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ABSTRACT 

 The results from multiple databases compose the deep or hidden 

Web, which is estimated to contain a much larger amount of high 

quality, usually structured information and to have a faster growth 

rate than the static Web.The system that helps users integrate and, 

more importantly, compare the query results returned from 

multiple Web databases, an important task is to match the 

different sources’ records that refer to the same real-world entity. 

Most state-of-the-art record matching methods are supervised, 

which requires the user to provide training data. In the Web 

databases, the records are not available in hand as they are query- 

dependent, they can be obtained only after the user submits the 

query. After removal of the same-source duplicates, the assumed 

non duplicate records from the same source can be used as 

training examples. The method uses the classifiers the weighted 

component similarity summing classifier (WCSS) and Support 

Vector Machine (SVM) classifier that works along with the 

Gaussian mixture model (GMM) to iteratively to identify the 

duplicates. The classifiers work cooperatively to identify the 

duplicate records. The complete GMM is parameterized by the 

mean vectors, covariance matrices and mixture weights from all 

the records. 
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1. INTRODUCTION 
The Web Databases dynamically generate Web pages in response 

to user queries. Most Web databases are only accessible via a 

query interface through which users can submit queries. With 

many businesses, government organisations and research projects 

collecting massive amounts of data, the techniques collectively 

known as data mining have in recent years attracted interest both 

from academia and industry. While there is much ongoing 

research in data mining algorithms and techniques, it is well 

known that a large proportion of the time and effort in real-world 

data mining projects is spent understanding the data to be 

analysed, as well as in the data preparation and pre processing 

steps. An increasingly important task in the data pre processing 

step of many data mining projects is detecting and removing 

duplicate records that relate to the same entity within one data set. 

Similarly, linking or matching records relating to the same entity 

from several data sets is often required as information from 

multiple sources needs to be integrated, combined or linked in 

order to allow more detailed data analysis or mining. It takes 

advantage of the dissimilarity among records from the same Web 

database for record matching. Most existing work requires 

human-labeled training data (positive, negative, or both), which 

places a heavy burden on users. Most previous work is based on 

predefined matching rules hand-coded by domain experts or 

matching rules learned offline by some learning method from a set 

of training examples. Such approaches work well in a traditional 

database environment, where all instances of the target databases 

can be readily accessed, as long as a set of high-quality 

representative records can be examined by experts or selected for 

the user to label. In the Web database scenario, the records to 

match are highly query-dependent, since they can only be 

obtained through online queries. Moreover, they are only a partial 

and biased portion of all the data in the source Web databases.  

 

To overcome such problems, propose a new method of record 

matching problem of identifying duplicates among records in 

query results from multiple web databases. The proposed 

approach Unsupervised Duplicate Detection[1] for the specific 

problem employs two classifiers that collaborate in an iterative 

manner. This paper proposes a method where the SVM classifier 

is fused with the Gaussian Mixture Model to identify the 

duplicates iteratively. The iteration stops when there are no more 

duplicates in the result set. Blocking methods [2] are used in 

record linkage systems to reduce the number of candidate record 

comparison pairs to a feasible number whilst still maintaining 

linkage accuracy. Blocking methods partition the data sets into 

blocks or clusters of records which share a blocking attribute or 

are otherwise similar with respect to a defined criterion. 

 

2. RELATED WORK 
The records consist of multiple fields, making the duplicate 

detection problem much more complicated. Approaches that rely 

on training data to learn how to match the records includes 

probabilistic approaches and supervised machine learning 

techniques. Approaches that rely on domain knowledge or on 

generic distance metrics to match records.  

2.1 Probabilistic Matching Models 
Let us assume that  two classes M and U contains the record pairs 

that represent the same entity (“match”) and the class U that 

contains the record pairs that represent  two different entities 

(“nonmatch”) [2],[3]. Let x be a comparison vector, randomly 
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drawn from the comparison space that corresponds to the record 

pair (a,b). The goal is to determine whether (a,b) ε M or (a,b) ε U. 

A decision rule(1), based simply on probabilities can be written as 

follows: 

(a,b) ε {M    if  p(M|x) ≥p(U|x)                           

           {U     otherwise.                                                 (1)   

     

2.2  Bigram Indexing 
The Bigram Indexing (BI) method as implemented in the Febrl [4] 

record linkage system allows for fuzzy blocking. The basic idea is 

that the blocking key values are converted into a list of bigrams 

(sub-strings containing two characters) and sub-lists of all 

possible permutations will be built using a threshold (between 0.0 

and 1.0). The resulting bigram lists are sorted and inserted into an 

inverted index, which will be used to retrieve the corresponding 

record numbers in a block. The number of sub-lists created for a 

blocking key value both depends on the length of the value and 

the threshold. The lower the threshold the shorter the sub-lists, but 

also the more sub-lists there will be per blocking key value, 

resulting in more (smaller blocks) in the inverted index. In the 

information retrieval field, bigram indexing has been found to be 

robust to small typographical errors in documents                                             

2.3 Supervised and Semisupervised  Learning 
The supervised learning systems rely on the existence of training 

data in the form of record pairs, prelabeled as matching or not. 

One set of supervised learning techniques treat each record pair 

(a,b) independently, similar to the probabilistic techniques. A 

well-known CART algorithm [5], which generates classification 

and regression trees. A linear discriminant algorithm, which 

generates a linear combination of the parameters for separating the 

data according to their classes, and a “vector quantization” 

approach which is a generalization of the nearest neighbour 

algorithms. The transitivity assumption can sometimes result in 

inconsistent decisions. For example (a,b) and (a,c) can be 

considered matches, but (b,c) not. Partitioning such “inconsistent” 

graphs with the goal of minimizing inconsistencies in an NP-

complete problem. 

2.4 Active Learning Based Techniques 
One of the problems with the supervised learning techniques is 

the requirement for a large number of training examples. While it 

is easy to create a large number of training pairs that are either 

clearly nonduplicates or clearly duplicates, it is very difficult to 

generate ambiguous cases that would help create a highly accurate 

classifier. Based on this observation, some duplicate detection 

systems used active learning methods to automatically locate such 

ambiguous pairs. Their method suggested that, by creating 

multiple classifiers, trained using slightly different data or 

parameters, it is possible to detect ambiguous cases and then ask 

the user for feedback. The key innovation in this work is the 

creation of several redundant functions and the concurrent 

exploitation of their conflicting actions in order to discover new 

kinds of inconsistencies among duplicates in the data set. 

2.5 Distance based Techniques 
Even active learning techniques require some training data or 

some human effort to create the matching models. In the absence 

of such training data or the ability to get human input, supervised 

and active learning techniques are not appropriate. One way of 

avoiding the need for training data is to define a distance metric 

for records which does not need tuning through training data. 

Distance-based approaches[6], that conflate each record in one 

big field may ignore important information that can be used for 

duplicate detection. A simple approach is to measure the distance 

between individual fields, using the appropriate distance metric 

for each field, and then compute the weighted distance  between 

the records. In this case, the problem is the computation of the 

weights and the overall setting becomes very similar to the 

probabilistic setting. one of the problems of the distance-based 

techniques is the need to define the appropriate value for the 

matching threshold. In the presence of training data, it is possible 

to find the appropriate threshold value. However, this would 

nullify the major advantage of distance-based techniques, which is 

the ability to operate without training data. Recently, Chaudhuri et 

al. [9] proposed a new framework for distance-based duplicate 

detection, observing that the distance thresholds for detecting real 

duplicate entries are different from each database tuple. To detect 

the appropriate threshold, Chaudhuri et al. observed that entries 

that correspond to the same real-world object but have different 

representation in the database tend 1) to have small distances from 

each other (compact set property), to have only a small number of 

other neighbors within a small distance (sparse neighborhood 

property). Furthermore, Chaudhuri et al. propose an efficient 

algorithm for computing the required threshold for each object in 

the database and show that the quality of the results outperforms 

approaches that rely on a single, global threshold. 

 

2.6 Rule Based Approaches 
A special case of distance-based approaches [6] and [7] is the use 

of rules to define whether two records are the same or not. Rule-

based approaches can be considered as distance-based techniques, 

where the distance of two records is either 0 or 1. It is noteworthy 

that such rule-based approaches which require a human expert to 

devise meticulously crafted matching rules typically result in 

systems with high accuracy. However, the required tuning 

requires extremely high manual effort from the human experts and 

this effort makes the deployment of such systems difficult in 

practice. Currently, the typical approach is to use a system that 

generates matching rules from training data  and then manually 

tune the automatically generated rules. The mapping 

transformation standardizes data, the matching transformation 

finds pairs of records that probably refer to the same real object, 

the clustering transformation groups together matching pairs with 

a high similarity value, and, finally, the merging transformation 

collapses each individual cluster into a tuple of the resulting data 

source. It is noteworthy that such rule-based approaches which 

require a human expert to devise meticulously crafted matching 

rules typically result in systems with high accuracy. However, the 

required tuning requires extremely high manual effort from the 

human experts and this effort makes the deployment of such 

systems difficult in practice. Currently, the typical approach is to 

use a system that generates matching rules from training data  and 

then manually tune the automatically generated rules. 

 

2.7 Unsupervised learning 
One way to avoid manual labeling of the comparison vectors is to 

use clustering algorithms and group together similar comparison 
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vectors. The idea behind most unsupervised learning 

approaches[4] and [7] for duplicate detection is that similar 

comparison vectors correspond to the same class. The idea of 

unsupervised learning for duplicate detection has its roots in the 

probabilistic model proposed by Fellegi and Sunter [8]. The idea 

of unsupervised learning for duplicate detection has its roots in 

the probabilistic model proposed by Fellegi and Sunter . When 

there is no training data to compute the probability estimates, it is 

possible to use variations of the Expectation Maximization 

algorithm to identify appropriate clusters in the data. Verykios et 

al. [10] propose the use of a bootstrapping technique based on 

clustering to learn matching models. The basic idea, also known 

as cotraining [11], is to use very few labeled data, and then use 

unsupervised learning techniques to appropriately label the data 

with unknown labels. Initially, Verykios et al. treat each entry of 

the comparison vector (which corresponds to the result of a field 

comparison) as a continuous, real variable. The basic premise is 

that each cluster contains comparison vectors with similar 

characteristics. Therefore, all the record pairs in the cluster belong 

to the same class (matches, nonmatches, or possiblematches). 

 

There are multiple techniques for duplicate record detection. We 

can divide the techniques into two broad categories: ad hoc 

techniques that work quickly on existing relational databases and 

more “principled” techniques that are based on probabilistic 

inference models. While probabilistic methods outperform ad hoc 

techniques in terms of accuracy, the ad hoc techniques work much 

faster and can scale to databases with hundreds of thousands of 

records. Probabilistic inference techniques are practical today 

only for data sets that are one or two orders of magnitude smaller 

than the data sets handled by ad hoc techniques. A promising 

direction for future research is to devise techniques that can 

substantially improve the efficiency of approaches that rely on 

machine learning and probabilistic inference. A question that is 

unlikely to be resolved soon is the question of which of the 

presented methods should be used for a given duplicate detection 

task. Unfortunately, there is no clear answer to this question. The 

duplicate record detection task is highly data-dependent and it is 

unclear if we will ever see a technique dominating all others 

across all data sets. The problem of choosing the best method for 

duplicate data detection is very similar to the problem of model 

selection and performance prediction for data mining. 

 

3.  IMPROVING THE EFFICIENCY OF 

DUPLICATE DETECTION 
So far, in our discussion of methods for detecting whether two 

records refer to the same real-world object, we have focused 

mainly on the quality of the comparison techniques and not on the 

efficiency of the duplicate detection process. Now, we turn to the 

central issue of improving the speed of duplicate detection. An 

elementary technique for discovering matching entries in tables A 

and B is to execute a “nested-loop” comparison, i.e., to compare 

every record of table A with every record in table B. 

Unfortunately, such a strategy requires a total of |A| . |B| 

comparisons, a cost that is prohibitively expensive even for 

moderately sized tables. We describe techniques that substantially 

reduce the number of required comparisons. Another factor that 

can lead to increased computation expense is the cost required for 

a single comparison. It is not uncommon for a record to contain 

tens of fields. Therefore, each record comparison requires 

multiple field comparisons and each field comparison can be 

expensive. 

 

3.1 Blocking 
One “traditional” method for identifying identical records in a 

database table is to scan the table and compute the value of a hash 

function for each record. The value of the hash function defines 

the “bucket” to which this record is assigned. By definition, two 

records that are identical will be assigned to the same bucket. 

Therefore, in order to locate duplicates, it is enough to compare 

only the records that fall into the same bucket for matches. The 

hashing technique cannot be used directly for approximate 

duplicates since there is no guarantee that the hash value of two 

similar records will be the same. However, there is an interesting 

counterpart of this method, named blocking. As discussed above 

with relation to utilizing the hash function, blocking typically 

refers to the procedure of subdividing files into a set of mutually 

exclusive subsets (blocks) under the assumption that no matches 

occur across different blocks. A common approach to achieving 

these blocks is to use a function such as Soundex, NYSIIS, or 

Metaphone 

 

3.2 Sorted Neighborhood Approach 
 The method consists of the following three steps: 

 Create key: A key for each record in the list is computed 

by extracting relevant fields or portions of fields. 

 Sort data: The records in the database are sorted by 

using the key found in the first step. A sorting key is 

defined to be a sequence of attributes, or a sequence of 

substrings within the attributes, chosen from the record 

in an ad hoc manner. Attributes that appear first in the 

key have a higher priority than those that appear 

subsequently. 

 Merge: A fixed size window is moved through the 

sequential list of records in order to limit the 

comparisons for matching records to those records in 

the window. 

 If the size of the window is w records, then every new record that 

enters that window is compared with the previous w -1 records to 

find “matching” records. The first record in the window slides out 

of it. The sorted neighborhood approach relies on the assumption 

that duplicate records will be close in the sorted list, and therefore 

will be compared during the merge step. The effectiveness of the 

sorted neighborhood approach is highly dependent upon the 

comparison key that is selected to sort the records. In general, no 

single key will be sufficient to sort the records in such a way that 

all the matching records can be detected. If the error in a record 

occurs in the particular field or portion of the field that is the most 

important part of the sorting key, there is a very small possibility 

that the record will end up close to a matching record after 

sorting. 

 

3.3  Clustering and Canopies 
 To improve the performance of a basic “nested-loop” record 

comparison by assuming that duplicate detection is transitive. 

Under the assumption of transitivity, the problem of matching 

records in a database can be described in terms of determining the 

connected components of an undirected graph. At any time, the 

connected components of the graph correspond to the transitive 

closure of the “record matches” relationships discovered so far. 



IJCA Special Issue on “Computational Science - New Dimensions & Perspectives” 

NCCSE, 2011 

74 

We use a union-find structure to efficiently compute the 

connected components of the graph. During the Union step, 

duplicate records are “merged” into a cluster and only a 

“representative” of the cluster is kept for subsequent comparisons. 

This reduces the total number of record comparisons without 

substantially reducing the accuracy of the duplicate detection 

process. The concept behind this approach is that, if a record  b is 

not similar to a record b already in the cluster, then it will not 

match the other members of the cluster either. The use of canopies 

for speeding up the duplicate detection process. The basic idea is 

to use a cheap comparison metric to group records into 

overlapping clusters called canopies. (This is in contrast to 

blocking that requires hard, nonoverlapping partitions.) After the 

first step, the records are then compared pairwise, using a more 

expensive similarity metric that leads to better qualitative results. 

The assumption behind this method is that there is an inexpensive 

similarity function that can be used as a “quick-and-dirty” 

approximation for another, more expensive function. For example, 

if two strings have a length difference larger than 3, then their edit 

distance cannot be smaller than 3. In that case, the length 

comparison serves as a cheap (canopy) function for the more 

expensive edit distance. 

4. PROPOSED APPROACH 

The focus is on the Web databases from the same domain i.e., 

Web databases that provide the same type of records in response  

to user queries. Different users may have different criteria for 

what constitute a duplicate even for records within the same 

domain.  An intuitive solution to this problem is that we can learn 

a classifier from N and use the learned classifier to classify P. 

Although there are several works based on learning from only 

positive examples, to our knowledge all works assume that the 

positive examples are correct.  Two classifiers along with 

Gaussian mixture model identifies the duplicate vector set 

iteratively.  

4.1 Weighted Component Similarity 

Summing Classifier 
At the beginning, it is used to identify some duplicate vectors 

when there are no positive examples available. Then, after 

iteration begins, it is used again to cooperate with C2 to identify 

new duplicate vectors. Because no duplicate vectors are available 

initially, classifiers that need class information to train, such as 

decision tree and Naive Bayes, cannot be used. An intuitive 

method to identify duplicate vectors is to assume that two records 

are duplicates if most of their fields that are under consideration 

are similar. In the WCSS classifier, we assign a weight to a 

component to indicate the importance of its corresponding field 

under the condition that the sum of all component weights is 

equal to The intuition for the weight assignment includes, The 

similarity between two duplicate records should be close to 1. For 

a duplicate vector V12 that is formed by a pair of duplicate 

records r1 and r2, we need to assign large weights to the 

components with large similarity values and small weights to the 

components with small similarity values . The similarity for two 

nonduplicate records should be close to 0. Hence, for a 

nonduplicate vector V12 that is formed by a pair of nonduplicate 

records r1 and r2, we need to assign small weights to the 

components with large similarity values and large weights to the 

components with small similarity values. 

4.2 Support Vector Machine Classifier 
After detecting a few duplicate vectors whose similarity scores are 

bigger than the threshold using the WCSS classifier[12],  have 

positive examples, the identified duplicate vectors in D, and 

negative examples, namely the remaining nonduplicate vectors in 

N. Hence, we can train another classifier  and use this trained 

classifier to identify new duplicate vectors from the remaining 

potential duplicate vectors in P and the nonduplicate vectors in N. 

A classifier suitable for the task should have the following 

characteristics. First, it should not be sensitive to the relative size 

of the positive and negative examples because the size of the 

negative examples is usually much bigger than the size of the 

positive examples. This is especially the case at the beginning of 

the duplicate vector detection iterations when a limited number of 

duplicates are detected. Another requirement is that the classifier 

should work well given limited training examples. 

 

Similarity-based classifiers estimate the class label of a test 

sample based on the similarities between the test sample and a set 

of labeled training samples, and the pairwise similarities between 

the training samples. Like others, we use the term similarity-based 

classification whether the pairwise relationship is a similarity or 

dissimilarity. Similarity-based classification does not require 

direct access to the features of the samples, and thus the sample 

space can be any set, not necessarily a Euclidean space, as long as 

the similarity function is well defined for any pair of samples. 

4.3 Gaussian Mixture Model 
The complete Gaussian mixture model [15], is parameterized by 

the mean vectors μi, covariance matrices ∑i and mixture weights 

wi from all component densities. These parameters are collectively 

represented by the notation, 

λ = {wi, μi,∑i}      i = 1, . . . ,M.                  (2) 

There are several variants on the GMM shown in Equation (2). 

The covariance matrices, ∑i, can be full rank or constrained to be 

diagonal. Additionally, parameters can be shared, or tied, among 

the Gaussian components, such as having a common covariance 

matrix for all components, The choice of model configuration 

(number of components, full or diagonal covariance matrices, and 

parameter tying) is often determined by the amount of data 

available for estimating the GMM parameters. The use of a GMM 

for representing feature distributions in a biometric system may 

also be motivated by the intuitive notion that the individual 

component densities may model some underlying set of hidden 

classes. For example, in speaker recognition, it is reasonable to 

assume the acoustic space of spectral related features 

corresponding to a speaker’s broad phonetic events, such as 

vowels, nasals or fricatives. 

4.4 Evaluation Metric 
The performance of the duplicate detected dataset [13],[14] can 

be reported using precision  and recall, which are defined as 

follows: 

Precision= #of correctly Identified Duplicate Pairs 

     #of All Identified Duplicate Pairs 
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Recall= #of correctly Identified Duplicate Pairs 

#of True duplicate Pairs 

Due to the usually imbalanced distribution of matches and 

nonmatches in the weight vector set, these commonly used 

accuracy measures are not suitable for assessing the quality of 

record matching. The large number of nonmatches usually 

dominates the accuracy measure and yields results that are too 

optimistic. To measure the performance F-measure can also be 

used, which is the harmonic mean of precision and recall, to 

evaluate the classification quality: 

 

F-measure=   2.precision.recall 

                       (precision+recall) 

5.  EXPERIMENTS 
We evaluate our model on dataset of research paper citations. The 

dataset is from the Cora Computer Science Research Paper 

Engine, containing about 1800 citations, with 600 unique papers 

and 200 unique venues. The datasets are manually labeled for 

both paper coreference and venue coreference, as well as 

manually segmented into fields, such as author, title, etc. The data 

were collected by searching for certain authors and topic, and they 

are split into subsets with non-overlapping papers for the sake of 

cross-validation experiments. We used a number of feature 

functions, including exact and approximate string match on 

normalized and unnormalized values for the following citation 

fields: title, booktitle, journal, authors, venue, date, editors, 

institution, and the entire unsegmented citation string. We also 

calculated an unweighted cosine similarity between tokens in the 

title and author fields. Additional features include whether or not 

the papers have the same publication type (e.g. journal or 

conference), as well as the numerical distance between fields such 

as year and volume. All real values were binned and converted 

into binary-valued features. To evaluate performance, we compare 

the clusters output by our system with the true clustering using 

pairwise metrics and use the metrics ratios  for evaluation. The 

Cora web site(www.cora.whizbang.com)provides a search 

interface to over 50,000 computer science research papers . As 

part of the site's functionality, we provide an interface for 

traversing the citation graph. That is, for a given paper, we 

provide links to all other papers it references, and links to all other 

papers that reference it, in the respective bibliography section of 

each paper. To provide this interface to the data, it is necessary to 

recognize when two citations from different papers are referencing 

the same third paper, even though the text of the citations may 

differ. For example, one paper may abbreviate firrst author names, 

while the second may include them. 

 

The datasets were collected and the algorithm was coded in Java 

and run on a machine with Windows XP operating system. The 

duplicates are identified and the core Gaussian Mixture Model is 

being implemented. 
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