
International Journal of Computer Applications (0975 – 8887)

International Conference on Large Language Models and Use cases 2023

43

SpeakQL: SQL Generation from Natural Language

ABSTRACT
In recent years, there has been growing interest in the

complex task of converting natural language into SQL

queries. This challenge typically involves using sequence-

tosequence models, which require the serialization of SQL

queries. However, a fundamental issue arises as a single SQL

query can have multiple valid serializations, leading to the

‘order matters’ problem and making it difficult to train such

models effectively. While existing state-of-the-art methods

turn to reinforcement learning to address this issue, their

success is limited. This paper presents SpeakQL, a novel

approach tailored to scenarios where query order is not

critical. SpeakQL adopts a sketchbased strategy, incorporating

a dependency graph into its model architecture to consider the

influence of prior predictions on current ones. Furthermore,

SpeakQL utilizes GloVe embeddings and a column attention

mechanism to enhance contextual comprehension, ultimately

improving the query generation and result retrieval process.

Keywords
Machine Learning, Deep Learning, Recurrent Neural

Networks (RNN), Long Short-Term Memory (LSTMs),

Global Vector Embeddings (GloVe), Word2Vec

1. INTRODUCTION
In today’s landscape, relational databases house a wealth of

information, and SQL query proficiency is essential for

database navigation. NLP stands at the intersection of Human-

Computer Interaction and AI, serving tasks like information

retrieval and language analysis. NLP aims to enable seamless

communication between humans and computers by

eliminating the need for memorizing complex commands.

Accessing data in databases via natural language offers a

convenient solution, especially for users unfamiliar with SQL.

This system addresses challenges in handling natural language

text and speech, allowing users to articulate queries in plain

language. NLP plays a pivotal role, striving to make

computers understand and generate natural language. Our goal

is to enhance decision-making through data use, simplifying

interactions by converting natural language into SQL, much

like Google Translate does for languages.

The Natural Language Interface (NLI), bridging natural

language processing (NLP) and human-computer interaction,

enables conversational interactions with computers. Our focus

is on the automatic generation of structured query language

(SQL) queries for relational databases. While SQL is the

standard language for interacting with databases, it poses

challenges due to its complexity. Our work introduces a

natural language interface for relational databases, allowing

users to communicate with databases in plain language, rather

than relying on SQL.

In proposed approach, the objective is to use the disciplined

approach to handle the problem of creating string sets. Our

approach avoids the ‘higher order’ problems in the sequential

model and thus eliminates the need to use reinforcement

learning algorithms to handle the problem of sequential

generation limited to some extent. To achieve a better

performance than existing sequence-to sequence-based

approaches using sketch-based approach and column attention

and incorporate the ability to accept any kind of natural

language input requiring some database related information

from the user and provide output consisting of the user’s

required information with maximum accuracy.

2. LITERATURE REVIEW
Victor Zhong and his colleagues [1] employed a seq2seq

(encoder-decoder) methodology, coupled with reinforcement

learning, to provide incentives to the model based on its

generated output. This augmented pointer network operates in

a token-by-token manner, assembling the SQL query by

selecting tokens from a concatenated input sequence. This

input sequence comprises the column names essential for

specifying the selection and condition columns within the

query, the question pertinent to the query’s conditions, and the

restricted SQL language vocabulary, encompassing keywords

like SELECT, COUNT, and so forth. The SQL query is

constructed through the execution of three distinct functions: •

[1] Aggregate Operation - The aggregation operation depends

on the Question [2] Select Column - Depends on the Table

Columns and Question Input and the generation of the

SELECT [3] Where Clause - Augmented Pointer Network is

used to train and generate the WHERE clause depending on

the input question. Cross entropy loss is used to train the

network but it fails to optimize in case of conditions being

swapped and yet it generates the same result. This review

encompasses various implementations involving the

utilization of the WikiSQL dataset for natural language query

processing. In the work by Tao Yu et al. [2] they present a

type-aware model that categorizes words into entity types

such as knowledge graph, column, or number. This approach

treats the task as slot filling, grouping slots logically and

capturing attribute relationships. Their model employs a two-

bidirectional LSTM input encoder and operates on the

WikiSQL dataset, comprising 87,673 examples from 26,521

tables. In practical scenarios, natural language queries often

include rare, database-specific entities and numbers that lack

accurate embeddings in pre-trained word embedding models.

Furthermore, this model assumes exact column names and

user query entries, which introduces privacy and security

concerns. Yibo Sun et al. [3] focus on semantic parsing,

translating natural language expressions into executable

computer programs. They employ pointer networks to convert

questions into continuous vectors, facilitating SQL query

generation through three channels. This model determines

when to generate column names, cells, or SQL keywords and

incorporates column-cell relationships to enhance query

structure. Pointer networks, originally introduced by Vinyals

 Madhu Damani
 Student,
Thadomal Shahani Engineering

College,
Bandra, Mumbai.

 Gaurav Kamdar
 Student,

Thadomal Shahani
Engineering College,

Bandra, Mumbai

Laksh Jethani
Student,

Thadomal Shahani Engineering
College,

Bandra, Mumbai.

Mukesh Israni, PhD

Professor,
Thadomal Shahani Engineering

College,

Bandra, Mumbai.

International Journal of Computer Applications (0975 – 8887)

International Conference on Large Language Models and Use cases 2023

44

et al. [4], have found success in various applications like

reading comprehension, machine translation, and text

summarization. However, the use of bidirectional RNNs with

GRU units for question processing and column-cell

relationship exploitation raises security and privacy

considerations. Huang et al. [5] introduce a unique meta-

learning approach for generating SQL queries from natural

language inputs. Meta-learning leverages metadata from

machine learning experiments and departs from traditional

supervised training in NLP by advocating for task-specific

models for groups of similar examples. To transition from

conventional supervised learning to few-shot meta-learning,

they introduce a relevance function that clusters examples into

pseudo-tasks. This problem-specific function is explained

within the context of the semantic parsing problem,

accompanied by an algorithm outline. Their work also

leverages the WikiSQL dataset. Tong Guo et al. [6] adopt a

distinct perspective by shifting their focus from SQL query

generation to the extraction of data as answers to natural

language questions. They employ semantic parsing within

database-based question-answering systems, implementing

this with BERT (Bidirectional Encoder Representations from

Transformers). BERT, a contemporary language model, is

pre-trained on extensive text data, rendering it adaptable for

various tasks with the addition of just one output layer. This

approach aims to directly retrieve answers from databases,

thereby reducing the need for labor-intensive semantic

parsing. Their implementation utilizing a BERT-based model

produces baseline experimental results.

2.1 Standard Approaches Analysis

In natural language to SQL query conversion, a prevalent

approach involves sequence-to-sequence models with

reinforcement learning. An ongoing challenge is the

importance of query order. To illustrate, consider sorting a set

of random numbers by a specified criterion, generating n!

valid permutations. When training with these uniformly

selected permutations, the mapping assigns equal probability

to all n! output configurations for a given input vector X,

resulting in reduced statistical efficiency. Hence, constraining

the output order as much as possible consistently yields better

outcomes.

 Fig 1. Seq-2-Seq with Column Attention

 Fig 2. Seq2Seq with Reinforcement Learning

2.2 Sketch Based Approach Analysis

To address order-related challenges in sequence-to-sequence

models, reinforcement learning is commonly used, but its

impact can be limited. This study adopts a sketch-based

approach to generate SQL queries, particularly focusing on

the WHERE clause. This approach introduces two

mechanisms: sequence-to-set prediction to handle unordered

constraints and column attention to capture dependencies

defined in the sketch during prediction.

 Fig 3. Encoder – Decoder Architecture

3. DESIGN AND IMPLEMENTATION

The design and implementation define the requirements along

with the use case, architecture, functionality, techniques and

the components.

3.1 Functional Requirements

Functional requirements encompass calculations, technical

details, data processing, and other specific functionalities that

delineate a system’s objectives. Behavioral requirements,

delineating system utilization based on these functional

aspects, are encapsulated within use cases. [1] Dynamic

Nature - The system must handle diverse, complex natural

language statements, proficiently identifying the keywords. It

should extract and store pertinent information to generate

queries based on input statements. [2] Output Generation -

The system should discern keywords in statements and

endeavor to generate corresponding SQL queries and outputs.

[3] Functionalities - The classifier must adeptly employ both

local and global discriminators for keyword classification.

Model training should not only facilitate query generation but

also optimize the output.

International Journal of Computer Applications (0975 – 8887)

International Conference on Large Language Models and Use cases 2023

45

3.2 Non - Functional Requirements

Non-functional requirements encompass aspects beyond

system functionalities, addressing its overall performance and

behavior. [1] Performance Requirements - Instead of

sequentially generating column names, the model predicts the

appearance of column names within a specified subset,

computed as the probability Pwherecol [2] Reliability -

Ensuring High Success Rate in Query Generation is

imperative. The system must produce realistic outputs, even in

complex inputs and adverse conditions, necessitating

appropriate model training. [3] Security - Given the

confidentiality of organizational data, stringent security

measures must be in place. Data should be stored securely,

adhering to principles of Confidentiality, Integrity, and

Availability. [4] Scalability- The system must handle diverse

inputs efficiently, including improper ones, while

accommodating large datasets.

3.3 Design Architecture

System architecture defines the structure, behavior, and

perspectives of a system. An architectural specification

formalizes this, aiding understanding. It outlines the system’s

flow, from raw input to module output.

The system’s model processes user input, extracting keywords

for query formation. GloVe embeddings, trained using the

Stanford NLP core library, map these keywords to

corresponding column names. Subsequently, employing a

sketch-based slot filling approach, the application generates

the pertinent query. The ODBC library is utilized to construct

the final query for execution against the database. The raw

query is also provided as output for user and developer

verification of query accuracy.

Fig 7. Architecture System Design

3.4 Sketch Based Approach Components

SpeakQL primarily focuses on slot filling within the sketch,

eliminating the need to predict both output grammar and

content. The sketch closely aligns with SQL grammar, and

slot value prediction depends only on relevant slot values

through directed dependencies in the sketch. Our model can

be conceptualized as a graphical model based on this

dependency graph, treating query synthesis as an interface

problem on the graph. To handle more intricate SQL queries,

we employ sketches supporting richer syntax.

3.4.1 Sequence-to-set

Our approach predicts the presence of column names in a

subset, calculating the probability Pwherecol. It utilizes

separate LSTMs for encoding column names and questions,

with matching dimensions for vectors and embeddings.

3.4.2 Column Attention

In essence, deciding which column best fits the prediction of

the actual column. For instance, the token "player" is more

significant to predicting the column "player," but "number" is

more relevant to predicting the column "no.

Fig 8. Encoder – Decoder with Column Attention

Architecture

3.4.3 Selection of Column Slots

After calculating column inclusion probabilities, SpeakQL

selects the top-K columns with the highest probabilities for

the WHERE clause and classifies the operator slot for each

column, choosing from =, ¡, ¿ with column attention.

3.4.4 Selection of Value Slots

In this scenario, we employ a sequence-to-sequence

architecture to generate the Substring, and the order of tokens

within the VALUE slot holds significant importance. The

procedure for selecting the column slot in the SELECT clause

mirrors that of the WHERE clause, with the distinction that

there is only one column to be chosen.

3.5 Input Encoding Details

In this process, the column name and the natural language

description are regarded as a tokenized string. Every

individual token is mapped to a distinct vector, which is then

incorporated into a word embedding vector before being

inputted into the bidirectional LSTM model. In this context,

we make use of GloVe integration for word embeddings.

3.6 Training Details

The training details encompasses the input and the weight

sharing details of the word integration.

3.6.1 Input Encoding Model Details

Column names and natural language descriptions undergo

tokenization using the Stanford CoreNLP tokenizer, breaking

them down into a sequence of tokens. Each token is then

transformed into a one-hot vector before being passed through

a word embedding vector and subsequently into the bi-

directional LSTM. The ‘GloVe’ word embedding is employed

in this process.

3.6.2 Weight Sharing Details

Only word integration is shared by SQL Net components. In

order to forecast various positions in the sketch, the model

additionally includes numerous LSTMs. Better performance

can be achieved by using different LSTMs to predict distinct

International Journal of Computer Applications (0975 – 8887)

International Conference on Large Language Models and Use cases 2023

46

time slots at the same time. Training with word embeddings

produces better results.

3.7 Word Embedding Techniques
In NLP, extracting valuable information from text using

machine and deep learning techniques involves converting

words and sentences into numerical vectors, known as Word

Embeddings or Word Vectorization. This process maps

vocabulary words or phrases to real-number vectors,

facilitating tasks like word predictions and semantic analysis.

Word Embeddings play a vital role in various NLP

applications.

[1] Compute similar words

[2] Text classifications

[3] Document clustering/grouping

[4] Feature extraction for text classifications

[5] Natural language processing.

There are two Embedding techniques which are of interest to

in order to accomplish the task of mapping related words:

3.7.1 Word2Vector
Word2vec consists of a family of shallow neural network

models designed for generating word embeddings. These

models analyze large text corpora and create high-

dimensional vector spaces where each word corresponds to a

unique vector. The vectors are organized so that words with

similar contextual usage in the corpus are positioned close

together in the space.

3.7.2 GloVe Embeddings
GloVe, short for Global Vectors, is a model for word

representation that transforms words into vectors based on

their semantic relationships. This unsupervised learning

approach uses co-occurrence statistics from a corpus to map

words into a vector space, revealing meaningful linear

structures.

Developed as an open-source project at Stanford, GloVe

combines global matrix factorization and local context

window methods for word representation learning.

Fig 9. GloVe Word Embedding

3.8 Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs) preserve information

through loops, considering past outputs up to ‘t-1’ in the

current decision. This memory feature is beneficial for tasks

requiring recollection of previous experiences. In the context

of query interpretation, two notable networks are relevant.

3.8.1 Long Short-Term Memory Network
LSTMs track long-term dependencies by retaining contextual

information for extended durations through input, forget, and

output gates.

[1] Input Gate: The amount of information that we store in

the current state is regulated by the input gate.

[2] Forget Gate: The amount of information (memory from

the past experience) that we discard is regulated by the forget

gate.

[3] Output Gate: The amount of information that should be

exposed to the next state is regulated by the output gate.

3.8.2 Gated Recurrent Units (GRUs) Network
By storing contextual data for shorter periods of time and

enabling information to go from one state to the next via the

reset and update gates, the GRUs achieve the task of tracking

long-term dependencies.

[1] Reset Gate: This mechanism controls how much of our

stored memories (from prior experiences) are erased.

[2] Update Gate: The update gate controls how much data is

revealed to the following state.

LSTMs and GRUs differ in information flow control. LSTMs

excel with extensive sequential data requiring selective

information exposure, while GRUs are faster for shorter

sequences. GRUs are preferred for speed and shorter data,

while LSTMs are accurate for lengthy sequences. In image

captioning, GRUs suit the task due to limited information

exposure. However, in visual dialog tasks, LSTMs are favored

for retaining lengthy dialog histories.

4. RESULTS AND DISCUSSIONS
The results and testing strategies along with current loopholes

are discussed below. This comprises of Evaluation Dilemma

and strategy adopted for testing.

4.1 Testing

The database currently used comprises three tables: students,

marks, subjects, with a provided schema. The system extracts

query keywords and maps them to columns to generate SQL

queries using a slot-based approach. It handles added

complexities like comparisons, multiple conditions, and

structured clauses, as well as aggregate functions (SUM,

AVG, MAX, MIN). It can handle one layer of complexity for

joins and nested queries and incorporates the ’distinct’

keyword for refined output.

4.1.1 Blackbox Testing

Black-box testing focuses on meeting standards while hiding

an application's internal workings. When used in machine

learning, it functions without regard to model specifics.

Finding an appropriate test oracle for result validation is the

main obstacle. The steps involved in black box testing are as

follows: [1] First, requirements and specifications are

reviewed [2] Testers identify valid and invalid inputs to

evaluate accuracy [3] They create test cases using the selected

inputs [4] The test cases are run, and the software testers

compare the expected and actual outputs. [5] Any flaws are

rectified and retested.

International Journal of Computer Applications (0975 – 8887)

International Conference on Large Language Models and Use cases 2023

47

 Fig 10. Testing Output

4.2 Evaluation Strategies
Three metrics are available to us for assessing our model's

performance:

[1] Logical-form accuracy: To see if the generated SQL

query and the ground truth match, we compare them.

[2] Query-match accuracy: We create a canonical

representation from the synthesized SQL query and the

ground truth, then we compare if two SQL queries match

exactly. The ordering problem can be resolved by using this

metric to remove false negatives.

[3] Execution accuracy: The degree to which the outcomes

of the synthesis query and the ground truth query match.

4.3 Evaluation Dilemma

Due to the nuances in the nature of SQL queries, it is very

common to witness two queries resulting in the same output.

Moreover, the use of aliases further makes it difficult to

evaluate the correctness of a query syntax.

Lastly, complexities like JOIN A.id on B.id being as correct

as JOIN B.id on A.id makes it difficult Thus, we stick

evaluate the effectiveness of our model based on the

correctness of the final set of tuples generated.

5. CONCLUSION
In conclusion, our innovative approach marks a significant

stride toward democratizing database usage, bridging the gap

for those unfamiliar with the intricacies of database queries.

Leveraging processes like tokenization, parsing, and

semantics, we seamlessly translate natural language queries

into equivalent SQL commands. This predictive system not

only discerns the user’s intent but also rigorously validates

and executes the resulting query. To maintain peak

performance, continuous updates to the system’s data

dictionary, tailored to the specific domain, are imperative. Our

system exhibits remarkable versatility, accommodating both

straightforward and intricate queries. While it is a powerful

tool for novice users to effectively manage databases, it’s

worth noting that further development is necessary to

encompass the entire spectrum of SQL query types. With our

solution, navigating the world of databases becomes

accessible and effortless for users of all backgrounds.

6. FUTURE WORK
Some upgrades to this working project can be inclusion of

insert and update statements. To implement these features,

more focus must be given on the schema of all tables to

maintain consistency throughout the database. In addition to

that, the project can be made updated to work with NoSQL

databases. In RDBMS the integrity of systems is of prime

importance, and a well-defined schema is provided

beforehand to the model. However, in case of NoSQL

databases, the extreme flexibility in the structure can make it

difficult to create well defined constraints while training the

model. While handling of such databases is beyond the scope

of this project, it definitely opens the door for future research

opportunities for others to explore further down this path. Last

but not least, developing standardized universal metrics which

can handle the complexity brought in by the subjective nature

of SQL queries would also prove to be helpful for several

such related projects. In sum, the above-mentioned areas can

be tapped upon by the community for further research.

7. REFERENCES
[1] Ayodele Adebiyi, Aderemi Adewumi, and Charles Ayo.

“Stock price prediction using the ARIMA model”. In:

Mar. 2014. DOI: 10.1109/UKSim.2014.67. s

[2] Khalid Alkhatib et al. “Stock Price Prediction Using K-

Nearest Neighbor (kNN) Algorithm”. In: 2013. URL:

https://api.semanticscholar.org/CorpusID:17150877.

[3] Vaishnavi Gururaj and R ShriyaV. “Stock Market

Prediction using Linear Regression and Support Vector

Machines”. In: 2019 URL: https://api.semanticscholar.

org/CorpusID:220725999.

[4] Chien-Feng Huang et al. “A comparative study of stock

scoring using regression and genetic-based linear

models”. In: 2011 IEEE International Conference on

Granular Computing. 2011, pp. 268–273. DOI:

10.1109/GRC. 2011.6122606.

[5] Zan Huang et al. “Credit rating analysis with support

vector machines and neural networks: A market

comparative study”. English (US). In: Decision Support

Systems 37.4 (Sept. 2004), pp. 543–558. ISSN: 0167-

9236. DOI: 10.1016/S0167-9236(03)00086-1.

[6] Bast, H., & Haussmann, E. (2015, October). More

accurate question answering on freebase. In Proceedings

of the 24th ACM International on Conference on

Information and Knowledge Management (pp. 1431-

1440). https://doi.org/10.1145/2806416.2806472

[7] Blunschi, L., Jossen, C., Kossman, D., Mori, M., &

Stockinger, K. (2012). Soda: Generating SQL for

business users. Proceedings of the VLDB Endowment, 5,

932-943. https://doi.org/10.14778/2336664.2336667

[8] Chang, S., Liu, P., Tang, Y., Huang, J., He, X., & Zhou, B.

(2020, April). Zero-shot text-to-SQL learning with

auxiliary task. In Proceedings of the AAAI Conference

on Artificial Intelligence, (pp. 7488-7495). Association

for the Advancement of Artificial Intelligence.

https://doi.org/10.1609/aaai.v34i05.6246

[9] Clarke, J., Goldwasser, D., Chang, M. W., & Roth, D.

(2010, July). Driving semantic parsing from the world’s

response. In Proceedings of the fourteenth conference on

computational natural language learning (pp. 18-27).

https://www.aclweb.org/anthology/W10-2903.pdf

[10] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K.

(2018). Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint

arXiv:1810.04805. https://arxiv.org/abs/1810.04805

[11] Dong, L., & Lapata, M. (2018). Coarse-to-fine decoding

for neural semantic parsing. In 56th Annual Meeting of

the Association for Computational Linguistics, (pp. 731–

742), Association for Computational Linguistics,

International Journal of Computer Applications (0975 – 8887)

International Conference on Large Language Models and Use cases 2023

48

Melbourne, Australia. https://doi.org/10.18653/v1/P18-

1068

[12] Ferré, S. (2017). Sparklis: An expressive query builder

for SPARQL endpoints with guidance in natural

language. Semantic Web, 8(3), 405-418.

https://doi.org/10.3233/SW-150208

[13] Guo, J., Zhan, Z., Gao, Y., Xiao, Y., Lou, J. G., & Liu, T.

(2019). Towards complex text-to-SQL in cross-domain

database with intermediate representation. In 57th

Annual Meeting of the Association for Computational

Linguistics, (pp. 4524-4535), Association for

Computational Linguistics, Florence, Italy.

https://doi.org/10.18653/v1/P19-1444

[14] Youssef Mellah et al. / Journal of Computer Science

2021, 17 (5): 480.489 DOI: 10.3844/jcssp.2021.480.489

488 He, P., Mao, Y., Chakrabarti, K., & Chen, W.

(2019). X-SQL: reinforce schema representation with

context. arXiv preprint arXiv:1908.08113.

https://arxiv.org/abs/1908.08113

[15] Howard, J., & Ruder, S. (2018). Universal language

model fine-tuning for text classification. In Proceedings

of the 56th Annual Meeting of the Association for

Computational Linguistics, (pp. 328-339), Association

for Computational Linguistics, Melbourne, Australia.

https://doi.org/10.18653/v1/P18-1031

[16] Hwang, W., Yim, J., Park, S., & Seo, M. (2019). A

comprehensive exploration on wikiSQL with tableaware

word contextualization. arXiv preprint

arXiv:1902.01069. https://arxiv.org/abs/1902.01069

[17] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,

& Soricut, R. (2019). Albert: A lite bert for

selfsupervised learning of language representations.

arXiv preprint arXiv:1909.11942.

https://arxiv.org/abs/1909.11942

[18] Li, N., Keller, B., Butler, M., & Cer, D. (2020).

SeqGenSQL--A Robust Sequence Generation Model for

Structured Query Language. arXiv preprint

arXiv:2011.03836. https://arxiv.org/abs/2011.03836

[19] Liu, X., He, P., Chen, W., & Gao, J. (2019a). Multi-task

deep neural networks for natural language understanding.

In Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics, (pp. 4487–

4496), Association for Computational Linguistics,

Florence, Italy.

[20] Loshchilov, I., & Hutter, F. (2017). Decoupled weight

decay regularization. arXiv preprint arXiv:1711.05101.

https://arxiv.org/abs/1711.05101 Lyu, Q., Chakrabarti,

K., Hathi, S., Kundu, S., Zhang, J., & Chen, Z. (2020).

Hybrid ranking network for textto-SQL. arXiv preprint

arXiv:2008.04759. https://arxiv.org/abs/2008.04759

IJCATM : www.ijcaonline.org

