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ABSTRACT 

Systems on programmable chip, as system on chip, are composed 

by software and hardware. Therefore a codesign based approach 

is needed to meet the functional requirements. While classic 

codesign flows are long and involve complex and expensive 

design tools, this paper presents a fast but efficient codesign 

flow. To reduce the design cycle and the total cost of ownership 

(TCO), the presented design flow is based on massive reuse of 

Hw Intellectual propriety (IP) and Sw components, and involves 

costless design tools. As a proof of concept we designed and 

implemented a low cost standalone monitoring gateway for 

sensor network entirely based on royalty free Hw and Sw 

components. The hardware design was based on an AMBA bus 

system and a SPARC V8 compliant CPU subsystem. The 

software stack is based on a ported Linux kernel and a 

lightweight Round Robin Data Base Tool acting as a kind of 

middleware processing hardware-independent-software. The 

design was a submitted to series of stress test to evaluate its 

performance and capacity.   
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1. INTRODUCTION 
Although sensor network research was initially driven by military 

applications such as battle-field surveillance and enemy tracking, 

this technology is spreading quickly in civil applications. In fact, 

sensor networks are being deployed for many indoor applications 

like habitat, health, data centers, and factories. Actually, outdoor 

applications like environment observation and forecast system 

are particularly targeted by sensor networks to ensure a remote 

supervision. Indeed these systems could provide important 

information in real-time, like rainfall and water level information 

to evaluate the possibility of potential flooding [1].  Another 

application consists of deploying sensor network at Volcanoes 

edges to monitor remotely its activity [2]. 

Unfortunately sensor networks are usually expensive and 

complex to deploy for many considerations. The main fact is 

their non-standard communications protocols and their different 

electrical proprieties. Consequently, a unified management  

 

console for a global reporting on the status of the deployed 

sensors involves usually unaffordable costs. Using sensor 

networks over standard communication protocol like Internet 

Protocol (IP) is attracting today more and more users. In fact, Ip-

sensor platforms are currently supplied with a monitoring 

gateway driven by a microprocessor and an operating system. 

These platforms generally support Hyper Text Transfer Protocol 

(HTTP) for the presentation layer, Simple Mail Transfer Protocol 

(SMTP) for notification, and Simple Network Management 

Protocol (SNMP) [3] for monitored data collection. 

Nevertheless, such solutions have many constraints. Indeed, 

monitoring gateways are deployed on dedicated servers or in 

expensive hardware appliances. Besides, they require extra 

devices dedicated for routing and security [4]. Such devices are 

either not suitable for deployment in unconditioned 

environments, or over sized compared to the low data stream 

circulating in the Ip-sensor network. 

On the other hand, today’s market is offering more and more 

efficient and highly dense integrated circuits in terms of logic 

resources. Thanks to Very Large Scale Integration (VLSI) 

technologies, the integration of a complete system on a single 

chip (SoC) is easier and less expensive [5].  In this context, Field 

Programmable Gate Array (FPGA) has brought more flexibility 

to embedded systems design. Allowing the integration of a full 

system based on single or multi processor cores and dedicated 

hardware accelerators for the critical functional tasks [6], FPGAs 

are a suitable target for system on programmable chip (SoPC), 

able to implement complex systems designs. 

Thereby, the idea to implement servers on embedded systems 

starts to take hold in many different applications. Despite the fact 

that several studies have demonstrated the possibility to 

implement low-end embedded application servers such as web 

servers with limited resources; the security aspects have been 

marginalized [8] [9] [10]. Consequently such systems are not 

suitable for standalone run-mode.  

Today embedded application servers are taking place on critical 

applications like home appliances [11], renewable energy control 

logic [12], and sensor network monitoring. In many cases, these 

embedded devices are directly connected to the Internet in order 

to be remote-accessible. Thus, they are exposed to an increasing 
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number of threats at each layer of the Open Systems Interconnect 

(OSI) Seven Layer Network Model. 

In this context, we present a fast codesign approach for low cost 

application-specific-system on programmable chip (SoPC).  As 

an application, we designed and implemented a low cost 

monitoring gateway node for Ip-sensor network. The design was 

based on royalty free Sw components and Hw intellectual 

propriety (IP) to decrease the design time cycle and the total cost 

of ownership (TCO). 

The remaining part of this paper is organized as follows: section 

2 presents a typical codesign approach toward a cost effective 

and fast design cycle. Section 3 details the implementation of 

sensor network monitoring gateway based on a SoPC and 

presents its associated experimental results. 

2. Typical fast codesign approach for low 

system on programmable chip 

2.1 Typical Application Specific System on 

programmable chip architecture 
System–on–Programmable-Chip (SoPC) is composed by different 

processing elements and/or other specific electronic subsystems, 

implemented into a single reconfigurable logic chip like Field 

Programmable Gate Array (FPGA).  

A SoPC may contain many types of computing subsystems, 

memories, input/output devices (I/O), and other peripherals. A 

SoPC designer could select hardware intellectual propriety (IP), 

and then connect them together around an on-chip bus system. 

The on-chip bus connects a central CPU subsystem and standard 

components like memory, I/O peripherals, and application-

specific components generally called Hardware Accelerator.  

Because of increasing number of hardware components to be 

connected, today’s SoPC are built today around complex 

hierarchies of buses, with multiple bridges between them. This 

approach has many advantages such as power savings, higher 

integration density, and lower systems costs. 
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Figure 1.  Typical Hw/Sw SoPC architecture based on system bus 

In figure 1, the software stack running on the CPU subsystem 

implemented by the application specific SoPC must fulfill at 

least three requirements:  reducing the size of memory, 

optimizing the overall performance, and minimizing the power 

consumption.  A typical software stack is structured in two 

layers: the task/application-software layer and the hardware-

dependent software (HdS) layer [13]. 

The HdS provides application- and architecture-specific services, 

like applications/task scheduling and communication, hardware 

resource management and control. Indeed, the HdS layer 

represents the software layer which is directly in contact with, or 

significantly affected by, the hardware that runs it; or can directly 

influence the behavior of that hardware [14]. The HdS integrates 

all the software that is directly depending on the underlying 

hardware, such as hardware drivers or boot strategy. 

In depth, the HdS layer [15] is made of five components:  

- HdS API: This application programming interface (API) is 

used by the subset tasks of the application to abstract the 

underlying HdS software layer. 

- The operating system (OS): this component manages the 

sharing of the architecture’s resources by providing services 

like tasks scheduling, context switch, synchronization, and 

interrupt management. 

- Specific I/O communication software: This component 

manages the interaction between hardware components 

composing the design and the other software subsystems.  

- Hardware Abstraction Layer: It is a thin software layer which 

depends on the processor architecture that will run the 

software stack. Implementing drivers for the I/O operations, 

the HAL is responsible for all the processor-specific 

operations like the boot code. 

Thereby, a structured the software stack in several layers offers 

many advantages to SoPC designers, especially flexibility and 

portability. The flexibility means the possibility to re-use 

software components while changing the OS and/or the 

communication software components. Portability means 

possibility to re-use software components on other CPU 

subsystems architecture by changing the HAL software layer. 

Thus, meeting application-specific SoPC architectural 

requirements needs a suitable design flow. 

2.2 Fast Codesign flow for system on     

programmable chip 
Classic hardware/software codesign flow starts from a very high 

abstracted system specification in order to produce an efficient 

implementation that reaches the required performance and 

minimizes the TCO[16]. Besides, the large variety of 

technological targets motivates the designer to explore all 

possible solutions. This phase may take a lot of efforts and time. 

However, as systems become more complex, an increasing 

amount of time is spent exploring the hardware/software design 

space to find the optimal target architecture [17][18]. Figure 2 

describes a fast but efficient SoPC-targeting codesign flow. It 

starts by a functional-partitioned system specification and takes 
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advantage from “design reuse” based on royalty free components 

to reduce Hw/Sw design space exploration. 

Design reuse consists of assembling ready-to-use components 

called Intellectual Property (IP) to design a more complex system 

[15]. Although classic design workflow assumes that a unitary 

design of each element and/or resource composing the targeted 

application as well as its respective unitary test sets is necessary, 

this phase becomes optional in a design reuse-based flow, or at 

least restricted to custom “in-house” made IP components. 

 The remaining part of this section presents a typical codesign 

flow for application-specific system on programmable chip, and 

lists the suitable design tools associated to each phase of the 

flow. 
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Figure 2.  Fast codesign flow for SoPC target  

(i)Partitioned system specification: This typical codesign flow, 

assumes that the design process starts from a given functional-

level partitioned system specification. To ensure short time cycle 

design and low cost, this partitioning must consider the 

computational complexity of the application as well as the 

availability of reusable Intellectual Propriety (IP) for each 

function.  The partitioned system specification lists the different 

functions that the final system would implement in order to 

fulfill its application requirements, and precise whether they are 

going to be implemented in hardware or in software. 

(ii)Hardware, Software and interface IPs Selection: In this phase, 

we should select the suitable IPs to perform each function of the 

system according to the partitioning specification. To accelerate 

the design time, it would be interesting to reduce the integration 

constraints between the unitary components used in the design. 

Therefore, using a global IP library ensures inter-components 

compliance and easier integration. Indeed some global IP 

libraries [19] provide a generic HDL model mapping all its 

components, and a built-on configuration wizard that generates a 

configuration template specifying the selected IP to be 

implemented in the design. Further, in order to decrease the 

design cost, it would be interesting to use open source royalty-

free-IP [20]. Indeed, thanks to the General Public License (GPL) 

licenses, and its derived licenses [21], designers can take 

advantage of many “ready-to-use”, “royalty-free” and “open-

source-coded” software components and hardware IP libraries. 

(iii)Hardware Synthesis: This phase processes Hw IP subset 

specified and mapped at a structural and/or behavioral HDL 

level. The output of this phase is a low level Register-Transfer-

Logic specification of system on a chip. Depending on the FPGA 

reference, this operation could be performed by FPGA vendor 

tools as well as third party vendors. 

(iv)Software cross-compilation: The cross compilation operation 

transforms a set of software packages provided as high level 

language-coded source into a binary code for a specific execution 

environment. This phase is performed by CPU-Specific toolchain 

that compiles the source code to specific hardware architecture, 

and links it to the corresponding software libraries to interface it 

with a given operating system. While each CPU vendor provide a 

specific toolchain, the GNU toolchains powered by GNU Cross 

Compiler GCC [22], provided as free software fit the majority of 

the hardware architecture used in embedded systems industries 

like x86, SPARC-Vx, ARMx, MIPSx, PPCx and 68xx. 

(v)Post synthesis simulation: The behavioral simulation makes a 

number of approximations to make a fast simulation.  The 

concept of time is simplified since it does not consider the time 

to spread. Nevertheless, post-synthesis simulation simulates 

finely the code produced by the synthesis tool. It reproduces most 

of the problem that can occur on chip. While classic codesign 

flows assume that the behavioral simulation is necessary, the 

presented codesign flow in figure 2 avoids it.  This choice was 

made in order to accelerate the design cycle, especially that the 

targeted design is IP-library-centric, and that its components have 

been tested by the library provider. This simulation could be 

performed by FPGA vendors IDE as well as many tools released 

under the GPL license like GHDL [23].  

(vi)Sw cross-emulation: The cross emulation aims to imitate a 

physical behavior of a specific hardware architecture by software. 

Unlike the simulation that attempts to emulate an abstracted 

model by trying to extrapolate some of the unknown variables, 

the emulation reproduces the behavior of a model in which all 

variables are known to reproduce any constraints and/or 

functional system features. In the codesign context, cross 

emulation allows designers to validate at an early stage, unitary-

software components and the major part of it, and even the whole 

software stack composing the design in some specific cases. In a 

context, of a single or homogenous multiprocessor on chip, 

QEMU [24] architectural cross emulator is a convenient tool 

because it emulates the most used CPU architectures in system 

on chip and provides a set emulation models for standard I/O 

peripherals like Ethernet controller, UART interfaces, and even 

USB and VGA controllers. 

(vii)Hw/Sw debugging: Debugging is a key step in the design 

flow, to validate the obtained SoPC. While debugging an 

application, designers usually perform the following actions: 

Breakpoint set/stop/reset to inspect the design state, and to 

interact with; View/trace/analyze any signal or memory contents 

in the design. While many codesign flow targeting FPGA 

implementation present Hw FPGA debugging as a must, the 

suggested design flow consider this phase as optional. Indeed, a 



IJCA Special Issue on “Mobile Ad-hoc Networks” 

MANETs, 2010 

190 

 

key distinction between Sw debugger and Hw FPGA debugger is 

that the Sw debugger provides a rich featured-debug environment 

while Hw debugger provides limited debug capabilities 

especially for embedded high/mid-end software. The GNU GDB 

debugger [25] provided by as free software by the GNU toolchain 

is one of the most suitable Sw debug tool for efficient and cost 

effective design thanks to its multiple features as well as its 

multi-architecture support. 

3. Application for sensor network monitoring  
The typical codesign flow described in the previous section could 

be used to implement efficiently an Ip-sensor network monitoring 

gateway in a SoPC. This section describes the implementation of 

a cost-effective sensor monitoring gateway. The first subsection 

details the functional requirements of sensors monitoring 

applications. The second subsection describes the hardware and 

software architecture of the sensor network monitoring gateway. 

Finally, the last subsections will present consequently the 

implementation results on FPGA and the global monitoring 

gateway performance through series of stress tests. 

3.1 Sensor network monitoring functional 

requirements 
An Ip-sensor network consists of many sensor nodes generally 

communicating using the IP protocol. Such networks are used to 

monitor critical and hostile environments. Therefore, an Ip-

sensor monitoring gateway must provide a good quality of service 

ensuring reliability and security. 

Figure 3 provides a general overview of a classic Ip-sensor 

network. The monitoring gateway has to provide at least three 

features. First, it has to ensure the collection of runtime events 

like availability and sensor-related physical metrics. Second, it 

has to send notification messages if an appropriate event occurs 

by several means like email or short message service (SMS). 

Finally it has to provide a complete dashboard to the sensor 

network supervisor reporting a continuously updated global 

status of the monitored environment. 

Supervisor

WAN


Sensor Network Monitoring Gateway

LAN

Operations Center

IP Sensor

 

Figure 3.  Overview of a classic Ip-sensor network 

In reality, a global monitoring system is a distributed architecture 

composed of a set of sensors and a gateway node.  While a sensor 

behaves as a simple agent providing its instantaneous status, the 

monitoring gateway must be structured in three layers. The 

lowest layer must ensure physical metrics collection from the Ip-

sensors. The middle layer ensures the processing of the collected 

data and their transformation into metric data expressed in unit 

metrics. The top layer ensures reporting. It provides a coherent 

dashboard presenting the monitored environment metrics and 

listing its associated events. In the same time, the reporting layer 

performs the notifications operations. 

This functional specification of the Ip-sensor network monitoring 

gateway shows the complexity of the application. Meeting 

efficiency, low cost and performance constraints requires 

hardware/software implementation compliant with the typical 

SoPC architecture through the fast design cycle described on the 

previous section.  

3.2 Fast Hw implementation of the sensor 

network monitoring gateway 
To satisfy complex application requirements, application-specific 

SoPCs are designed as a combination of processors, memory 

blocks, I/O peripherals, integrated on a single chip. Consequently 

the design could become time consuming and expensive. Dealing 

with integration problems and reducing the design cycle time is a 

major issue to bridge design complexity, increase designer’s 

productivity and reduce time to market (TTM). Therefore the Hw 

design should be exclusively based on a single and reliable IP 

library providing all the required components for networking 

applications. 

Furthermore, to master the total cost of ownership (TCO), the 

suggested design is based on open source IP. Organized in 

libraries, these components are more and more available. Thus a 

fast comparison between the most common royalty free IP 

libraries would be interesting to make the right choice for 

implementation. We will focus particularly on GRLIB [19], 

OPENCORES [26] and LatticeMico [27]. 

Generally, each IP library is especially featured by two main 

elements: the on-chip bus system and the CPU soft-core 

subsystem. Ensuring a centric role in the design, the global 

performance depends on the bus system. On the same time, the 

availability of, as much as possible, “ready-to use” bus-compliant 

peripherals is an attractive advantage for the designers, who 

prefers in general to focus only on the global system integration. 

The second characterizing element of an IP library is the CPU 

soft-core.  This element is also particularly decisive for the 

system performance because it will run the software stack.  

Therefore, the most interesting comparison criteria in a SoPC 

implementation would be CPU features: Pipeline, MMU, PMU, 

FPU and registers; and bus system (performance, availability of 

compliant IP like Ethernet MAC Core for networking). 

Symmetric Multi-Processors (SMP) support, which depends on 

both the bus and the CPU systems, could be also a decisive 

criterion because it guarantees to the designers a high scalability 

of CPU resources in case of complex software treatments. 

Table 1, shows that GRLIB is particularly interesting, because it 

suitable for performance as well as space and/or power 

optimization. Indeed, the built-on LEON3 [7,19,28] soft-core 

supports Symmetric Multi-Processors (SMP), has 7-stage-

configurable pipeline and implements up to 520 configurable 

register windows. This CPU softcore is also full compliant to the 

SPARC V8 standard. This fact gives a master key to the 

designers since they can take advantage of huge SPARC portable 
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GNU software packages because of its compatibility with the 

GNU cross-compiler GCC.  

Table 1. Royalities free IP cores libraries comparaison 

Features 
IP Core Libraries 

GRLIB OpenCores LatticeMico 

BUS AMBA Wishbone Wishbone 

CPU SoftCore LEON 3 OR1k2 
LattMico3

2 

Pipline 7-stages 5-stages 6-stages 

Registers 40-520 32 32 

FPU Yes Yes No 

MMU Yes Yes No 

PMUa Yes Yes No 

SMPb support Yes No No 

 Ethernet 

MAC 
Yes Yes Yes 

 

a. Power Management Unit 

b. Symmetric Multi-Processor 

Thereby, we can conclude that the GRLIB IP library is suitable 

for the sensor network monitoring gateway implementation since 

it offers many read-to-use cores compliant with the AMBA 2.0 

bus as well as a highly scalable soft-core CPU subsystem 

supporting until 8 CPU cores of 32-bits RISC SPARC V8 

compliant. 

Table 2 lists the hardware IP cores required to implement a 

SoPC dedicated for Ip-sensor network monitoring gateway 

application.  

Table 2. List of the IP cores composing the SoPC 

IP Core Function Library 

LEON3 Soft-core processor 

GRLIB 

AHBRAM 
Single-port RAM with 

AHB interface 

AHBROM 
ROM generator with 

AHB interface 

GRETH 

Gaisler Research 10/100 

Mbit Ethernet with AHB 

I/F 

APBUART Programmable UART 

with APB interface 

AHBCTRL 
AMBA AHB bus 

controller with plug and 

play 

APBCTRL AMBA APB Bridge 

with plug and play 

MCTRL 
8/16/32-bit 

PROM/SRAM/SDRAM 

controller 

SDCTRL 
PC133 SDRAM 

controller 

FoCa 
Layer2/Layer3 Packet 

Filter 

Custom 

Design 

 

a. Firewall on a Chip 

 
All theses cores are provided by the GRLIB IP Library except the 

Firewall on Chip (FoC) packet filter which is custom design [29]. 

This component has to ensure access level security on OSI layer 

2 and layer 3, based on packets inspection. The received Ethernet 

packets are filtered according to their MAC addresses, IP 

addresses, protocols and/or ports. These rules are implemented 

on an Access Control List (ACL) ROM. This ACL-ROM is 

programmable only via a Universal Asynchronous Receiver 

Transmitter (UART) unconnected to the on-chip bus system to 

ensure higher security. 

3.3 Fast Sw implementation for the sensor 

network monitoring gateway 
The purpose of this section is to present the software 

specification of the sensors network monitoring gateway using a 

small footprint Web server. This specification must be as flexible 

and efficient to provide a fast, lightweight, and cost-effective 

implementation.  Therefore, we present an architecture that 

provides simple but powerful application interface for Ip-sensor 

network monitoring entirely powered by GPL licensed software 

components. 

The monitoring gateway acts as server providing a global 

environment dashboard in the form of HTML pages and a 

reliable alarm notifications engine. On the other hand from the 

side of sensors, the monitoring gateway acts as a client that 

collects, processes, and analyzes the information retrieved from 

the network sensors via (SNMP) flow. 

Figure 4, presents the designed architecture. The software stack 

implements a hardware dependant software layer around a ported  

Linux Kernel to a SPARC V8 architecture, since it is very 

suitable for embedded networking applications [30,31] ; and a 

hardware independent layer made of four essential parts.  

(i)The HTTP engine: It serves the client’s request. The minimum 

requirement for an HTTP engine is that it must be compliant 

with HTTP specifications [32] for communicating with 

commercial Web browsers. Unlike general Web servers that start 

a new thread or process whenever a new connection is made, 

normally an HTTP engine supports multiple simultaneous users 

while running as a single process. The number of processes that 

the server requires can impact on both RAM usage, due to the 

stack space per task, and CPU usage. The httpd web server, as a 

light implementation of Apache web server provided by the 

Busybox package, is an interesting alternative because it works 

only with one single process. 
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Figure 4.  Monioring gateway architecture 

(ii)The Management application: This module is the core of 

monitoring gateway. It processes and provides the collected 

physical metrics from sensors to the http engine, in order to 

present it in a coherent dashboard in forms of tables and/or 

charts. Besides, it ensures alarm notifications when a special 

event occurs. RRDtool, acronym for Round-Robin Database Tool 

[33] is suitable to implement the management application. 

Indeed RRDtool ability to handle time-series data is a key feature 

in monitoring application. In sensor network context, time-series 

data could be temperatures, humidity, water level, gas density, or 

any other discrete event like a physical intrusion or a smoke 

detection. RRDtool includes also functions to present the 

collected data in tables as well as charts format. The data are 

stored in a round-robin database (circular buffer). This feature is 

definitely the most interesting in our case since the system 

storage footprint remains constant over time. Finally RRDtool 

acts like a middleware that could be programmed by PERL, a 

simple and highly portable language very used for SNMP traps 

analysis. 

(iii)The application interface module: It enables developers to 

add new monitoring functionalities. With any off-the-shelf Web 

authoring tool, it can merge Web documents with management 

application programs to generate specific dynamic management 

information. CGI type interface is provided for interacting with 

the embedded application. CGI type interface is used for 

generating Web document based on parameters submitted by 

operator through Web browser.  

(iv)SNMP agent: It mediates between the sensors and the 

management application.  It collects metric data when extracting 

management information base (MIB) [3] from the SNMP stream 

provided by IP sensor, in order to interface it easy with RRDtool. 

3.4 Implementation results  
To demonstrate the efficiency of the design, an Altera Cyclone2 

EP2C35 package was selected as an implementation target 

because this series is featured by a small silicone area, and very 

low power consumption. 

Table 3. Altera Cyclone 2 EP2C35 Resources Occupation 

Summary  

Ressource Value 

Logic Elements 27.454 

Combinatorials 

functions 

24.217 

Registers Logic 19.202 

Pins 153 

Memory Bits 185304 

PLL 1 

Global Ressources Use 97,31% 

a. Firewall on Chip 

Table.3, summarizes the resources occupation on the 

Cyclone2/EP2C35 FPGA. The high global resource usage rate 

shows that the cyclone 2, despite its small silicone area, was a 

convenient option for the monitoring gateway application since 

97.31% of the available logic resources were used. 

Finally, figure 5 shows a screenshot of the monitoring gateway 

dashboard which lists the Ip-sensors and graphs their metric. 

This dashboard is implemented in HTML and DHTML, and can 

be viewed through any web browser. The graphic layout of the 

dashboard is inspired from a classic monitoring platform [34]. 

 

Figure 5.  Screenshot of the Ip-sensor Monitoring Dhasboard 

In order to evaluate the global performance of the monitoring 

gateway, the frontal web application server was stress tested. 

The system was configured to use 64MB off-chip SDRAM 

available on the FPGA development board, during the 

benchmark. 

The stress tests are based on two scenarios:   

- Ramp Test: gradual incrementing of the number of users     

- Time Test: keeping the server loaded during a specified 

period and observing his reaction. 

 

http://en.wikipedia.org/wiki/Acronym
http://en.wikipedia.org/wiki/Time_series
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Round-robin
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The Stress tests results showed that the designed IP sensor 

monitoring gateway supports up to 283 concurrent connections 

with an average bandwidth near of 2687kbit/s. This means that 

the presented design is suitable for Ip-sensor network monitoring 

application.  

4. Conclusion 
Sensor Networks are used in numerous indoor and outdoor 

applications. They have been adopted especially in critical 

environments like industries and weather forecast systems. 

Therefore a monitoring gateway node is needed to collect, 

process, and report sensitive data. To meet these requirements at 

a mastered cost, we presented a fast but efficient codesign flow, 

based on design reuse, and targeting low cost SoPC. Then we 

implemented a prototype of an Ip-sensor network monitoring 

gateway. To decrease the TCO, the designed system was based 

on an assembly of software (SW) and Hardware (HW) royalty 

free components. To reduce the power consumption, the selected 

FPGA target was Cyclone2/EP2C35. Finally the designed 

monitoring gateway was submitted to a series of stress tests to 

demonstrate its efficiency for sensor network monitoring. The 

future work is to specify an efficient design environment that 

automates the typical codesign flow presented in this paper to 

take advantage of all its features. 
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