility, as we

increase the node density from low to high, there is only at most

a 7% increase in the Edge Size. On the other hand, for the

MinV-CDS, at fixed node mobility, as we increase the node

density from low to high, the Edge Size increases as large as by

400%. This can be attributed to the huge increase (as large as by

190%) in the MinV-CDS Node Size, with increase in network

density. The increase in the number of edges and nodes

significantly contribute to the increase in the MinV-CDS lifetime

(refer Section 4.4) as the network density is increased. For a

given node density, as we increase the node mobility from low to

high, the Edge Size for a MaxD-CDS does not change

appreciably, whereas the Edge Size for a MinV-CDS also

changes by at most 40%.

4.4 CDS Lifetime
In the case of MinV-CDS, the relatively larger CDS Node Size

and Edge Size significantly contribute to the lifetime of the CDS

(refer Figure 7). As the constituent nodes of the MinV-CDS are

chosen based on the minimum velocity metric, the edges between

the CDS nodes are bound to exist for a relatively longer time and

the connectivity of the nodes that are part of the MinV-CDS is

likely to be maintained for a longer time. On the other hand, the

MaxD-CDS algorithm chooses nodes that are far away from each

other (but still maintain an edge between them) as part of the

CDS. The edges between such nodes are likely to fail sooner,

leading to loss of connectivity between the nodes that are part of

the MaxD-CDS. We thus observe a tradeoff between the CDS

Node Size and the CDS Lifetime. If we meticulously choose

slow-moving nodes to be part of the CDS, the lifetime of the

CDS could be significantly improved, at the expense of the Node

Size. On the other hand, if we aim to select a CDS with the

minimum number of nodes required to cover all the nodes in the

network, the lifetime of the CDS would be significantly lower.

With respect to the magnitude, the lifetime per MinV-CDS is 6

(low network density) to 25 (high network density) times more

than that of the MaxD-CDS. The relatively high stability of

MinV-CDS at high network density can be attributed to the

inclusion of a significantly larger number of slow-moving nodes

and their associated edges as part of the CDS. The relatively

poor stability of MaxD-CDS at high network density can be

attributed to the need to cover a larger number of nodes in the

network without any significant increase in the number of nodes

that are part of the CDS. For both MaxD-CDS and MinV-CDS,

for a fixed network density, as we increase node mobility from

low (vmax = 5 m/s) to moderate (vmax = 25 m/s), and from low

(vmax = 5 m/s) to high (vmax = 50 m/s), the lifetime per CDS

decreases by a factor of 3.3 and 5.3 respectively.

4.5 Hop Count per Path
The average hop count per path (refer Figure 8) between an s-d

pair through the nodes that are part of the MaxD-CDS is 1.06 (at

low network density) to 1.15 (at moderate and high network

density) more than that incurred with MinV-CDS. The relatively

lower hop count per s-d path, in the case of a MinV-CDS, can be

attributed to the larger CDS Node Size and the presence of a

larger number of edges connecting the CDS nodes. Hence, the

MinV-CDS can have several s-d paths between any two nodes s

and d in the network and we choose the minimum hop s-d path

among them while computing the average hop count per path. On

the other hand, with fewer edges in the MaxD-CDS, the paths

between any two nodes through the nodes of the MaxD-CDS will

have a relatively larger hop count.

The consequences of having larger hop count per path with a

fewer number of nodes per MaxD-CDS are a larger end-to-end

delay per data packet and unfairness of node usage. Nodes that

are path of the MaxD-CDS could be relatively heavily used

compared to the nodes that are not part of the MaxD-CDS. This

could lead to premature failure of critical nodes, mainly nodes

lying in the center of the network, resulting in reduction in

network connectivity, especially in low-density networks. With

MinV-CDS, as multiple nodes are part of the CDS, the packet

forwarding load can be distributed across several nodes and this

could enhance the fairness of node usage and help to incur a

relatively lower end-to-end delay per data packet.

5. CONCLUSIONS AND FUTURE WORK
Ours is the first work to formulate an algorithm to determine

stable connected dominating sets for mobile ad hoc networks,

exclusively based on node velocity. Through extensive

simulations, we demonstrate that the proposed algorithm, MinV-

CDS, can determine connected dominating sets that have a

significantly longer lifetime compared to that of the maximum

density-based MaxD-CDS algorithm. The MinV-CDS also has a

relatively larger number of constituent nodes and edges and this

helps to reduce the hop count per path as well as the end-to-end

delay and improves the fairness of node usage. We thus observe

a tradeoff between the CDS Node Size and the CDS Lifetime. If

we meticulously choose slow-moving nodes to be part of the

CDS, the lifetime of the CDS could be significantly improved, at

the expense of the Node Size. On the other hand, if we aim to

choose a CDS with the minimum number of nodes required to

IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

96

cover all the nodes in the network, the lifetime of the CDS would

be significantly lower.

In terms of magnitude, the lifetime per MinV-CDS is 6 (low

network density) to 25 (high network density) times more than

that of MaxD-CDS. The Node Size for a MinV-CDS is 3.3 (low

network density) to 5.8 (high network density) times larger than

that of the Node Size for a MaxD-CDS. The Edge Size for a

MinV-CDS is 12.4 (low network density) to 46.0 (high network

density) times larger than that of the Edge Size for a MaxD-CDS.

The average hop count per path between an s-d pair through the

nodes that are part of the MaxD-CDS is 1.06 (at low network

density) to 1.15 (at moderate and high network density) more

than that incurred with MinV-CDS.

As future work, we will study the performance of MinV-CDS

along with that of the theoretically optimal OptCDSTrans

algorithm and compare the lifetimes of the minimum velocity-

based connected dominating sets and the stable mobile connected

dominating sets. Future work would also involve developing a

distributed implementation of the MinV-CDS algorithm and

explore its use as a virtual backbone for unicast, multicast and

broadcast communication in MANETs.

6. REFERENCES
[1] Sinha, P., Sivakumar, R., and Bhargavan, V. 2001.

Enhancing Ad hoc Routing with Dynamic Virtual

Infrastructures. In Proceedings of the 20th IEEE INFOCOM

Conference, 3, 1763-1772.

[2] Wang, F., Min, M., Li, Y., and Du, D. 2005. On the

Construction of Stable Virtual Backbones in Mobile Ad hoc

Networks. In Proceedings of the IEEE International

Performance Computing and Communications Conference.

[3] Sakai, K., Sun, M.-T., and Ku, W.-S. 2008. Maintaining

CDS in Mobile Ad hoc Networks. Lecture Notes in

Computer Science. 5258 (Oct. 2008), 141-153.

[4] Sheu, P.-R., Tsai, H.-Y., Lee, Y.-P., and Cheng, J. Y. 2009.

On Calculating Stable Connected Dominating Sets Based on

Link Stability for Mobile Ad hoc Networks. Tamkang

Journal of Science and Engineering. 12, 4, 417-428.

[5] Bao, L., and Garcia-Luna-Aceves, J. J. 2010. Stable Energy-

aware Topology Management in Ad hoc Networks. Ad hoc

Networks. 8, 3 (May 2010), 313-327.

[6] Kuhn, F., Moscibroda, T., and Wattenhofer, R. 2004. Unit

Disk Graph Approximation. In Proceedings of the ACM

DIALM-POMC Joint Workshop on the Foundations of

Mobile Computing, 17-23.

[7] Alzoubi, K. M., Wan, P.-J., and Frieder, O. Distributed

Heuristics for Connected Dominating Set in Wireless Ad

hoc Networks. 2002. IEEE / KICS Journal on

Communication Networks. 4, 1, 22-29.

[8] Butenko, S., Cheng, X., Du, D.-Z., and Paradlos, P. M.

2002. On the Construction of Virtual Backbone for Ad hoc

Wireless Networks. Cooperative Control: Models,

Applications and Algorithms, 43-54.

[9] Butenko, S., Cheng, X., Oliviera, C., and Paradlos, P. M.

2004. A New Heuristic for the Minimum Connected

Dominating Set Problem on Ad hoc Wireless Networks.

Recent Developments in Co-operative Control and

Optimization, 61-73.

[10] Meghanathan, N. 2006. An Algorithm to Determine the

Sequence of Stable Connected Dominating Sets in Mobile

Ad hoc Networks. In Proceedings of the 2nd Advanced

International Conference on Telecommunications.

[11] Meghanathan, N., and Farago, A. 2008. On the Stability of

Paths, Steiner Trees and Connected Dominating Sets in

Mobile Ad hoc Networks. Ad hoc Networks. 6, 5 (Jul.

2008), 744-769.

[12] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.

2001. Introduction to Algorithms. 2nd Edition, MIT Press.

[13] Meghanathan, N., and Sugumar, M. 2010. A Beaconless

Minimum Interference Based Routing Protocol to Minimize

End-to-End Delay per Packet for Mobile Ad hoc Networks.

International Journal of Interdisciplinary

Telecommunications and Networking. 2, 1 (Mar. 2010), 12-

26.

[14] Meghanathan, N., and Odunsi, A. 2010. Investigating the

Scalability of the Fish-eye State Routing Protocol for Ad hoc

Networks. Journal of Theoretical and Applied Information

Technology. 12, 1 (Feb. 2010), 60-70.

[15] Meghanathan, N. 2009. Multicast Extensions to the

Location Prediction Based Routing Protocol for Mobile Ad

hoc Networks. Lecture Notes of Computer Science, 5682,

190-199.

[16] Bettstetter, C., Hartenstein, H., and Perez-Costa, X. 2004.

Stochastic Properties of the Random-Way Point Mobility

Model. Wireless Networks. 10, 5 (Sep. 2004), 555-567.

