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ABSTRACT 

In entire network data is transmitted from source to destination by 

VNT. Dynamic virtual network topology(VNT) reconfiguration 

method for  internet protocol over tomogravity method under 

traffic matrix. While transmission the traffic will occur to reach 

the destination. These traffic matrix include the estimation errors.  

Estimation  can be measure by load in each link. Estimation errors 

will degrade the performance of  traffic engineering. A traffic 

matrix is required to design, plan, and manage telecommunication 

network. Instead of doing VNT reconfiguration at once have to 

divide VNT reconfiguration at multiple stages. By dividing, the 

error can be reduced at each stage. 

General Terms 

 Design, Measurement, performance 

Keywords 
Internet Protocol(IP), Traffic matrix, Virtual network 
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1. INTRODUCTION  
Traffic matrix is very important for network operators. Traffic 

engineering is a representation of a method of optimizing the 

performance of telecommunication network and regulating the 

behavior of data transmitted over that network. The application 

include logical topology design, planning and managing 

configuration. Traffic matrix is collected by data collection. 

Traffic matrix conduct traffic engineering task. IP network is 

made up of  IP routers, within single system. Networks consist of 

set of nodes, links, routers and adjacencies. The volume of traffic 

T i,j from i to j is time interval. Tomogravity method is simple, 

efficient,accurate for IP network traffic matrix estimation. The 

method have an ideas from  gravity modeling and tomographic 

methods.Tomografic method based on the system of linear 

equation. 

  X=At 

where t is the traffic matrix (written as a column vector), X 

represents link loads, and A the network routing matrix.  The 

equation statesthat the traffic matrix must be consistent with 

network routing and measured link loads throughout the network, 

not just at the edge. 

2. RELATED WORK  

2.1   Virtual Network Topology (VNT) 
It consists of electrical IP router part and optical cross-connect 

(OXC) part is used to connect. Every port of electrical IP router is 

connected to the OXC port via internal fiber. All traffic between 

nodes is carried over the link load. A lightpath is established 

between nodes by setting up the crossconnects along the route 

between nodes. The number of wavelengths per link and the 

number of transceiver port per node is a limited resource in 

determining the VNT. 

2.1.1 Virtual Topology Reconfiguration 
A major advantage of an optical network is that it may be able to 

reconfigure its virtual topology to adapt to changing traffic 

patterns. Some reconfiguration studies on optical networks have 

been reported before however, these studies assumed that the new 

virtual topology was known a priori, and were concerned with the 

cost and sequence of branch-exchange operations to transform 

from the original virtual topology to the new virtual topology. We 

propose a methodology to obtain the new virtual topology, based 

on optimizing a given objective function, as well as minimizing 

the changes required to obtain the new virtual topology from the 

current virtual topology. This approach would result in the 

minimum number of switch retunings, thus minimizing the 

number of disrupted lightpaths. Consequently, this approach also 

minimizes the time it takes to complete the reconfiguration 

process. Some discussions on the control  mechanisms required to 

perform retuning of lightpaths. The ILP formulation in Section II 

can help us derive new virtual topologies from existing virtual 

topologies. In the ideal situation, 

given a small change in the traffic matrix, we would prefer for the 

new virtual topology to be largely similar to the previous virtual 

topology, in terms of the constituent lightpaths and the routes for 

these lightpaths, i.e., we would prefer to minimize the 

changes in the number of WRS configurations needed to adapt 

from the existing virtual topology to the new virtual topology. 

Given a certain traffic matrix, there may be many different virtual 

topologies, each of which has the same optimal value with regard 

to the objective function, i.e., (2). Usually, an optimizaton 

package will terminate after it has found the first such optimal 

solution. 

 

2.2 Design Goal 
First, the method should be simple. Simple method means quick 

responsiveness and easy to implement. Second, the method should 

be efficient. The goal of traffic engineering is to optimize network 

resource utilization. Third, the method should work as a 

distributed system to achieve robustness against failure. It works 

automatically with  minimum human intervention. 

The first issue stems from the fact that the different virtual 

network topologies are obtained if we change the order of 

lightpath setup/teardown. If two nodes assume different order of 
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lightpath setup/teardown, they have inconsistent views of the new 

VNT. The second issue stems from the fact that one node may 

request to tear down an underutilized lightpath while the other  

may maintain it for quality-of-service (QoS) concerns . Two 

issues need to be addressed in designing the distributed method 

for the VNT reconfiguration. The first one is the order of lightpath 

setup and/or teardown and the second one is the conflicting 

requests on lighpath. 

2.3  Control Mechanism 
Each node in the network initiates the VNT reconfiguration 

procedure. The link-state routing protocol is used to flood 

information on the VNT and traffic demand over the lightpath 

throughout all nodes in the networks. The VNT is reconfigured 

after each node finishes setting up and tearing down the lighpaths. 

Once the new VNT is achieved, the IP traffic is rerouted over the 

new VNT. The distributed method is extending a link-state 

protocol. All link-states in the network need to be shared by all 

nodes. The larger the network size, the larger the number of link-

states. For a large scale network, a hierarchy could be used to 

achieve scalability. On the other hand, the network utilization 

could be compromised due to suboptimality of hierarchical 

approach. 

 

2.4  Multi-stage Heuristic Reconfiguration 

Approach 
In a virtual topology designed for a particular traffic, if node pairs 

with high traffic were far apart in the virtual topology in terms of 

the number of hops, the routed traffic would increase greatly, and 

the load on links in the virtual topology would increase also. 

Intuitively, it can be seen that reconfiguration should establish 

lightpath between node pairs that have large traffic in order to 

reduce the routed traffic and hence the average weighted hop 

count. 

 

Heuristic approaches have the inherent drawback of continual 

approximation. This may lead to an increase or decrease in the 

difference between the theoretical optimal solution and the current 

solution, as approximations are applied every time. Whether the 

difference increases or decreases is very difficult to 

determined. To take care of this, traffic prediction is introduced to 

compensate for this continual approximation in this study. In this 

section, we present a heuristic algorithm that realizes the multi-

stage decision-making process, which tries to counter the 

continual approximation by using predicted traffic. 

 

Heuristics become important when the problem formulation 

becomes large due to increase in the physical size of the network, 

and becomes difficult to solve by traditional LP methods due to 

computational constraints. Results of these heuristics compare 

favorably with the optimal result obtained by solving the exact 

problem formulation. The details of optical layer path 

addition/deletion phases are as  follows. 

 

2.4.1  Optical Layer Path Addition Phase 
If the utilization of an optical layer path exceeds , a new optical 

layer path is set up to reroute traffic away from the congested 

optical layer path. First, we collect a set of packet layer paths that 

pass the most congested optical layer path. Then, we select the 

busiest of the collected packet layer paths. Finally, we add the 

direct optical layer path (i.e., a single directly connected link) 

from ingress to egress nodes of the selected packet layer path. 

 

2.4.2 Optical Layer Path Deletion Phase 
If the utilization of an optical layer path is less than and the 

deletion of the optical layer path is shown not to cause 

congestion, the path is torn down so the IP router ports and 

wavelengths can be reclaimed for future use. The optical layer 

path is checked for potential for its deletion to cause congestion 

by calculating the utilization of optical layer paths after deletion 

using the traffic matrix estimated in the current stage. If there is 

more than one candidate for deletion, each candidate path is tested 

in ascending order of utilization. 

 

2.5 Heuristic Algorithm for VNT Calculation 
A heuristic algorithm is used for calculating the VNT because it is 

simple enough to work quickly. In order to make the method work 

in a distributed manner, we do not assume any order of 

setup/teardown of lightpaths in designing the VNT calculation 

algorithm. The algorithm adds new lightpaths to mitigate 

congestion and removes existing underutilized lightpaths if 

possible for eclamation. The VNT algorithm should not assume 

any order of setup/teardown of lightpaths initiated by individual 

originating nodes. Multiple new lightpaths may contend the same 

resource of the number of wavelength links and the number of 

transceiver ports before all underutilized lightpath candidates are 

removed. To avoid this situation, the heuristic algorithm adds new 

lightpath candidates first without relying on resources returned by 

removed lightpaths, and then removes existing  nderutilized 

lightpaths. 

 

All underutilized lightpaths are tested in a deterministic order in 

calculating the new VNT.We should note that even though we 

assume the deterministic order of lightpath deletion in the VNT 

calculation, we do not have to care about the order of lightpath 

teardown after the new VNT is determined. 

 

2.6 Network Model 
We consider a network of nodes connected by bidirectional 

optical links forming an arbitrary physical topology. Each optical 

link supports wavelengths, and any node is assumed to have 

transmitters and receivers. We assume that each node is equipped 

with an OXC with full wavelength-conversion capability, so that a 

lightpath can be established between any node pair if the 

resources (an optical transmitter at source, an optical receiver at 

destination, and at least a wavelength on each fiber link) are 

available along the path. Mechanisms to accommodate no 

wavelength conversion and different numbers of wavelengths on 

different links are straightforward.We consider unidirectional 

lightpaths, since the traffic between two nodes is not necessarily 

symmetric. 

 

Each OXC is connected to an edge device, e.g., an IP router, 

which can be a source or a destination of a traffic flow and which 

can provide routing for multihop traffic passing by that node. We 

assume that each router is capable of processing all packet traffic 

flowing through it and of observing the amount of traffic on its 

outgoing lightpaths. In this paper, for ease of explanation, we 
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consider a centralized approach to the virtual topology 

reconfiguration problem. A central manager will collect the 

virtual-link usage information from routers at the end of every 

observation period. Specifically, the link-usage information 

needed to make a reconfiguration decision consists of which links 

are overloaded, which links are underloaded, and what are the 

end-to-end packet-traffic intensities flowing through the 

overloaded links. The decision for a topology change will then be 

made by the central manager, and a signaling mechanism will be  

started if a lightpath addition or deletion is required as a result of 

the decision algorithm (in this paper, for simplicity, we ignore the 

details of the signaling protocol). An implicit assumption here is 

that the observation period is much longer (typically hundreds of 

seconds or longer) than the time it takes for control signals to 

propagate from various nodes to the central manager. We expect 

that it is possible to design a decentralized protocol to do this job 

as well, but this is outside the scope of our present investigation. 

 

In the optical layer, we use shortest path routing for routing 

lightpaths on the physical topology and the first-fit scheme for 

wavelength assignment. For packet routing, we consider a shortest 

path (minimum-hop) routing scheme, since it provides 

better usage of network links and is frequently used by existing 

routing protocols. 

 

 

3.  OVERVIEW OF PROPOSED METHOD 
These methods differ in how they deal with the under-

determination of the system of tomographic constraint equations. 

Optimization-based tomography approaches typically find a 

solution that optimizes an objective function, whereas network 

tomography approaches often use the higher order statistics of the 

link load data to create additional constraints. This system is 

highly under-constrained, and so the challenge is to choose the 

“best” solution from the space of possibilities. The typical 

approach has been to use additional modeling assumption to 

derive constraints from the higher order statistics of the traffic. An 

alternative that is well known in social sciences for modeling 

commodity exchanges is the gravity model. In network 

applications, gravity models have been used to model mobility in 

wireless networks, and the volume of telephone calls in a network. 

The paper also suggests using their method to generate priors to 

serve as inputs to statistical tomography techniques, but does not 

test this idea. An alternative generalization of the gravity model 

that explicitly models inter-peer routing was used. Gravity models 

are typically based on edge data, and as such do not guarantee 

consistency with the observed link loads on the interior of the 

network. 

 

3.1 Background 

3.1.1 Network 
An IP network is made up of IP routers and IP adjacencies 

between those routers, within a single autonomous system or 

administrative domain. It is natural to think of the network as a set 

of nodes and links, associated with the routers and adjacencies. 

Network as backbone nodes and links, and refer to the others as 

edge nodes and links. In general the network will connect to other 

autonomous systems and customers via edge links. The edge links 

into access links, connecting customers, and peering links, which 

connect other (non-customer) autonomous systems. In large IP 

networks, distributed routing protocols are used to build the 

forwarding tables within each router. It is possible to predict the 

results of these distributed computations, from data gathered from 

router configuration files. 

 
Figure 1.  IP network components and terminology 

 

3.1.2 Traffic Data 
In IP networks today, link load measurements are readily 

available via the Simple Network Management Protocol (SNMP). 

SNMP is unique in that it is supported by essentially every device 

in an IP network. Since every router maintains a cyclic counter of 

the number of bytes transmitted and received on each of its 

interfaces, we can obtain basic traffic statistics for the entire 

network with little additional infrastructure support. 

The properties of data gathered via SNMP are important for 

implementation of a useful algorithm – SNMP data has many 

limitations. Data may be lost in transit (SNMP uses unreliable 

UDP transport; copying to our research archive may introduce 

loss). Data may be incorrect (through poor router vendor 

implementations). The sampling interval is coarse (in our case 5 

minutes). Many of the typical problems in SNMP data may be 

removed with minimal artifacts using simple techniques. Slightly 

more sophisticated methods of anomaly detection and 

interpolation produce even better results, but we shall use simple 

hourly data for the purposes of this study, as hourly (or longer) 

data are commonly dealt with by many ISPs. This data is collected 

at the router which aggregates traffic by IP source and destination 

address, and TCP port numbers. 

 

Traffic matrix (TM) is a representation of the volume of traffic 

that flows between origin-destination (OD) node pairs in a 

communication network. Obtaining accurate TMs is very 

important for network operators that conduct traffic engineering 

tasks. Such measurements typically require specialized router 

software and hardware dedicated to data collection. The state-of-

the-art research efforts in traffic matrix estimation have been 

focused on the modeling method, which relies on statistical 

inference techniques. 
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3.1.3 Traffic Dynamics 
To understand traffic dynamics and what this may mean for OD 

traffic models, begin by some exploratory analysis of our traffic 

matrix data. Our data includes one month of OD pair 

measurements collected in Sprint’s IP backbone network by 

enabling Netflow on all the incoming links from gateway routers 

to backbone routers. The resulting link-by-link traffic matrix is 

aggregated to form both a router-to-router and a POP-to- POP 

traffic matrix. Other traffic matrix studies have argued that the 

little flows (and errors in estimating them) can be ignored because 

network administrators only care about estimating the large flows 

correctly. The very small flows are not important because capacity 

planning tasks, route selection, load balancing, failure 

provisioning should be tailored to work for the vast  majority of 

the traffic. 

3.1.4  Terminology 
For the purpose of computing traffic matrices, without loss of 

generality, assume that all access and peering links terminate at 

Edge Routers and that all remaining routers are Backbone Routers 

that only terminate backbone links. There may be more than one 

route between two routers even using only shortest paths. Assume 

that traffic will be evenly distributed across all such routes. One 

could compute traffic matrices with different levels of aggregation 

at the source and destination endpoints, for instance, at the level 

of PoP to PoP, or router to router, or link to link. Primarily 

interested in computing router to router traffic matrices, which are 

appropriate for a number of network and  

traffic engineering applications, and can be used to construct 
more highly aggregated  traffic matrices (e.g. PoP to PoP) using 

routing information. 

3.2 Load Balancing 
The adaptation mechanism works to balance the lightpath loads 

all over the network to maintain all loads in the balance region. In 

this section, we show the load-balancing ability of the system. 

Fig. 15 plots the distribution of lightpaths according to their 

loads, for three different watermark-value pairs. At the end of 

each observation period (300 s for this example), the loads of all 

lightpaths in the network are measured and the occurrence of each 

load is added to the total occurrences of that load since the 

beginning of the simulation. This process is repeated at the end of 

every observation period throughout the simulation. A point in 

this graphic indicates the percentage of the lightpaths with that 

load in the course of the experiment (a five-day run). The figure 

shows that a high percentage of the links are in the balance region. 

Another result is that most of the lightpaths are gathered in a 

smaller region toward the middle of the balance region, showing 

that fewlightpaths are critically close to thewatermarks, and they 

can trigger a topology adjustment in the observation 

period. 

 

3.2.1 Load Minimization Solution 
A unique feature of the placement problem for a synthetic traffic 

matrix is that link loads are unknown. This implies that the choice 

of how to organize the flow rates into a traffic matrix is impacted 

by both feasibility and congestion concerns. A particular 

placement is considered feasible if none of the link capacities are 

exceeded. In other words, by an appropriate choice of a traffic 

matrix and routing, one can minimize congestion (note that the 

matrix may not be feasible. We address this issue in a subsequent 

section.) Minimizing congestion is a desirable and widely used 

metric for traffic engineering. Hence, our first method, the Load 

Minimization Solution, seeks to determine a mapping that tries to 

achieve this goal. Our ILP solution will find a solution that meets 

the capacity constraints if such a solution exists; this partly comes 

as a consequence of minimizing congestion. For ease of 

exposition, we define some terminology below, before presenting 

the ILP. 
 

3.3 Errors in Traffic Matrix Estimates 
A detailed general analysis of the errors in the different traffic 

matrix estimates is presented in [4]. For reference in this paper we  

provide some simple measurements of the errors. we present 

relative error of estimated traffic matrices versus true traffic 

matrices. That is, for each hour we compute the sum (over the 

source-destination pairs) of the absolute value of the error 

between estimated and true traffic, and divide this sum by the total 

traffic. We see that tom gravity is more than twice as good as 

general gravity, which is more than twice as good as simple 

gravity. These findings are consistent with those reported in [4]. 

we present an alternative representation of the estimates more 

comparable with later figures on max-utilization.A simple-minded 

hypothesis is that optimizing over the true traffic matrix, the max-

utilization is going to be proportional to mean traffic and that if 

we optimize over an estimated traffic matrix, the performance is 

degraded by mean error.The mean traffic plus the mean (absolute) 

errors for each of the data sets over the course of the day. If our 

simple-minded hypothesis is true, the curves should roughly 

match those of max-utilization achieved with the estimated traffic 

matrices. 

 

3.3.1 Measuring Traffic Matrix Variation 
Studying the variation of traffic matrix elements over time 

requires collecting finegrained measurements of traffic and 

routing. We collect data from eight aggregation routers that 

receive traffic from customers destined to peers and other 

customers. The eight routers are located in major Points of 

Presence (PoPs) that are spread throughout the United 
States. We compute eight rows of the traffic matrix, considering 

all traffic from these eight ingress aggregation routers to all of the 

egress PoPs. 

 

3.3.2 Estimating Traffic Matrices From Link Data 
This section describes three methods for estimating traffic 

matrices from link load data. The first two methods are based on 

so called “Gravity models” while the third uses (in addition) 

“Network tomography” methods. Although it might be appealing 

to test some more complex algorithms, the sub-sample of 

possibilities presented here is sufficient to illustrate the points of 

interest. What’s more we find a near optimal combination of 

estimation and routing optimization algorithms in any case, so 

there is little to be gained in using a more complex method. This 

section is not intended to provide a detailed description of the 

estimator algorithms (which may be found in [4]). This is not 

intended as a study of the estimators. The novel aspect is what 

happens when the estimators are combined with routing 
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optimizers and tested on real traffic matrices. The description here 

is to provide some insight into the relationship between the three 

algorithms tested. Gravity models, are often used by social 

scientists to model the movement of people, goods or information 

between geographic areas. Recently, variations on gravity models 

have also been proposed for computing traffic matrices. At the 

heart of the gravity model approach is a proportionality 

assumption: the amount of traffic from a given source to a given 

sink is proportional to the total traffic to the output sink, 

independent of source. For example, in a gravity model for car 

traffic between cities the relative strength of the interaction 

between two cities might be modeled as proportional to the 

product of the populations divided by a distance related “friction” 

term. Similarly, the simplest possible gravity models for the 

Internet assume that the traffic exchanged between locations is 

proportional to the volumes entering and exiting at those 

locations, though in this case we assume the distance related term 

is a constant because interactions in the Internet are less distance 

sensitive. This simple model of the Internet is used in , and we 

refer to it as the simple gravitymodel. 

 

In practice this set of equations is ill-posed, and so to deal with 

this difficulty tomographic techniques from other fields have been 

used. For a detailed description and comparison (using simple 

metrics) of a number of these methods. We shall consider a single 

such algorithm, tomogravity, [2] which displays good properties 

in terms of scaling, estimation accuracy, speed of computation, 

and robustness to errors. The method uses the generalized gravity 

model above as a prior (a kicking off point) and refines it using a 

tomographic technique to select an estimate of the traffic matrix, 

that satisfies the constraint equations, but that is closest to the 

gravity model according to some distance metric. 

 

4. SIMULATION AND COMPARISON 
The node numbers (i and j) actually represent the size of the total 

flows generated from a node so that the volume of flow between 

these two nodes is decided by multiplying the node numbers of 

two nodes. A large flow exists between higher numbered nodes 

but these flows are scaled with a random factor based on a 

standard probability distribution. The mean of the Poisson 

distribution was 10 (λ) and the uniform random numbers are 

generated in the interval . These values have been chosen to 

ensure that both distributions have the same mean and variance. 

4.1 Comparison And Discussion 
The process for the TomoKruithof  method is the same as that for  

the Tomogravity model - except that there are two more refining 

steps before and after the least square method has been applied. 

Then, the Kruithof  method was applied to balance the initial 

matrix with the measured row and column sums. The 

TomoKruithof method uses one more constraint than the 

Tomogravity method. This means that the method may be more 

sensitive in terms of link load measurements. In a real network, it 

is hard to obtain accurate link loads because of limitations with 

SNMP. It is uncertain as to how much accurately link loads can 

be determined in a real backbone network. 

4.2 Methods 
We highlight three key aspects of each method: the type of OD 

flow model used, the type of data (or side information) brought in 

to calibrate the model, and the method of estimation. Focusing on 

these three aspects of each method is helpful in understanding the 

differences and similarities between various methods without 

getting lost in the details. We classify each model as being either 

spatial, temporal or spatio-temporal. A spatial model is one that 

captures dependencies among OD flows, but has no memory. In 

temporal models an OD flow model is dependent on its past 

behavior, but independent of other OD flows. Spatial models thus 

capture correlations across OD flows, while temporal models 

capture correlations in time. Clearly, spatio-temporal models are 

those that incorporate both types of correlation. The three third-

generation methods presented here use different underlying OD 

flow models. The common feature of these methods is that they 

rely on data from flow monitors to calibrate their models. All of 

these methods assume that flow monitors are initially turned on 

network-wide for a period of 24 hours for initial model 

calibration. The flow monitors can then be turned off until further 

notice. All of these methods include simple schemes for change 

detection, and when changes are detected, flow monitors are 

turned back on for another period of 24 hours. Our validation data 

had an estimate of the traffic matrix at each 10 minute time 

interval. Hence all methods estimate the traffic matrix on a time 

scale of 10 minutes (the underlying time unit t). 

 

4.3 Solution 
Term tomogravity indicates, the method consists of two basic 

steps – a gravity modeling, and a tomographic estimation. 

4.3.1 Gravity Modeling 
Gravity models, taking their name from Newton’s law of 

gravitation, are commonly used by social scientists to model the 

movement of people, goods or information between geographic 

areas. In Newton’s law of gravitation the force is proportional to 

the product of the masses of the two objects divided by the 

distance squared. Similarly, in gravity models for cities, the 

relative strength of the interaction between two cities might be 

modeled as proportional to the product of the populations. assume 

a common constant for the friction factors, which is arguably the 

simplest among all possible approximation schemes. The resulting 

gravity model simply states that the traffic exchanged between 

locations is proportional to the volumes entering and exiting at 

those locations. As long as the gravity model captures the essence 

of the routing policies comes very accurate and the choice of the 

friction factors is less critical. do not expect our gravity model to 

accurately model the traffic between all source-destination pairs. 

In fact, one would  acturally expect certain pairs of locations to 

stand out from the overall distribution, simply due to their specific 

characteristics. A key insight of the tomogravity method is that we 

only need the gravity model to capture the overall distribution. It 

is certainly possible to further improve the method by using more 

accurate gravity models with additional parameters. The margin 

for improvement may be limited. 

Another important issue concerning the gravity model is the level 

of aggregation. The aggregation level to be sufficiently high so 

that the traffic exchanged between different locations is not 
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sensitive to the detailed composition of the traffic. On the other 

hand, when the aggregation level is too high. 

 

4.4 Tomography 
Network tomography, as mentioned earlier, is the problem of 

determining the end-to-end traffic matrix from link loads. The link 

traffic is the sum of the traffic matrix elements that are routed 

across that link. For general topologies and routing there are 

typically many more unknowns than constraints, does not have a 

unique solution. Approach is not to incorporate additional 

constraints, but rather to use the gravity model to obtain an initial 

estimate of the solution, which needs to be refined to satisfy the 

constraints. it is important to reduce the size of the problem to 

make computation of the solution more manageable. 

 

4.4.1 Tomogravity Accuracy 
The constraints may not be satisfiable due to error and noise in the 

link load data or possible routing changes that are not captured by 

the topology data. The standard technique for dealing with ill-

posed quadratic programs is to use Singular-Value Decomposition 

(SVD) of the routing matrix _ to compute its pseudo-inverse. The 

worst case complexity of the above algorithm is linear in the 

number of unknowns  elements of the traffic matrix), and 

quadratic in the number of constraints, however, in practice the 

complexity of singular value decomposition methods is generally 

less than this. One additional locus of complexity is that the least-

square  algorithm may result in negative values, which are without 

physical meaning. One can avoid this by viewing the problem as a 

constrained optimization problem. However, a simple iterative 

procedure provides a fast and effective alternative. In practice it 

only takes a few iterations to reduce errors in the constraint 

equations to the point at which they are negligible. 

 

  Figure 2.  Simple gravity model 

 

 

 
Figure 3. Generalized gravity model 

 

 

4.4.2 Methods 
Tomographic methods have been widely and successfully applied, 

for example, in Computer Aided Tomography (CAT) scans, used 

in medical imaging. These methods differ in how they deal with 

the under-determination of the system of tomographic constraint 

equations.Optimization-based tomography approaches typically 

find a solution that optimizes an objective function, whereas 

network tomography approaches often use the higher order 

statistics of the link load data to create additional constraints. 

Network tomography, in some sense, comprises determining the 

solution to equation, or at least the parameters of some model of , 

from measurements of x . As noted above, this system is highly 

under-constrained, and so the challenge is to choose the “best” 

solution from the space of possibilities. The typical approach has 

been to use additional modeling assumption to derive constraints 

from the higher order statistics of the traffic. The paper also 

suggests using their method to generate priors to serve as inputs to 

statistical tomography techniques, but does not test this idea. 
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