
IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

71

Duplicate Detection of Query Results from Multiple Web

Databases

Hemalatha S
Department of Computer Science &

Engineering
Adhiyamaan College of Engineering

Hosur - 635109, India

Raja K
Department of Computer Science &

Engineering
Adhiyamaan College of Engineering

Hosur - 635109, India

Tholkappia Arasu
Department of CSE

Jayam college of Engineering and
Technology,

Dharmapuri-636819, India

ABSTRACT

 The results from multiple databases compose the deep or hidden

Web, which is estimated to contain a much larger amount of high

quality, usually structured information and to have a faster growth

rate than the static Web.The system that helps users integrate and,

more importantly, compare the query results returned from

multiple Web databases, an important task is to match the

different sources’ records that refer to the same real-world entity.

Most state-of-the-art record matching methods are supervised,

which requires the user to provide training data. In the Web

databases, the records are not available in hand as they are query-

dependent, they can be obtained only after the user submits the

query. After removal of the same-source duplicates, the assumed

non duplicate records from the same source can be used as

training examples. The method uses the classifiers the weighted

component similarity summing classifier (WCSS) and Support

Vector Machine (SVM) classifier that works along with the

Gaussian mixture model (GMM) to iteratively to identify the

duplicates. The classifiers work cooperatively to identify the

duplicate records. The complete GMM is parameterized by the

mean vectors, covariance matrices and mixture weights from all

the records.

General Terms

Data Mining, Record Matching, merge purge operation, Learning

Keywords

Gaussian Mixture Model, supervised learning, Support Vector

Machine

1. INTRODUCTION
The Web Databases dynamically generate Web pages in response

to user queries. Most Web databases are only accessible via a

query interface through which users can submit queries. With

many businesses, government organisations and research projects

collecting massive amounts of data, the techniques collectively

known as data mining have in recent years attracted interest both

from academia and industry. While there is much ongoing

research in data mining algorithms and techniques, it is well

known that a large proportion of the time and effort in real-world

data mining projects is spent understanding the data to be

analysed, as well as in the data preparation and pre processing

steps. An increasingly important task in the data pre processing

step of many data mining projects is detecting and removing

duplicate records that relate to the same entity within one data set.

Similarly, linking or matching records relating to the same entity

from several data sets is often required as information from

multiple sources needs to be integrated, combined or linked in

order to allow more detailed data analysis or mining. It takes

advantage of the dissimilarity among records from the same Web

database for record matching. Most existing work requires

human-labeled training data (positive, negative, or both), which

places a heavy burden on users. Most previous work is based on

predefined matching rules hand-coded by domain experts or

matching rules learned offline by some learning method from a set

of training examples. Such approaches work well in a traditional

database environment, where all instances of the target databases

can be readily accessed, as long as a set of high-quality

representative records can be examined by experts or selected for

the user to label. In the Web database scenario, the records to

match are highly query-dependent, since they can only be

obtained through online queries. Moreover, they are only a partial

and biased portion of all the data in the source Web databases.

To overcome such problems, propose a new method of record

matching problem of identifying duplicates among records in

query results from multiple web databases. The proposed

approach Unsupervised Duplicate Detection[1] for the specific

problem employs two classifiers that collaborate in an iterative

manner. This paper proposes a method where the SVM classifier

is fused with the Gaussian Mixture Model to identify the

duplicates iteratively. The iteration stops when there are no more

duplicates in the result set. Blocking methods [2] are used in

record linkage systems to reduce the number of candidate record

comparison pairs to a feasible number whilst still maintaining

linkage accuracy. Blocking methods partition the data sets into

blocks or clusters of records which share a blocking attribute or

are otherwise similar with respect to a defined criterion.

2. RELATED WORK
The records consist of multiple fields, making the duplicate

detection problem much more complicated. Approaches that rely

on training data to learn how to match the records includes

probabilistic approaches and supervised machine learning

techniques. Approaches that rely on domain knowledge or on

generic distance metrics to match records.

2.1 Probabilistic Matching Models
Let us assume that two classes M and U contains the record pairs

that represent the same entity (“match”) and the class U that

contains the record pairs that represent two different entities

(“nonmatch”) [2],[3]. Let x be a comparison vector, randomly

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

72

drawn from the comparison space that corresponds to the record

pair (a,b). The goal is to determine whether (a,b) ε M or (a,b) ε U.

A decision rule(1), based simply on probabilities can be written as

follows:

(a,b) ε {M if p(M|x) ≥p(U|x)

 {U otherwise. (1)

2.2 Bigram Indexing
The Bigram Indexing (BI) method as implemented in the Febrl [4]

record linkage system allows for fuzzy blocking. The basic idea is

that the blocking key values are converted into a list of bigrams

(sub-strings containing two characters) and sub-lists of all

possible permutations will be built using a threshold (between 0.0

and 1.0). The resulting bigram lists are sorted and inserted into an

inverted index, which will be used to retrieve the corresponding

record numbers in a block. The number of sub-lists created for a

blocking key value both depends on the length of the value and

the threshold. The lower the threshold the shorter the sub-lists, but

also the more sub-lists there will be per blocking key value,

resulting in more (smaller blocks) in the inverted index. In the

information retrieval field, bigram indexing has been found to be

robust to small typographical errors in documents

2.3 Supervised and Semisupervised Learning
The supervised learning systems rely on the existence of training

data in the form of record pairs, prelabeled as matching or not.

One set of supervised learning techniques treat each record pair

(a,b) independently, similar to the probabilistic techniques. A

well-known CART algorithm [5], which generates classification

and regression trees. A linear discriminant algorithm, which

generates a linear combination of the parameters for separating the

data according to their classes, and a “vector quantization”

approach which is a generalization of the nearest neighbour

algorithms. The transitivity assumption can sometimes result in

inconsistent decisions. For example (a,b) and (a,c) can be

considered matches, but (b,c) not. Partitioning such “inconsistent”

graphs with the goal of minimizing inconsistencies in an NP-

complete problem.

2.4 Active Learning Based Techniques
One of the problems with the supervised learning techniques is

the requirement for a large number of training examples. While it

is easy to create a large number of training pairs that are either

clearly nonduplicates or clearly duplicates, it is very difficult to

generate ambiguous cases that would help create a highly accurate

classifier. Based on this observation, some duplicate detection

systems used active learning methods to automatically locate such

ambiguous pairs. Their method suggested that, by creating

multiple classifiers, trained using slightly different data or

parameters, it is possible to detect ambiguous cases and then ask

the user for feedback. The key innovation in this work is the

creation of several redundant functions and the concurrent

exploitation of their conflicting actions in order to discover new

kinds of inconsistencies among duplicates in the data set.

2.5 Distance based Techniques
Even active learning techniques require some training data or

some human effort to create the matching models. In the absence

of such training data or the ability to get human input, supervised

and active learning techniques are not appropriate. One way of

avoiding the need for training data is to define a distance metric

for records which does not need tuning through training data.

Distance-based approaches[6], that conflate each record in one

big field may ignore important information that can be used for

duplicate detection. A simple approach is to measure the distance

between individual fields, using the appropriate distance metric

for each field, and then compute the weighted distance between

the records. In this case, the problem is the computation of the

weights and the overall setting becomes very similar to the

probabilistic setting. one of the problems of the distance-based

techniques is the need to define the appropriate value for the

matching threshold. In the presence of training data, it is possible

to find the appropriate threshold value. However, this would

nullify the major advantage of distance-based techniques, which is

the ability to operate without training data. Recently, Chaudhuri et

al. [9] proposed a new framework for distance-based duplicate

detection, observing that the distance thresholds for detecting real

duplicate entries are different from each database tuple. To detect

the appropriate threshold, Chaudhuri et al. observed that entries

that correspond to the same real-world object but have different

representation in the database tend 1) to have small distances from

each other (compact set property), to have only a small number of

other neighbors within a small distance (sparse neighborhood

property). Furthermore, Chaudhuri et al. propose an efficient

algorithm for computing the required threshold for each object in

the database and show that the quality of the results outperforms

approaches that rely on a single, global threshold.

2.6 Rule Based Approaches
A special case of distance-based approaches [6] and [7] is the use

of rules to define whether two records are the same or not. Rule-

based approaches can be considered as distance-based techniques,

where the distance of two records is either 0 or 1. It is noteworthy

that such rule-based approaches which require a human expert to

devise meticulously crafted matching rules typically result in

systems with high accuracy. However, the required tuning

requires extremely high manual effort from the human experts and

this effort makes the deployment of such systems difficult in

practice. Currently, the typical approach is to use a system that

generates matching rules from training data and then manually

tune the automatically generated rules. The mapping

transformation standardizes data, the matching transformation

finds pairs of records that probably refer to the same real object,

the clustering transformation groups together matching pairs with

a high similarity value, and, finally, the merging transformation

collapses each individual cluster into a tuple of the resulting data

source. It is noteworthy that such rule-based approaches which

require a human expert to devise meticulously crafted matching

rules typically result in systems with high accuracy. However, the

required tuning requires extremely high manual effort from the

human experts and this effort makes the deployment of such

systems difficult in practice. Currently, the typical approach is to

use a system that generates matching rules from training data and

then manually tune the automatically generated rules.

2.7 Unsupervised learning
One way to avoid manual labeling of the comparison vectors is to

use clustering algorithms and group together similar comparison

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

73

vectors. The idea behind most unsupervised learning

approaches[4] and [7] for duplicate detection is that similar

comparison vectors correspond to the same class. The idea of

unsupervised learning for duplicate detection has its roots in the

probabilistic model proposed by Fellegi and Sunter [8]. The idea

of unsupervised learning for duplicate detection has its roots in

the probabilistic model proposed by Fellegi and Sunter . When

there is no training data to compute the probability estimates, it is

possible to use variations of the Expectation Maximization

algorithm to identify appropriate clusters in the data. Verykios et

al. [10] propose the use of a bootstrapping technique based on

clustering to learn matching models. The basic idea, also known

as cotraining [11], is to use very few labeled data, and then use

unsupervised learning techniques to appropriately label the data

with unknown labels. Initially, Verykios et al. treat each entry of

the comparison vector (which corresponds to the result of a field

comparison) as a continuous, real variable. The basic premise is

that each cluster contains comparison vectors with similar

characteristics. Therefore, all the record pairs in the cluster belong

to the same class (matches, nonmatches, or possiblematches).

There are multiple techniques for duplicate record detection. We

can divide the techniques into two broad categories: ad hoc

techniques that work quickly on existing relational databases and

more “principled” techniques that are based on probabilistic

inference models. While probabilistic methods outperform ad hoc

techniques in terms of accuracy, the ad hoc techniques work much

faster and can scale to databases with hundreds of thousands of

records. Probabilistic inference techniques are practical today

only for data sets that are one or two orders of magnitude smaller

than the data sets handled by ad hoc techniques. A promising

direction for future research is to devise techniques that can

substantially improve the efficiency of approaches that rely on

machine learning and probabilistic inference. A question that is

unlikely to be resolved soon is the question of which of the

presented methods should be used for a given duplicate detection

task. Unfortunately, there is no clear answer to this question. The

duplicate record detection task is highly data-dependent and it is

unclear if we will ever see a technique dominating all others

across all data sets. The problem of choosing the best method for

duplicate data detection is very similar to the problem of model

selection and performance prediction for data mining.

3. IMPROVING THE EFFICIENCY OF

DUPLICATE DETECTION
So far, in our discussion of methods for detecting whether two

records refer to the same real-world object, we have focused

mainly on the quality of the comparison techniques and not on the

efficiency of the duplicate detection process. Now, we turn to the

central issue of improving the speed of duplicate detection. An

elementary technique for discovering matching entries in tables A

and B is to execute a “nested-loop” comparison, i.e., to compare

every record of table A with every record in table B.

Unfortunately, such a strategy requires a total of |A| . |B|

comparisons, a cost that is prohibitively expensive even for

moderately sized tables. We describe techniques that substantially

reduce the number of required comparisons. Another factor that

can lead to increased computation expense is the cost required for

a single comparison. It is not uncommon for a record to contain

tens of fields. Therefore, each record comparison requires

multiple field comparisons and each field comparison can be

expensive.

3.1 Blocking
One “traditional” method for identifying identical records in a

database table is to scan the table and compute the value of a hash

function for each record. The value of the hash function defines

the “bucket” to which this record is assigned. By definition, two

records that are identical will be assigned to the same bucket.

Therefore, in order to locate duplicates, it is enough to compare

only the records that fall into the same bucket for matches. The

hashing technique cannot be used directly for approximate

duplicates since there is no guarantee that the hash value of two

similar records will be the same. However, there is an interesting

counterpart of this method, named blocking. As discussed above

with relation to utilizing the hash function, blocking typically

refers to the procedure of subdividing files into a set of mutually

exclusive subsets (blocks) under the assumption that no matches

occur across different blocks. A common approach to achieving

these blocks is to use a function such as Soundex, NYSIIS, or

Metaphone

3.2 Sorted Neighborhood Approach
 The method consists of the following three steps:

 Create key: A key for each record in the list is computed

by extracting relevant fields or portions of fields.

 Sort data: The records in the database are sorted by

using the key found in the first step. A sorting key is

defined to be a sequence of attributes, or a sequence of

substrings within the attributes, chosen from the record

in an ad hoc manner. Attributes that appear first in the

key have a higher priority than those that appear

subsequently.

 Merge: A fixed size window is moved through the

sequential list of records in order to limit the

comparisons for matching records to those records in

the window.

 If the size of the window is w records, then every new record that

enters that window is compared with the previous w -1 records to

find “matching” records. The first record in the window slides out

of it. The sorted neighborhood approach relies on the assumption

that duplicate records will be close in the sorted list, and therefore

will be compared during the merge step. The effectiveness of the

sorted neighborhood approach is highly dependent upon the

comparison key that is selected to sort the records. In general, no

single key will be sufficient to sort the records in such a way that

all the matching records can be detected. If the error in a record

occurs in the particular field or portion of the field that is the most

important part of the sorting key, there is a very small possibility

that the record will end up close to a matching record after

sorting.

3.3 Clustering and Canopies
 To improve the performance of a basic “nested-loop” record

comparison by assuming that duplicate detection is transitive.

Under the assumption of transitivity, the problem of matching

records in a database can be described in terms of determining the

connected components of an undirected graph. At any time, the

connected components of the graph correspond to the transitive

closure of the “record matches” relationships discovered so far.

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

74

We use a union-find structure to efficiently compute the

connected components of the graph. During the Union step,

duplicate records are “merged” into a cluster and only a

“representative” of the cluster is kept for subsequent comparisons.

This reduces the total number of record comparisons without

substantially reducing the accuracy of the duplicate detection

process. The concept behind this approach is that, if a record b is

not similar to a record b already in the cluster, then it will not

match the other members of the cluster either. The use of canopies

for speeding up the duplicate detection process. The basic idea is

to use a cheap comparison metric to group records into

overlapping clusters called canopies. (This is in contrast to

blocking that requires hard, nonoverlapping partitions.) After the

first step, the records are then compared pairwise, using a more

expensive similarity metric that leads to better qualitative results.

The assumption behind this method is that there is an inexpensive

similarity function that can be used as a “quick-and-dirty”

approximation for another, more expensive function. For example,

if two strings have a length difference larger than 3, then their edit

distance cannot be smaller than 3. In that case, the length

comparison serves as a cheap (canopy) function for the more

expensive edit distance.

4. PROPOSED APPROACH

The focus is on the Web databases from the same domain i.e.,

Web databases that provide the same type of records in response

to user queries. Different users may have different criteria for

what constitute a duplicate even for records within the same

domain. An intuitive solution to this problem is that we can learn

a classifier from N and use the learned classifier to classify P.

Although there are several works based on learning from only

positive examples, to our knowledge all works assume that the

positive examples are correct. Two classifiers along with

Gaussian mixture model identifies the duplicate vector set

iteratively.

4.1 Weighted Component Similarity

Summing Classifier
At the beginning, it is used to identify some duplicate vectors

when there are no positive examples available. Then, after

iteration begins, it is used again to cooperate with C2 to identify

new duplicate vectors. Because no duplicate vectors are available

initially, classifiers that need class information to train, such as

decision tree and Naive Bayes, cannot be used. An intuitive

method to identify duplicate vectors is to assume that two records

are duplicates if most of their fields that are under consideration

are similar. In the WCSS classifier, we assign a weight to a

component to indicate the importance of its corresponding field

under the condition that the sum of all component weights is

equal to The intuition for the weight assignment includes, The

similarity between two duplicate records should be close to 1. For

a duplicate vector V12 that is formed by a pair of duplicate

records r1 and r2, we need to assign large weights to the

components with large similarity values and small weights to the

components with small similarity values . The similarity for two

nonduplicate records should be close to 0. Hence, for a

nonduplicate vector V12 that is formed by a pair of nonduplicate

records r1 and r2, we need to assign small weights to the

components with large similarity values and large weights to the

components with small similarity values.

4.2 Support Vector Machine Classifier
After detecting a few duplicate vectors whose similarity scores are

bigger than the threshold using the WCSS classifier[12], have

positive examples, the identified duplicate vectors in D, and

negative examples, namely the remaining nonduplicate vectors in

N. Hence, we can train another classifier and use this trained

classifier to identify new duplicate vectors from the remaining

potential duplicate vectors in P and the nonduplicate vectors in N.

A classifier suitable for the task should have the following

characteristics. First, it should not be sensitive to the relative size

of the positive and negative examples because the size of the

negative examples is usually much bigger than the size of the

positive examples. This is especially the case at the beginning of

the duplicate vector detection iterations when a limited number of

duplicates are detected. Another requirement is that the classifier

should work well given limited training examples.

Similarity-based classifiers estimate the class label of a test

sample based on the similarities between the test sample and a set

of labeled training samples, and the pairwise similarities between

the training samples. Like others, we use the term similarity-based

classification whether the pairwise relationship is a similarity or

dissimilarity. Similarity-based classification does not require

direct access to the features of the samples, and thus the sample

space can be any set, not necessarily a Euclidean space, as long as

the similarity function is well defined for any pair of samples.

4.3 Gaussian Mixture Model
The complete Gaussian mixture model [15], is parameterized by

the mean vectors μi, covariance matrices ∑i and mixture weights

wi from all component densities. These parameters are collectively

represented by the notation,

λ = {wi, μi,∑i} i = 1, . . . ,M. (2)

There are several variants on the GMM shown in Equation (2).

The covariance matrices, ∑i, can be full rank or constrained to be

diagonal. Additionally, parameters can be shared, or tied, among

the Gaussian components, such as having a common covariance

matrix for all components, The choice of model configuration

(number of components, full or diagonal covariance matrices, and

parameter tying) is often determined by the amount of data

available for estimating the GMM parameters. The use of a GMM

for representing feature distributions in a biometric system may

also be motivated by the intuitive notion that the individual

component densities may model some underlying set of hidden

classes. For example, in speaker recognition, it is reasonable to

assume the acoustic space of spectral related features

corresponding to a speaker’s broad phonetic events, such as

vowels, nasals or fricatives.

4.4 Evaluation Metric
The performance of the duplicate detected dataset [13],[14] can

be reported using precision and recall, which are defined as

follows:

Precision= #of correctly Identified Duplicate Pairs

 #of All Identified Duplicate Pairs

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

75

Recall= #of correctly Identified Duplicate Pairs

#of True duplicate Pairs

Due to the usually imbalanced distribution of matches and

nonmatches in the weight vector set, these commonly used

accuracy measures are not suitable for assessing the quality of

record matching. The large number of nonmatches usually

dominates the accuracy measure and yields results that are too

optimistic. To measure the performance F-measure can also be

used, which is the harmonic mean of precision and recall, to

evaluate the classification quality:

F-measure= 2.precision.recall

 (precision+recall)

5. EXPERIMENTS
We evaluate our model on dataset of research paper citations. The

dataset is from the Cora Computer Science Research Paper

Engine, containing about 1800 citations, with 600 unique papers

and 200 unique venues. The datasets are manually labeled for

both paper coreference and venue coreference, as well as

manually segmented into fields, such as author, title, etc. The data

were collected by searching for certain authors and topic, and they

are split into subsets with non-overlapping papers for the sake of

cross-validation experiments. We used a number of feature

functions, including exact and approximate string match on

normalized and unnormalized values for the following citation

fields: title, booktitle, journal, authors, venue, date, editors,

institution, and the entire unsegmented citation string. We also

calculated an unweighted cosine similarity between tokens in the

title and author fields. Additional features include whether or not

the papers have the same publication type (e.g. journal or

conference), as well as the numerical distance between fields such

as year and volume. All real values were binned and converted

into binary-valued features. To evaluate performance, we compare

the clusters output by our system with the true clustering using

pairwise metrics and use the metrics ratios for evaluation. The

Cora web site(www.cora.whizbang.com)provides a search

interface to over 50,000 computer science research papers . As

part of the site's functionality, we provide an interface for

traversing the citation graph. That is, for a given paper, we

provide links to all other papers it references, and links to all other

papers that reference it, in the respective bibliography section of

each paper. To provide this interface to the data, it is necessary to

recognize when two citations from different papers are referencing

the same third paper, even though the text of the citations may

differ. For example, one paper may abbreviate firrst author names,

while the second may include them.

The datasets were collected and the algorithm was coded in Java

and run on a machine with Windows XP operating system. The

duplicates are identified and the core Gaussian Mixture Model is

being implemented.

6. REFERENCES
[1] W.Su, J. Wang, and Frederick H. Lochovsky, “Record

Matching over Query Results from Multiple Web Databases”

IEEE Transactions on knowledge and data engineering.

[2] R. Baxter, P. Christen, and T. Churches, “A Comparison of

Fast Blocking Methods for Record Linkage,” Proc. KDD

Workshop Data Cleaning, Record Linkage, and Object

Consolidation, pp. 25-27, 2003

[3] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani,

“Robust and Efficient Fuzzy Match for Online Data

Cleaning,” Proc. ACM SIGMOD, pp. 313-324, 2003.

[4] P. Christen, T. Churches, and M. Hegland, “Febrl—A

Parallel Open Source Data Linkage System,” Advances in

Knowledge Discovery and Data Mining, pp. 638-647,

Springer, 2004.

[5] O. Bennjelloun, H. Garcia-Molina, D. Menestrina, Q.

Su,S.E.Whang, and J. Widom, “Swoosh: A Generic

Approach to Entity Resolution,” The VLDB J., vol. 18, no.

1, pp. 255-276, 2009.

[6] M. Bilenko and R.J. Mooney, “Adaptive Duplicate Detection

Using Learnable String Similarity Measures,” Proc. ACM

SIGKDD, pp. 39-48, 2003.

[7] P. Christen, “Automatic Record Linkage Using Seeded

Nearest Neighbour and Support Vector Machine

Classification,” Proc. ACM SIGKDD, pp. 151-159, 2008.

[8] W.E. Winkler, “Using the EM Algorithm for Weight

Computationin the Fellegi-Sunter Model of Record

Linkage,” Proc. Section Survey Research Methods, pp. 667-

671, 1988

[9] S. Chaudhuri, V. Ganti, and R. Motwani, “Robust Identification of

Fuzzy Duplicates,” Proc. 21st IEEE Int’l Conf. Data Eng.

(ICDE ’05),pp. 865-876, 2005.

[10] V.S. Verykios, A.K. Elmagarmid, and E.N. Houstis,

“Automating the Approximate Record Matching Process,”

Information Sciences, vol. 126, nos. 1-4, pp. 83-98, July

2000.

[11] A. Blum and T. Mitchell, “Combining Labeled and

Unlabeled Data with Co-Training,” COLT ’98: Proc. 11th

Ann. Conf. Computational Learning Theory, pp. 92-100,

1998.

[12] W.W. Cohen and J. Richman, “Learning to Match and

Cluster Large High-Dimensional Datasets for Data

Integration,” Proc. ACM SIGKDD, pp. 475-480, 2002.

[13] P. Christen and K. Goiser, “Quality and Complexity

Measures for Data Linkage and Deduplication,” Quality

Measures in Data Mining, F. Guillet and H. Hamilton,

eds., vol. 43, pp. 127-151, Springer, 2007.

[14] W.W. Cohen, H. Kautz, and D. McAllester, “Hardening Soft

Information Sources,” Proc. ACM SIGKDD, pp. 255-259,

2000.

[15] Gaussian Mixture Models Douglas Reynolds MIT Lincoln

Laboratory, 244 Wood St., Lexington, MA 02140, USA

[16] W.E. Winkler, “Using the EM Algorithm for Weight

Computation in the Fellegi-Sunter Model of Record

Linkage,” Proc. Section Survey Research Methods, pp. 667-

671, 1988.

