
IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

187

A fast codesign approach for low cost application-

specific-system on programmable chip (SoPC) :

Application to sensor network

Zied BEN SALEM
CES Laboratory, E.N.I.Sfax

ALPHA ENGINEERING TUNISIA

A33, 34 rue du Lac Lancey

Les Berges du Lac, 1053, Tunisie

Med. Wassim YOUSSEF
CES Laboratory, I.S.I.Tunis

2, Rue Abou Raïhan El Bayrouni

 2080, Ariana, Tunisie

Mohamed ABID
CES Laboratory, E.N.I.Sfax

Route de Soukra, km 3

3052, Sfax, Tunisie

ABSTRACT

Systems on programmable chip, as system on chip, are composed

by software and hardware. Therefore a codesign based approach

is needed to meet the functional requirements. While classic

codesign flows are long and involve complex and expensive

design tools, this paper presents a fast but efficient codesign

flow. To reduce the design cycle and the total cost of ownership

(TCO), the presented design flow is based on massive reuse of

Hw Intellectual propriety (IP) and Sw components, and involves

costless design tools. As a proof of concept we designed and

implemented a low cost standalone monitoring gateway for

sensor network entirely based on royalty free Hw and Sw

components. The hardware design was based on an AMBA bus

system and a SPARC V8 compliant CPU subsystem. The

software stack is based on a ported Linux kernel and a

lightweight Round Robin Data Base Tool acting as a kind of

middleware processing hardware-independent-software. The

design was a submitted to series of stress test to evaluate its

performance and capacity.

Keywords

Codesign; System on Programmable Chip (SoPC); design reuse;

royalty-free-IP; sensor network monitoring.

1. INTRODUCTION
Although sensor network research was initially driven by military

applications such as battle-field surveillance and enemy tracking,

this technology is spreading quickly in civil applications. In fact,

sensor networks are being deployed for many indoor applications

like habitat, health, data centers, and factories. Actually, outdoor

applications like environment observation and forecast system

are particularly targeted by sensor networks to ensure a remote

supervision. Indeed these systems could provide important

information in real-time, like rainfall and water level information

to evaluate the possibility of potential flooding [1]. Another

application consists of deploying sensor network at Volcanoes

edges to monitor remotely its activity [2].

Unfortunately sensor networks are usually expensive and

complex to deploy for many considerations. The main fact is

their non-standard communications protocols and their different

electrical proprieties. Consequently, a unified management

console for a global reporting on the status of the deployed

sensors involves usually unaffordable costs. Using sensor

networks over standard communication protocol like Internet

Protocol (IP) is attracting today more and more users. In fact, Ip-

sensor platforms are currently supplied with a monitoring

gateway driven by a microprocessor and an operating system.

These platforms generally support Hyper Text Transfer Protocol

(HTTP) for the presentation layer, Simple Mail Transfer Protocol

(SMTP) for notification, and Simple Network Management

Protocol (SNMP) [3] for monitored data collection.

Nevertheless, such solutions have many constraints. Indeed,

monitoring gateways are deployed on dedicated servers or in

expensive hardware appliances. Besides, they require extra

devices dedicated for routing and security [4]. Such devices are

either not suitable for deployment in unconditioned

environments, or over sized compared to the low data stream

circulating in the Ip-sensor network.

On the other hand, today’s market is offering more and more

efficient and highly dense integrated circuits in terms of logic

resources. Thanks to Very Large Scale Integration (VLSI)

technologies, the integration of a complete system on a single

chip (SoC) is easier and less expensive [5]. In this context, Field

Programmable Gate Array (FPGA) has brought more flexibility

to embedded systems design. Allowing the integration of a full

system based on single or multi processor cores and dedicated

hardware accelerators for the critical functional tasks [6], FPGAs

are a suitable target for system on programmable chip (SoPC),

able to implement complex systems designs.

Thereby, the idea to implement servers on embedded systems

starts to take hold in many different applications. Despite the fact

that several studies have demonstrated the possibility to

implement low-end embedded application servers such as web

servers with limited resources; the security aspects have been

marginalized [8] [9] [10]. Consequently such systems are not

suitable for standalone run-mode.

Today embedded application servers are taking place on critical

applications like home appliances [11], renewable energy control

logic [12], and sensor network monitoring. In many cases, these

embedded devices are directly connected to the Internet in order

to be remote-accessible. Thus, they are exposed to an increasing

IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

188

number of threats at each layer of the Open Systems Interconnect

(OSI) Seven Layer Network Model.

In this context, we present a fast codesign approach for low cost

application-specific-system on programmable chip (SoPC). As

an application, we designed and implemented a low cost

monitoring gateway node for Ip-sensor network. The design was

based on royalty free Sw components and Hw intellectual

propriety (IP) to decrease the design time cycle and the total cost

of ownership (TCO).

The remaining part of this paper is organized as follows: section

2 presents a typical codesign approach toward a cost effective

and fast design cycle. Section 3 details the implementation of

sensor network monitoring gateway based on a SoPC and

presents its associated experimental results.

2. Typical fast codesign approach for low

system on programmable chip

2.1 Typical Application Specific System on

programmable chip architecture
System–on–Programmable-Chip (SoPC) is composed by different

processing elements and/or other specific electronic subsystems,

implemented into a single reconfigurable logic chip like Field

Programmable Gate Array (FPGA).

A SoPC may contain many types of computing subsystems,

memories, input/output devices (I/O), and other peripherals. A

SoPC designer could select hardware intellectual propriety (IP),

and then connect them together around an on-chip bus system.

The on-chip bus connects a central CPU subsystem and standard

components like memory, I/O peripherals, and application-

specific components generally called Hardware Accelerator.

Because of increasing number of hardware components to be

connected, today’s SoPC are built today around complex

hierarchies of buses, with multiple bridges between them. This

approach has many advantages such as power savings, higher

integration density, and lower systems costs.

CPU subsystem

On-chip Bus

System on Programmable Chip

HW IP

HW IP

HW IP

HW IP

A
p

p
lic

at
io

n
H

d
S

HDS API

HAL

HAL API

Task
1

Task 2 Task 3

Comm OS

Figure 1. Typical Hw/Sw SoPC architecture based on system bus

In figure 1, the software stack running on the CPU subsystem

implemented by the application specific SoPC must fulfill at

least three requirements: reducing the size of memory,

optimizing the overall performance, and minimizing the power

consumption. A typical software stack is structured in two

layers: the task/application-software layer and the hardware-

dependent software (HdS) layer [13].

The HdS provides application- and architecture-specific services,

like applications/task scheduling and communication, hardware

resource management and control. Indeed, the HdS layer

represents the software layer which is directly in contact with, or

significantly affected by, the hardware that runs it; or can directly

influence the behavior of that hardware [14]. The HdS integrates

all the software that is directly depending on the underlying

hardware, such as hardware drivers or boot strategy.

In depth, the HdS layer [15] is made of five components:

- HdS API: This application programming interface (API) is

used by the subset tasks of the application to abstract the

underlying HdS software layer.

- The operating system (OS): this component manages the

sharing of the architecture’s resources by providing services

like tasks scheduling, context switch, synchronization, and

interrupt management.

- Specific I/O communication software: This component

manages the interaction between hardware components

composing the design and the other software subsystems.

- Hardware Abstraction Layer: It is a thin software layer which

depends on the processor architecture that will run the

software stack. Implementing drivers for the I/O operations,

the HAL is responsible for all the processor-specific

operations like the boot code.

Thereby, a structured the software stack in several layers offers

many advantages to SoPC designers, especially flexibility and

portability. The flexibility means the possibility to re-use

software components while changing the OS and/or the

communication software components. Portability means

possibility to re-use software components on other CPU

subsystems architecture by changing the HAL software layer.

Thus, meeting application-specific SoPC architectural

requirements needs a suitable design flow.

2.2 Fast Codesign flow for system on

programmable chip
Classic hardware/software codesign flow starts from a very high

abstracted system specification in order to produce an efficient

implementation that reaches the required performance and

minimizes the TCO[16]. Besides, the large variety of

technological targets motivates the designer to explore all

possible solutions. This phase may take a lot of efforts and time.

However, as systems become more complex, an increasing

amount of time is spent exploring the hardware/software design

space to find the optimal target architecture [17][18]. Figure 2

describes a fast but efficient SoPC-targeting codesign flow. It

starts by a functional-partitioned system specification and takes

IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

189

advantage from “design reuse” based on royalty free components

to reduce Hw/Sw design space exploration.

Design reuse consists of assembling ready-to-use components

called Intellectual Property (IP) to design a more complex system

[15]. Although classic design workflow assumes that a unitary

design of each element and/or resource composing the targeted

application as well as its respective unitary test sets is necessary,

this phase becomes optional in a design reuse-based flow, or at

least restricted to custom “in-house” made IP components.

 The remaining part of this section presents a typical codesign

flow for application-specific system on programmable chip, and

lists the suitable design tools associated to each phase of the

flow.

PARTIONNED SYSTEM FUNCTIONNAL SPECIFICATION

HW IP
SUBSET

SW IP SELECTIONHW IP SELECTION

HW SYNTHESIS SW CROSS COMPIL.

IP INTERF.
SUBSET

SW IP
SUBSET

BITSTREAM GEN. SW BINARIES

CROSS EMULATIONPOST-SYNTH SIMULATION

FPGA SERIALISATION

APPLICATION

SPECIFIC SOPC

Hw IP
Lib.

Hw IP
Lib.

INTERFACE IP SELECTION

FPGA
Debug

Sw
Debug

Figure 2. Fast codesign flow for SoPC target

(i)Partitioned system specification: This typical codesign flow,

assumes that the design process starts from a given functional-

level partitioned system specification. To ensure short time cycle

design and low cost, this partitioning must consider the

computational complexity of the application as well as the

availability of reusable Intellectual Propriety (IP) for each

function. The partitioned system specification lists the different

functions that the final system would implement in order to

fulfill its application requirements, and precise whether they are

going to be implemented in hardware or in software.

(ii)Hardware, Software and interface IPs Selection: In this phase,

we should select the suitable IPs to perform each function of the

system according to the partitioning specification. To accelerate

the design time, it would be interesting to reduce the integration

constraints between the unitary components used in the design.

Therefore, using a global IP library ensures inter-components

compliance and easier integration. Indeed some global IP

libraries [19] provide a generic HDL model mapping all its

components, and a built-on configuration wizard that generates a

configuration template specifying the selected IP to be

implemented in the design. Further, in order to decrease the

design cost, it would be interesting to use open source royalty-

free-IP [20]. Indeed, thanks to the General Public License (GPL)

licenses, and its derived licenses [21], designers can take

advantage of many “ready-to-use”, “royalty-free” and “open-

source-coded” software components and hardware IP libraries.

(iii)Hardware Synthesis: This phase processes Hw IP subset

specified and mapped at a structural and/or behavioral HDL

level. The output of this phase is a low level Register-Transfer-

Logic specification of system on a chip. Depending on the FPGA

reference, this operation could be performed by FPGA vendor

tools as well as third party vendors.

(iv)Software cross-compilation: The cross compilation operation

transforms a set of software packages provided as high level

language-coded source into a binary code for a specific execution

environment. This phase is performed by CPU-Specific toolchain

that compiles the source code to specific hardware architecture,

and links it to the corresponding software libraries to interface it

with a given operating system. While each CPU vendor provide a

specific toolchain, the GNU toolchains powered by GNU Cross

Compiler GCC [22], provided as free software fit the majority of

the hardware architecture used in embedded systems industries

like x86, SPARC-Vx, ARMx, MIPSx, PPCx and 68xx.

(v)Post synthesis simulation: The behavioral simulation makes a

number of approximations to make a fast simulation. The

concept of time is simplified since it does not consider the time

to spread. Nevertheless, post-synthesis simulation simulates

finely the code produced by the synthesis tool. It reproduces most

of the problem that can occur on chip. While classic codesign

flows assume that the behavioral simulation is necessary, the

presented codesign flow in figure 2 avoids it. This choice was

made in order to accelerate the design cycle, especially that the

targeted design is IP-library-centric, and that its components have

been tested by the library provider. This simulation could be

performed by FPGA vendors IDE as well as many tools released

under the GPL license like GHDL [23].

(vi)Sw cross-emulation: The cross emulation aims to imitate a

physical behavior of a specific hardware architecture by software.

Unlike the simulation that attempts to emulate an abstracted

model by trying to extrapolate some of the unknown variables,

the emulation reproduces the behavior of a model in which all

variables are known to reproduce any constraints and/or

functional system features. In the codesign context, cross

emulation allows designers to validate at an early stage, unitary-

software components and the major part of it, and even the whole

software stack composing the design in some specific cases. In a

context, of a single or homogenous multiprocessor on chip,

QEMU [24] architectural cross emulator is a convenient tool

because it emulates the most used CPU architectures in system

on chip and provides a set emulation models for standard I/O

peripherals like Ethernet controller, UART interfaces, and even

USB and VGA controllers.

(vii)Hw/Sw debugging: Debugging is a key step in the design

flow, to validate the obtained SoPC. While debugging an

application, designers usually perform the following actions:

Breakpoint set/stop/reset to inspect the design state, and to

interact with; View/trace/analyze any signal or memory contents

in the design. While many codesign flow targeting FPGA

implementation present Hw FPGA debugging as a must, the

suggested design flow consider this phase as optional. Indeed, a

IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

190

key distinction between Sw debugger and Hw FPGA debugger is

that the Sw debugger provides a rich featured-debug environment

while Hw debugger provides limited debug capabilities

especially for embedded high/mid-end software. The GNU GDB

debugger [25] provided by as free software by the GNU toolchain

is one of the most suitable Sw debug tool for efficient and cost

effective design thanks to its multiple features as well as its

multi-architecture support.

3. Application for sensor network monitoring
The typical codesign flow described in the previous section could

be used to implement efficiently an Ip-sensor network monitoring

gateway in a SoPC. This section describes the implementation of

a cost-effective sensor monitoring gateway. The first subsection

details the functional requirements of sensors monitoring

applications. The second subsection describes the hardware and

software architecture of the sensor network monitoring gateway.

Finally, the last subsections will present consequently the

implementation results on FPGA and the global monitoring

gateway performance through series of stress tests.

3.1 Sensor network monitoring functional

requirements
An Ip-sensor network consists of many sensor nodes generally

communicating using the IP protocol. Such networks are used to

monitor critical and hostile environments. Therefore, an Ip-

sensor monitoring gateway must provide a good quality of service

ensuring reliability and security.

Figure 3 provides a general overview of a classic Ip-sensor

network. The monitoring gateway has to provide at least three

features. First, it has to ensure the collection of runtime events

like availability and sensor-related physical metrics. Second, it

has to send notification messages if an appropriate event occurs

by several means like email or short message service (SMS).

Finally it has to provide a complete dashboard to the sensor

network supervisor reporting a continuously updated global

status of the monitored environment.

Supervisor

WAN

Sensor Network Monitoring Gateway

LAN

Operations Center

IP Sensor

Figure 3. Overview of a classic Ip-sensor network

In reality, a global monitoring system is a distributed architecture

composed of a set of sensors and a gateway node. While a sensor

behaves as a simple agent providing its instantaneous status, the

monitoring gateway must be structured in three layers. The

lowest layer must ensure physical metrics collection from the Ip-

sensors. The middle layer ensures the processing of the collected

data and their transformation into metric data expressed in unit

metrics. The top layer ensures reporting. It provides a coherent

dashboard presenting the monitored environment metrics and

listing its associated events. In the same time, the reporting layer

performs the notifications operations.

This functional specification of the Ip-sensor network monitoring

gateway shows the complexity of the application. Meeting

efficiency, low cost and performance constraints requires

hardware/software implementation compliant with the typical

SoPC architecture through the fast design cycle described on the

previous section.

3.2 Fast Hw implementation of the sensor

network monitoring gateway
To satisfy complex application requirements, application-specific

SoPCs are designed as a combination of processors, memory

blocks, I/O peripherals, integrated on a single chip. Consequently

the design could become time consuming and expensive. Dealing

with integration problems and reducing the design cycle time is a

major issue to bridge design complexity, increase designer’s

productivity and reduce time to market (TTM). Therefore the Hw

design should be exclusively based on a single and reliable IP

library providing all the required components for networking

applications.

Furthermore, to master the total cost of ownership (TCO), the

suggested design is based on open source IP. Organized in

libraries, these components are more and more available. Thus a

fast comparison between the most common royalty free IP

libraries would be interesting to make the right choice for

implementation. We will focus particularly on GRLIB [19],

OPENCORES [26] and LatticeMico [27].

Generally, each IP library is especially featured by two main

elements: the on-chip bus system and the CPU soft-core

subsystem. Ensuring a centric role in the design, the global

performance depends on the bus system. On the same time, the

availability of, as much as possible, “ready-to use” bus-compliant

peripherals is an attractive advantage for the designers, who

prefers in general to focus only on the global system integration.

The second characterizing element of an IP library is the CPU

soft-core. This element is also particularly decisive for the

system performance because it will run the software stack.

Therefore, the most interesting comparison criteria in a SoPC

implementation would be CPU features: Pipeline, MMU, PMU,

FPU and registers; and bus system (performance, availability of

compliant IP like Ethernet MAC Core for networking).

Symmetric Multi-Processors (SMP) support, which depends on

both the bus and the CPU systems, could be also a decisive

criterion because it guarantees to the designers a high scalability

of CPU resources in case of complex software treatments.

Table 1, shows that GRLIB is particularly interesting, because it

suitable for performance as well as space and/or power

optimization. Indeed, the built-on LEON3 [7,19,28] soft-core

supports Symmetric Multi-Processors (SMP), has 7-stage-

configurable pipeline and implements up to 520 configurable

register windows. This CPU softcore is also full compliant to the

SPARC V8 standard. This fact gives a master key to the

designers since they can take advantage of huge SPARC portable

IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

191

GNU software packages because of its compatibility with the

GNU cross-compiler GCC.

Table 1. Royalities free IP cores libraries comparaison

Features
IP Core Libraries

GRLIB OpenCores LatticeMico

BUS AMBA Wishbone Wishbone

CPU SoftCore LEON 3 OR1k2
LattMico3

2

Pipline 7-stages 5-stages 6-stages

Registers 40-520 32 32

FPU Yes Yes No

MMU Yes Yes No

PMUa Yes Yes No

SMPb support Yes No No

 Ethernet

MAC
Yes Yes Yes

a. Power Management Unit

b. Symmetric Multi-Processor

Thereby, we can conclude that the GRLIB IP library is suitable

for the sensor network monitoring gateway implementation since

it offers many read-to-use cores compliant with the AMBA 2.0

bus as well as a highly scalable soft-core CPU subsystem

supporting until 8 CPU cores of 32-bits RISC SPARC V8

compliant.

Table 2 lists the hardware IP cores required to implement a

SoPC dedicated for Ip-sensor network monitoring gateway

application.

Table 2. List of the IP cores composing the SoPC

IP Core Function Library

LEON3 Soft-core processor

GRLIB

AHBRAM
Single-port RAM with

AHB interface

AHBROM
ROM generator with

AHB interface

GRETH

Gaisler Research 10/100

Mbit Ethernet with AHB

I/F

APBUART Programmable UART

with APB interface

AHBCTRL
AMBA AHB bus

controller with plug and

play

APBCTRL AMBA APB Bridge

with plug and play

MCTRL
8/16/32-bit

PROM/SRAM/SDRAM

controller

SDCTRL
PC133 SDRAM

controller

FoCa
Layer2/Layer3 Packet

Filter

Custom

Design

a. Firewall on a Chip

All theses cores are provided by the GRLIB IP Library except the

Firewall on Chip (FoC) packet filter which is custom design [29].

This component has to ensure access level security on OSI layer

2 and layer 3, based on packets inspection. The received Ethernet

packets are filtered according to their MAC addresses, IP

addresses, protocols and/or ports. These rules are implemented

on an Access Control List (ACL) ROM. This ACL-ROM is

programmable only via a Universal Asynchronous Receiver

Transmitter (UART) unconnected to the on-chip bus system to

ensure higher security.

3.3 Fast Sw implementation for the sensor

network monitoring gateway
The purpose of this section is to present the software

specification of the sensors network monitoring gateway using a

small footprint Web server. This specification must be as flexible

and efficient to provide a fast, lightweight, and cost-effective

implementation. Therefore, we present an architecture that

provides simple but powerful application interface for Ip-sensor

network monitoring entirely powered by GPL licensed software

components.

The monitoring gateway acts as server providing a global

environment dashboard in the form of HTML pages and a

reliable alarm notifications engine. On the other hand from the

side of sensors, the monitoring gateway acts as a client that

collects, processes, and analyzes the information retrieved from

the network sensors via (SNMP) flow.

Figure 4, presents the designed architecture. The software stack

implements a hardware dependant software layer around a ported

Linux Kernel to a SPARC V8 architecture, since it is very

suitable for embedded networking applications [30,31] ; and a

hardware independent layer made of four essential parts.

(i)The HTTP engine: It serves the client’s request. The minimum

requirement for an HTTP engine is that it must be compliant

with HTTP specifications [32] for communicating with

commercial Web browsers. Unlike general Web servers that start

a new thread or process whenever a new connection is made,

normally an HTTP engine supports multiple simultaneous users

while running as a single process. The number of processes that

the server requires can impact on both RAM usage, due to the

stack space per task, and CPU usage. The httpd web server, as a

light implementation of Apache web server provided by the

Busybox package, is an interesting alternative because it works

only with one single process.

IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

192

Linux Kernel

SPARC V8

compliant subsys.

On-chip AMBA Bus

System on Programmable Chip

L2/L3

Packet filter

GPIO

Ethernet

Application Management Services

Application Interface File System

HTTP Engine

SNMP Agent

HAL

RAM/ROM

Figure 4. Monioring gateway architecture

(ii)The Management application: This module is the core of

monitoring gateway. It processes and provides the collected

physical metrics from sensors to the http engine, in order to

present it in a coherent dashboard in forms of tables and/or

charts. Besides, it ensures alarm notifications when a special

event occurs. RRDtool, acronym for Round-Robin Database Tool

[33] is suitable to implement the management application.

Indeed RRDtool ability to handle time-series data is a key feature

in monitoring application. In sensor network context, time-series

data could be temperatures, humidity, water level, gas density, or

any other discrete event like a physical intrusion or a smoke

detection. RRDtool includes also functions to present the

collected data in tables as well as charts format. The data are

stored in a round-robin database (circular buffer). This feature is

definitely the most interesting in our case since the system

storage footprint remains constant over time. Finally RRDtool

acts like a middleware that could be programmed by PERL, a

simple and highly portable language very used for SNMP traps

analysis.

(iii)The application interface module: It enables developers to

add new monitoring functionalities. With any off-the-shelf Web

authoring tool, it can merge Web documents with management

application programs to generate specific dynamic management

information. CGI type interface is provided for interacting with

the embedded application. CGI type interface is used for

generating Web document based on parameters submitted by

operator through Web browser.

(iv)SNMP agent: It mediates between the sensors and the

management application. It collects metric data when extracting

management information base (MIB) [3] from the SNMP stream

provided by IP sensor, in order to interface it easy with RRDtool.

3.4 Implementation results
To demonstrate the efficiency of the design, an Altera Cyclone2

EP2C35 package was selected as an implementation target

because this series is featured by a small silicone area, and very

low power consumption.

Table 3. Altera Cyclone 2 EP2C35 Resources Occupation

Summary

Ressource Value

Logic Elements 27.454

Combinatorials

functions

24.217

Registers Logic 19.202

Pins 153

Memory Bits 185304

PLL 1

Global Ressources Use 97,31%

a. Firewall on Chip

Table.3, summarizes the resources occupation on the

Cyclone2/EP2C35 FPGA. The high global resource usage rate

shows that the cyclone 2, despite its small silicone area, was a

convenient option for the monitoring gateway application since

97.31% of the available logic resources were used.

Finally, figure 5 shows a screenshot of the monitoring gateway

dashboard which lists the Ip-sensors and graphs their metric.

This dashboard is implemented in HTML and DHTML, and can

be viewed through any web browser. The graphic layout of the

dashboard is inspired from a classic monitoring platform [34].

Figure 5. Screenshot of the Ip-sensor Monitoring Dhasboard

In order to evaluate the global performance of the monitoring

gateway, the frontal web application server was stress tested.

The system was configured to use 64MB off-chip SDRAM

available on the FPGA development board, during the

benchmark.

The stress tests are based on two scenarios:

- Ramp Test: gradual incrementing of the number of users

- Time Test: keeping the server loaded during a specified

period and observing his reaction.

http://en.wikipedia.org/wiki/Acronym
http://en.wikipedia.org/wiki/Time_series
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Round-robin
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Circular_buffer

IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

193

The Stress tests results showed that the designed IP sensor

monitoring gateway supports up to 283 concurrent connections

with an average bandwidth near of 2687kbit/s. This means that

the presented design is suitable for Ip-sensor network monitoring

application.

4. Conclusion
Sensor Networks are used in numerous indoor and outdoor

applications. They have been adopted especially in critical

environments like industries and weather forecast systems.

Therefore a monitoring gateway node is needed to collect,

process, and report sensitive data. To meet these requirements at

a mastered cost, we presented a fast but efficient codesign flow,

based on design reuse, and targeting low cost SoPC. Then we

implemented a prototype of an Ip-sensor network monitoring

gateway. To decrease the TCO, the designed system was based

on an assembly of software (SW) and Hardware (HW) royalty

free components. To reduce the power consumption, the selected

FPGA target was Cyclone2/EP2C35. Finally the designed

monitoring gateway was submitted to a series of stress tests to

demonstrate its efficiency for sensor network monitoring. The

future work is to specify an efficient design environment that

automates the typical codesign flow presented in this paper to

take advantage of all its features.

5. Acknowledgements
This work was supported by ALPHA ENGINEERING TUNISIA,

Tunisia’s leading Monitoring and High Availability Solutions

and the national Federated Research Project (PRF) on security

and embedded systems, leaded by Professor Mohamed ABID. A

special thanks to Mr. Chaker ZAAFOURY, senior information

systems security consultant in ALPHA ENGINEERING

TUNISIA, who contributes in this work.

6. REFERENCES
[1] Yick, J. Mukherjee, B. Ghosal, D. “Wireless sensor network

survey, Computer Networks”; The International Journal of

Computer and Telecommunications Networking, 2008,

ISSN:1389-1286.

[2] Werner-Allen, G.; Lorincz, K.; Ruiz, M.; Marcillo, O.;

Johnson, J.; Lees, J.; Welsh, M. “Deploying a wireless

sensor network on an active volcano”, Internet Computing,

IEEE, 2006, ISSN: 1089-7801.

[3] Case, J. Fedor, M. Schoffstall M. and Davin, C. “The

Simple Network Management Protocol (SNMP) RFC

1157”

[4] Raskovic, D. Revuri, V. Giessel, D. Milenkovic, A.

“Embedded Web Server for Wireless Sensor Networks”,

IEEE 41st South eastern Symposium on System Theory,

2009, ISBN:978-1-4244-3324-7.

[5] Tuomi, I. Bogdanowicz, M. “The Future of Semiconductor

Intellectual Property Architectural Blocks in Europe”, Joint

Research Centre Institute for Prospective Technological

Studies, European Commission, 2009, ISBN: 978-92-79-

13058-8.

[6] Smach, F. Mitéran, J. Atri, M. Dubois, J. Abid, M.

Gauthier, J.P : “An FPGA-based accelerator for Fourier

Descriptors computing for color object recognition using

SVM” Journal of Real-Time Image Processing 2, 2007.

[7] Ben Salem, Z. Megdich, M.F. Salhi, A. Zaafouri, C. Abid,

M. “Implémentation et Evaluation des Performances d'Un

Serveur Web Dédié sur SoPC autour de NIOS II”, 11th

International conference on Sciences and Techniques of

Automatic control & computer engineering, 2007.

[8] Fioretti, F. Pasqualini, S. Andreoli A. and Pierleoni, P.

“Permanent Switchboard Monitoring using Embedded Web

Server”, International Conference on Renewable Energies

and Power Quality (ICREPQ’09), 2009.

[9] Mahanta, S. Sarma, A.K. “A comparative study on client

server technology and web technology in design and

implementation of an embedded system used for monitoring

and controlling of physical parameters”, Internet Technology

and Secured Transactions ICITST, 2009.

[10] Grediaga, S. Llorens, A. Albero, H. “ Performance

Evaluation of FPGA-Embedded Web Servers”, 14th IEEE

International Conference on Electronics Circuits and

Systems ICECS, 2007, ISBN: 978-1-4244-1377-5.

[11] Huaiyu, X. Ruidan, S. Xiaoyu, H. Qing, N. “ Remote

Control System Design Based on Web Server for Digital

Home”, Ninth International Conference of Hybrid Intelligent

Systems (HIS), 2009, p457-461, ISBN: 978-0-7695-3745-0.

[12] Chen, Po. Ho, S. Lee, W. Chu, C. Pan, C. “An internet

based embedded network monitoring system for renewable

energy systems”, 7th International Conference on Power

Electronics (ICPE), 2007, ISBN: 978-1-4244-1871-8.

[13] Popovici, K. and Jerraya, A. “Virtual Platforms in System-

on-Chip Design”, DAC.COM KNOWLEDGE CENTER

ARTICLE DAC’47, 2010.

[14] Pospiech, F. Hardware dependent Software (HdS).

Multiprocessor SoC Aspects. An Introduction, MPSoC

2003, Online: http://www.mpsoc-forum.org/2003/slides/

MPSoC2003_HdS_1.1.pdf.

[15] Popovici, K. Rousseau, F. Jerraya, A. Wolf, M. “Embedded

Software Design and Programming of Multiprocessor

System-on-Chip”, 2010, ISBN 978-1-4419-5566-1.

[16] ABID, M. “Exploration of Hardware/Software Design Space

in the Co-design Process”, Real-Time Systems Magazine ,

2001.

[17] Ktari, J. Abid, M. “A Low Power Design Space Exploration

Methodology Based on High Level Models and Confidence

Intervals”. Journal of Low Power Electronics , 2009,

[18] Maalej, I. Gogniat, G. Philippe, J.L. Abid, M. “System

Level Design Space Exploration for Multiprocessor System

on Chip”. ISVLSI, 2008

[19] GRLIB IP Library User’s Manual, Gaisler Research, Online:

http://www.gaisler.com/products/grlib/grlib.pdf, last visit

25/07/2010.

[20] A.K. Swain, A.K.and Mahapatra, K.K.“Low Cost System on

Chip Design for Audio Processing”, Proceedings of The

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4236
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4236
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4236
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Smach:Fethi.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Mit=eacute=ran:Johel.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/a/Atri:Mohamed.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/Dubois:Julien.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Gauthier:Jean=Paul.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/jrtip/jrtip2.html#SmachMADAG07
http://dac.com/
http://www.mpsoc-forum.org/
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Ktari:Jalel.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/jolpe/jolpe5.html#KtariA09
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Maalej:Issam.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Gogniat:Guy.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/p/Philippe:Jean_Luc.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/isvlsi/isvlsi2008.html#MaalejGPA08
http://www.gaisler.com/products/grlib/grlib.pdf

IJCA Special Issue on “Mobile Ad-hoc Networks”

MANETs, 2010

194

International MultiConference of Engineers and Computer

Scientists, 2010, ISBN: 978-988-18210-4-1.

[21] The GNU General Public License - GNU Project - Free

Software, Online : http://www.gnu.org/licenses/gpl.html,

last visit 25/07/2010

[22] GCC, the GNU Compiler Collection – The GNU project-

Online: http://gcc.gnu.org/onlinedocs/ last visit 25/07/2010.

[23] GHDL guide; Online: http://ghdl.free.fr/ghdl/index.html,

last visit 25/07/2010.

[24] Bellard, F. “QEMU, a fast and portable dynamic translator”,

Proceedings of the annual conference on USENIX Annual

Technical Conference table of contents, 2005.

[25] Stallman, R. Pesch, R. Shebs, S. et al Published by the Free

Software Foundation. Debugging with GDB, MA 02111-

1307; ISBN 1-882114-77-9

[26] Opencore, Online: http://www.opencores.org

last visit 25/07/2010

[27] LatticeMico Development Hardware, Online:

http://www.latticesemi.com/products/intellectualproperty/ip

cores/mico32/mico32developmenthardware.cfm

last visit 25/07/2010.

[28] Großschadl, J. Tillich, S. Szekely, A. “Performance

Evaluation of Instruction Set Extensions for Long Integer

Modular Arithmetic on a SPARC V8 Processor”, 10th

Euromicro Conference on Digital System Design

Architectures, Methods and Tools, 2007, ISBN: 0-7695-

2978-X.

[29] Ben Salem, Z. Youssef W., Abid, M. “Designing Secure

Application Server on chip (SASoC) powered by open

source intellectual proprieties Application to sensor

network monitoring gateway”, 2010, International Review

on Computers and Software, Print ISSN: 1828-6003

[30] Yaghmour, K. “Building Embedded Linux Systems”,

Published by O'Reilly & Associates, Inc., 2003, ISBN:

8173666598.

[31] Gao, F. Li, F. Bao, S. Coll, X.W. “Analysis and

implementation of secure console server based on embedded

Linux”, IEEE International Conference of Industrial

Technology, 2008, ISBN: 978-1-4244-1705-6.

[32] Fielding, R. Gettys, J. Mogul, J. Frystyk Nielsen, H.

Masinter, L. Leach, P. and Berners-Lee, T. “Hypertext

Transfer Protocol - HTTP/1.1,” RFC 2616 IETF HTTP WG,

June 1999.

[33] RRDtool Official Documentation, Online:

http://oss.oetiker.ch/rrdtool/doc/index.en.html last visit

25/07/2010.

[34] HQ system monitoring, Online http://www.hyperic.com, last

visit 25/07/2010

http://www.google.com/url?sa=t&source=web&cd=1&ved=0CBYQFjAA&url=http%3A%2F%2Fwww.gnu.org%2Flicenses%2Fgpl.html&ei=151PTL26DJ7-0gTh3IyeBw&usg=AFQjCNHi70ZNostMByp6nPJBOOWHYQL30Q&sig2=R-24wM6xTK4efBJm3GrgGQ
http://www.google.com/url?sa=t&source=web&cd=1&ved=0CBYQFjAA&url=http%3A%2F%2Fwww.gnu.org%2Flicenses%2Fgpl.html&ei=151PTL26DJ7-0gTh3IyeBw&usg=AFQjCNHi70ZNostMByp6nPJBOOWHYQL30Q&sig2=R-24wM6xTK4efBJm3GrgGQ
http://www.google.com/url?sa=t&source=web&cd=1&ved=0CCEQFjAA&url=http%3A%2F%2Fgcc.gnu.org%2F&ei=xRd3TLySO5CJ4gayvvWBBg&usg=AFQjCNGXyXjL2L1or5cm-eSxkSEDN_xoXQ&sig2=YID5gpyrYiivEYppteaxIQ
http://gcc.gnu.org/onlinedocs/
http://ghdl.free.fr/ghdl/index.html
http://portal.acm.org/author_page.cfm?id=81330488149&coll=GUIDE&dl=GUIDE&trk=0&CFID=102043834&CFTOKEN=59873740
http://portal.acm.org/toc.cfm?id=1247360&type=proceeding&coll=GUIDE&dl=GUIDE&CFID=102043834&CFTOKEN=59873740
http://www.opencores.org
http://www.latticesemi.com/products/intellectualproperty/ipcores/mico32/mico32developmenthardware.cfm
http://www.latticesemi.com/products/intellectualproperty/ipcores/mico32/mico32developmenthardware.cfm

