
IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

122

Requirement Gathering for small Projects using Agile

Methods

Kavitha C.R
Dept of Computer Applications

SNGIST
N Parur

ABSTRACT
Gathering, understanding and managing requirements is a key

factor to the success of a software development effort.

Requirement engineering is a critical task in all development

methods including the agile development method.

There are several requirement techniques available for

requirement gathering which can be used with agile development

methods. These techniques concentrates on a continuous

interaction with the customer to address the evolution of

requirements, changing requirements, prioritizing requirements

and delivers the most important functionalities first.

This article presents an overview of agile software development

methods and a best requirement elicitation technique used for

requirement capturing. We present an application case of

requirement gathering process by using User stories for web-

based, cost-effective and efficient software (ISODTA- ISO

documentation teaching automation) which automates the ISO

documentation of teaching process at the institution SNGIST

using SCRUM, an agile software development methodology.

Keywords
Agile methodologies, Scrum, requirement elicitation, user

stories, story index card

1. INTRODUCTION
 Agile development methodology is an approach used in

software development which has become more popular during

the last few years. Agile software development is iterative and

incremental development where you do development in small

iterations. It attempts to provide many opportunities to assess the

different stages of a project throughout the software development

life cycle. These methods aim to deliver software faster and

ensure that the software meets customer’s changing needs and

expectations. Agile methodologies focus on skills,

communication and community clarifying the roles of customers,

managers and developers for more satisfying and productive

relationship.

Agile Methods

The agile methodologies are also known as the lightweight

methodologies. These methodologies consist of development

techniques designed to deliver products on time, on budget, and

with high quality and customer satisfaction. There are different

agile methodologies available today. The most popular flavours

include:

 Extreme Programming (XP)

 Adaptive Software Development (ASD)

 Dynamic Systems Development Method (DSDM)

 Feature Driven Development (FDD)

 Scrum

The Agile Manifesto

 The Agile Manifesto is a statement of the principles that

underpin agile software development. It was drafted from 11 to

13 February 2001, at The Lodge at the Snowbird ski resort in the

Wasatch Range of mountains in Utah, where representatives of

various new methodologies (such as Extreme Programming,

Scrum, DSDM, Adaptive Software Development, Crystal,

Feature Driven Development, and Pragmatic programming) met

to discuss the need for lighter alternatives to the traditional

heavyweight methodologies.

―We are uncovering better ways of developing software by doing

it and helping others do it. Through this work we have come to

value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value

the items on the left more‖.

Sunitha Mary Thomas
Dept of Computer Applications

Christ Knowledge City
Airapuram

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

123

Agile Methods (AMs) Vs Traditional Methods (TMs).

TABLE 1. AMS VS TMS

Traditional

Methodologies(TMs)

Agile Methodologies

(AMs)

Focused on processes,

sequence of processes

and useful tools

Focused on people

Flexible only in the

beginning of project

Emphasizes the

communication,

collaboration, rapid

exchange of

information, team work

and the functioning

software and flexibility

Help deliver projects on

time and budget but not

suitable when you are

moving to a new

technology or for

changing requirements

Uncertain budgets and

unclear milestones

Use single model (like

waterfall model)

Involves a lot of

different methods that

work in a similar way.

2. AGILE SOFTWARE DEVELOPMENT

AND REQUIREMENT HANDLING

2.1 Introduction

Agile development works in a different manner. Instead of

specifying everything before you start developing, one need to

take a small portion of the most important features and only

specify and implement those. Requirement gathering is different

for different methods, for. E.g. in SCRUM & XP, user stories are

used. Requirement specification is an iterative process that

continues until the customer is satisfied with the product. By

using this method, it is easier to react to changes and can have a

better estimate and better control on the development leading to

a better quality product and customer satisfaction.

 Since Agile development is a fairly new technique there is

no good answers on how to handle requirements and researches

are being undertaken in this area.

2.2 Extreme Programming

Extreme Programming abbreviated as XP, was invented by

Kent Beck which addresses the specific needs of software

development conducted by small teams in the face of vague

or changing requirements

2.2.1 Advantages of XP:

- it stresses customer satisfaction

- empowers your developers to confidently respond to

changing customer requirements, even late in the life cycle

- emphasizes teamwork. Managers, customers, and

developers are all equal partners in a collaborative team

- solve the problem efficiently

- follow simple rules

XP improves a software project in five essential ways;

communication, simplicity, feedback, respect, and courage.

Extreme Programmers constantly communicate with their

customers and fellow programmers. They keep their design

simple and clean. They get feedback by testing their software

starting on day one. They deliver the system to the customers

as early as possible and implement changes as suggested.

2.2.2 Core Practices

There are twelve core practices that define Extreme

Programming. The practices can be described as a cycle of

activities. The inner circle describes the tight cycle of the

Programmers. The outer loop describes the planning cycle

that occurs between the Customers and Programmers. The

middle loop shows practices that help the team communicate

and coordinate the delivery of quality software.

 Figure 1. XP Practices and the Circle of Life from [8]

2.3 Adaptive Software Development (ASD)

Adaptive Software Development (ASD) was developed in 2000

by Jim Highsmith which has grown out of the Rapid Application

Development (RAD). Like other agile methodologies, ASD aims

to increase a software organization’s responsiveness while

decreasing development overhead. It embodies the belief that

continuous adaptation of the process to the work at hand is the

normal state of affairs.

ASD replaces the traditional waterfall cycle with a repeating

series of speculate, collaborate, and learn cycles. This dynamic

cycle provides for continuous learning and adaptation to the

emergent state of the project. The characteristics of an ASD life

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

124

cycle are that it is mission focused, feature based, iterative, time

boxed, risk driven, and change tolerant.

The word ―speculate‖ refers to the paradox of planning – it is

more likely to assume that all stakeholders are comparably wrong

for certain aspects of the project’s mission, while trying to define

it. Collaboration refers to the efforts for balancing the work

based on predictable parts of the environment (planning and

guiding them) and adapting to the uncertain surrounding mix of

changes caused by various factors – technology, requirements,

stakeholders, software vendors, etc. The learning cycles,

challenging all stakeholders, are based on the short iterations

with design, build and testing. During these iterations the

knowledge is gathered by making small mistakes based on false

assumptions and correcting those mistakes, thus leading to

greater experience and eventually mastery in the problem

domain.

2.4 Dynamic Systems Development Method

(DSDM)
2.4.1 Introduction

Dynamic Systems Development Method (DSDM) developed in

the United Kingdom in the 1990s by the DSDM Consortium, an

association of vendors and experts in the field of software

engineering created with the objective of "jointly developing and

promoting an independent RAD framework" by combining their

best practice experiences. It is a software development

methodology originally based upon the Rapid Application

Development methodology. DSDM is an iterative and

incremental approach that emphasizes continuous user

involvement.

Its goal is to deliver software systems on time and on budget

while adjusting for changing requirements along the development

process.

2.4.2 Phases of DSDM

The DSDM framework consists of three sequential phases:

Phase 1 - The Pre-Project phase where candidate projects are

identified, project funding is realized and project commitment is

ensured.

Phase 2 - The Project life-cycle phase include five stages to

create an information system.

Phase 3 - Post-project phase ensures the system operating

effectively and efficiently.

2.4.3 Four stages of the Project life-cycle

2.4.3.1 Stage1A: The Feasibility Study, where the feasibility

of the project for the use of DSDM is examined.

Stage1B: The Business Study, which examines the influenced

business processes, user groups involved and their respective

needs and wishes.

2.4.3.2 Stage2: Functional Model Iteration, where the
requirements that have been identified in the previous stages are

converted to a functional model.

2.4.3.3 Stage3: Design and Build Iteration, integrates he

functional components from the previous phase into one system

that satisfies user needs.

2.4.3.4 Stage4: Implementation, where the tested system

including user documentation is delivered to the users and

training of future users is realized.

Figure 2. Project Life Cycle from [9]

2.5 Feature Driven Development (FDD)
2.5.1 Introduction

Feature Driven Development (FDD) was initially developed by

Jeff De Luca, which is an iterative and incremental software

development process. FDD blends a number of industry-

recognized best practices into a cohesive whole. These practices

are all driven from a client-valued functionality (feature)

perspective. Its main purpose is to deliver tangible, working

software repeatedly in a timely manner.

2.5.2 Best practices

Feature-Driven Development is built around a core set of

industry-recognized best practices, derived from software

engineering. These practices are all driven from a client-valued

feature perspective. It is the combination of these practices and

techniques that makes FDD so compelling. The best practices

that make up FDD are shortly described below.

 Domain Object Modeling, explores and explains the domain

of the problem to be solved. The resulting domain object

model provides an overall framework in which to add

features.

 Developing by Feature. Any function that is too complex to

be implemented within two weeks is further decomposed into

smaller functions until each sub-problem is small enough to

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

125

be called a feature. This makes it easier to deliver correct

functions and to extend or modify the system.

 Individual Class (Code) Ownership. It means that distinct

pieces or grouping of code are assigned to a single owner who

is responsible for the consistency, performance, and

conceptual integrity of the class.

 Feature Teams. It is a small, dynamically formed team that

develops a small activity. By doing so, multiple minds are

always applied to each design decision and also multiple

design options are always evaluated before one is chosen.

 Inspections. Inspections are carried out to ensure good

quality design and code, primarily by detection of defects.

 Configuration Management. It helps with identifying the

source code for all features that have been completed to date

and to maintain a history of changes to classes as feature

teams enhance them.

 Regular Builds. It ensures there is always an up to date

system that can be demonstrated to the client and helps

highlighting integration errors of source code for the features

early.

 Visibility of progress and results. By frequent, appropriate,

and accurate progress reporting at all levels inside and

outside the project, based on completed work, managers are

helped at steering a project well.

2.6 Scrum
2.6.1 Introduction

Scrum is an agile approach to software development. It has been

found out that Scrum is very beneficial when applied to small

and medium projects. Rather than a full process or methodology,

it is a framework which instead of providing complete, detailed

descriptions of how everything is to be done on the project, much

is left up to the team, because the team will know best how to

solve its problem. For e.g., in a sprint planning meeting is

described in terms of the desired outcome (a commitment to set

of features to be developed in the next sprint. Scrum relies on a

self-organizing, cross-functional team. There is no team leader in

a scrum team who decides which person will do which task or

how a problem will be solved.

2.6.2 Unique about Scrum

Of all the agile methodologies, Scrum is unique because it

introduced the idea of ―empirical process control.‖ That is,

Scrum uses the real-world progress of a project — not a best

guess or uninformed forecast — to plan and schedule releases. In

Scrum, projects are divided into succinct work cadences, known

as sprints, which are typically one week, two weeks, or three

weeks in duration. At the end of each sprint, stakeholders and

team members meet to assess the progress of a project and plan

its next steps. This allows a project’s direction to be adjusted or

reoriented based on completed work, not speculation or

predictions.

The Scrum methodology really works is due to a set of roles,

responsibilities, and meetings that never change. If Scrum’s

capacity for adaption and flexibility makes it an appealing

option, the stability of its practices give teams something to lean

on when development gets chaotic.

2.6.3 The Roles of Scrum

Scrum has three fundamental roles: Product Owner,

ScrumMaster, and team member.

Product Owner: In Scrum, the Product Owner is responsible

for communicating the vision of the product to the

development team. He or she must also represent the

customer’s interests through requirements and prioritization.

Because the Product Owner has the most authority of the three

roles and also has the greatest responsibility. In other words,

the Product Owner is the single individual who must face the

trouble when a project goes awry and also must answer

questions from the team.

ScrumMaster: The ScrumMaster acts as a liaison between

the Product Owner and the team. The ScrumMaster does not

manage the team. Instead, he or she works to remove any

impediments that are obstructing the team from achieving its

sprint goals. Scrummaster helps the team to remain creative

and productive and makes sure of its successes visible to the

Product Owner. The ScrumMaster also works to advise the

Product Owner about how to maximize return over investment

for the team.

Team Member: In the Scrum methodology, the team is

responsible for completing work. Ideally, teams consist of

seven cross-functional members, plus or minus two

individuals. For software projects, a typical team includes a

mix of software engineers, architects, programmers, analysts,

Quality Assurance experts, testers, and User Interface

designers. Each sprint, the team is responsible for

determining how it will accomplish the work to be

completed. This grants teams a great deal of autonomy, but,

similar to the Product Owner’s situation, that freedom is

accompanied by a responsibility to meet the goals of the

sprint.

Scrum projects make progress in a series of sprints, which are

time boxed iterations no more than a month long. At the start of a

sprint, team members commit to delivering some number of

features that were listed on the project’s product backlog. At the

end of the sprint, these features are done--they are coded, tested,

and integrated into the evolving product or system. At the end of

the sprint a sprint review is conducted during which the team

demonstrates the new functionality to the product owner and

other interested stakeholders who provide feedback that could

influence the next sprint.

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

126

 Figure 3. Scrum Process from [10]

In agile software development methodology, there will be a

―potentially shippable product increment" at the end of each

iteration/sprint. During each iteration, the Scrum Master

(SM) should ensure that the work the team committed to do

during that sprint is what the team actually delivers.

 The SM should ensure that the team understands the

user stories and provides accurate estimates.

 Once the team commits to a unit of work (and is in a

sprint), the SM should make sure that the team is

focused only on the user stories that are within the

current sprint.

 During the sprint, the SM should also ensure that the

team is focused on the sprint work (and only the sprint

work). He/she should eliminate any impediments that

might be blocking the team’s progress.

 The SM should maintain the task burndown chart and

story burnup charts, along with the team’s velocity

calculations.

2.6.4 Requirement Gathering in SCRUM

In Scrum, user stories can be used to capture a project’s ever

changing requirements. Because project needs fluctuate, Scrum

doesn’t consider requirements gathering to be a one-time task.

Instead, Scrum focuses on the incremental unfolding of

requirements. The work is decomposed and captured at different

levels in varying levels of detail during the project. At each level,

the work is broken down into smaller, more manageable pieces

of work.

Product backlog (PB): High-level capabilities and features are

captured as user stories. The PB is the repository of all the work

that needs to happen during the project.

Sprint backlog: The team identifies the user stories that will be

worked on during the current iteration, or sprint. Each user story

is decomposed further into tasks.

3. USER STORIES

3.1 Introduction

User stories are used in agile software development

methodologies like XP and Scrum. A user story is a very high-

level definition of a requirement, containing just enough

information so that the developers can produce a reasonable

estimate of the effort to implement it. It describes all those

functionalities that are valuable to a stakeholder. It is a reminder

to have a conversation with the customer. In short, user stories

are very slim and high-level requirements artefacts. It shifts the

focus from writing to talking. It supports and encourages iterative

development.

The basic components of a User Story includes

 Cards (physical medium)

 Conversation (discussion surrounding stories)

 Confirmation (tests and validation that verify story

completion).

User stories are often written on 3’’X 5’’ index cards which

are very easy to work with. Simple index cards can be used

to write the user stories and a small index card box can be

used to store these cards arranged by priority. One has to try

to keep the user stories short and to the point. During the

sprint planning sessions, cards can be re-prioritized if

needed.

Front side of the index card

Back Side of the index card

Figure: 4, Story Index Card

User stories should be validation-centric. The team needs to

identify and write down the validation conditions for each

user story. The story should not be closed until these

validation conditions are met satisfactorily.

Acceptance Test:

1. ………….

2. …………

3. ………..

Project Name: Story Card ID:

Priority: Estimation:

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

127

3.2 INVEST Model

A well-written user story follows the INVEST model. . A user

story should be:

 Independent: A good story should stand on its own.

 Negotiable:

A good story is negotiable. It is not an explicit

contract for features; rather, details are co-created

by the customer and programmer during

development. A good story captures the essence,

not the details.

 Valuable: A user story should be valuable to the business.

 Estimable:
The team should be able to gauge the size of a

story.

 Small:
A good rule of thumb is that a user story should not

be more than eight to sixteen hours of effort.

 Testable: The story should include validation criteria.

Well-written User Stories are cornerstones for Agile

Development. They should be independent of each other; the

details should be negotiated between the users and the

developers; the stories should be of value to the users; they

should be clear enough for developers to be able to estimate

them; they should be small; and they should be testable through

the use of pre-defined test cases.When writing individual,

detailed tasks under each user story, teams should focus on

writing SMART tasks.

Specific

Measurable

Achievable

Relevant

Time-boxed

4. OUR CASE STUDY

4.1 Introduction

ISO 9000 provides a framework that can be used by any size or

type of organization to develop a quality system. Today, ISO

9000 standards are rapidly being implemented in many service

industries such as educational institutions in particular. Benefits

from implementing ISO 9000 standards can be divided into four

different parts as benefits to system, faculty, students and

external benefits to the organizations. Today, customers expect

quality in all aspects of life. The customer wants to be assured

that educational institutions provide quality service. This is an

era of competition and globalization of knowledge much

importance is given to the quality. As a result educational

institutions have started implementing ISO.

Quality and accountability in higher education are inevitably

going to be the principal themes in the higher education policy.

The objective of ISO documentation is mainly to provide the

service continuously as before even though the Institution decides

to replace personnel all together. The control of documentation is

the critical element to retain the ISO registration. So, good

customized software is required to do the documentation process

efficiently and effectively.

In this project of requirements gathering, since the customers are

present onsite, user stories has been used for requirement

gathering on story cards. Like in XP, user stories can be applied

in SCRUM to capture requirements. SCRUM treats the

requirements like a prioritized task. It freezes the requirements

for the current iteration to provide a level of stability for the

developers. In Scrum, work is expressed in the backlog as user

stories. User stories document requirements with particular

attention to the end user’s point of view. By using user stories,

one would be able to focus on exactly what the user need/want

without going into details on how this should be done. A team

may write its user stories in a number of ways as long as they are

written from the perspective of the end user.

User stories generally follow the following template:

As a … (role or actor) (Who)

I want … (what capability or feature do they need) (What)

so that … (why is it of business value or benefit) (Why)

"As a type of user I want capability or feature so that business

value or benefit”

The ―Who‖ and ―What‖ are essential to the story, but the ―Why‖

only helps with clarity and sets up the acceptance test.

4.2 Applying User Stories in the Case Study

Stories help you ask the right questions about the context and

reason for the request from the prospective of the person

requesting the feature.

Here are some examples of User Stories for the web based

ISODTA software:

• As a new faculty to SNGIST, I want to register myself to get a

username and password so that I can use ISODTA.

• As a faculty, I want to select the names of the students from the

database so that I can make them as a batch of some particular

class which I am going to handle.

• As a faculty, I want to mark the attendance of the students of

my class so that I can calculate the monthly attendance and

monthly attendance percentage

• As a faculty, I want to enter the marks of series exam, model

exam, assignments, presentations, project and seminar of the

students so that I can calculate the internal marks of the students.

• As a faculty, I want to prepare the lesson plan so that the course

can be completed within the stipulated time.

• As a faculty, I want to record the shortfall topics so that I can

take the corrective action.

• As a faculty, I want to generate reports on the absentees so that

I can take suitable actions.

• As a faculty, I want to record the details of the assignment,

seminars, case study, group discussion etc.

• As a faculty, I want to conduct the result analysis of internal

examination so that I can find out the performance of the class.

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

128

• As a faculty, I want to analyze the University exam result so

that I can get an idea about the results of my subject for a few

years.

• As a faculty, I want to mark the subject hours in the time table.

• As a batch coordinator, I want to prepare the time table for my

class.

• As a batch coordinator, I want to prepare the test plan so that

all the exams can be planned and conducted within schedule.

 As a batch coordinator, I want to prepare the weekly report so

that shortfalls of different subjects can be found out

 As a batch coordinator, I want to prepare the monthly

attendance statement so that attendance shortage of students can

be traced for each subject.

 As a batch coordinator, I want to prepare the series exam and

model exam marks statement.

4.3 Acceptance Test/Criteria for User Stories

As a vital part of the planning our project, user stories define

what we are going to build in our project. User stories are

prioritized to indicate which are most important for the system

and are broken down into software engineering tasks and

estimated by the development team. When we implement a user

story a more formal acceptance test will be written to ensure that

the goals of the story are fulfilled. Acceptance tests are created

from user stories.

Acceptance criteria are specified indicators or measures

employed in assessing the ability of a component, structure or

system to perform its intended function. They are the

expectations of the product owner on what will be delivered.

Acceptance criteria can include functionality that the system will

perform, interface look and feel and necessary documentation.

These are high-level tests to test the completeness of a user story

or stories 'played' during any sprint/iteration. These tests are

created ideally through collaboration between business

customers, business analysts, testers and developers; however the

business customers (product owners) are the primary owners of

these tests. As the user stories pass their acceptance criteria, the

business owners can be sure of the fact that the developers are

progressing in the right direction about how the application was

envisaged to work and so it's essential that these tests include

both business logic tests as well as User Interface validation

elements (if need be).

Acceptance test cards are ideally created during sprint planning

or iteration planning meeting, before development begins so that

the developers have a clear idea of what to develop.

 During iteration the user stories selected during the iteration

planning meeting will be translated into acceptance tests. A story

can have one or many acceptance tests, whatever it takes to

ensure the functionality works 100%. Each acceptance test
represents some expected result from the system. We must verify

the correctness of the acceptance tests and reviewing test scores

to decide which failed tests are of highest priority. A user story is

not considered complete until it has passed its acceptance tests.

5. CONCLUSION

Developing software that meets the customers or stakeholders’

needs and expectation is the ultimate goal of the software

development methodology. To meet their need we have to

perform requirement engineering which helps to identify and

structure requirements. In many cases it is risky or very difficult

and not economical to produce a complete, verifiable set of

requirements. Traditional software development has a problem to

deal with requirement change after careful analysis and

negotiation.

Generally customers have rarely a general picture of the

requirements or system in their mind which leads problems

related to requirements like requirements conflicts, missing

requirements, and ambiguous requirements etc, and does not

address non-functional requirements from exploration phase.

This problem is well tackled by SCRUM as SCRUM

recommends an on-site customer to represents their requirements

through user stories on story cards. Scrum places a high value on

customer interaction and satisfaction. User stories, which are

concise often, dwelling within the boundaries of the index card,

are considered the best method for explaining requirements when

using the scrum approach.

6. REFERENCES
[1] Pressman, R. S. (2005), Software Engineering: A

Practitioner’s Approach, Sixth Edition, McGraw-Hill

International Edition.

[2] Alford M. W, A requirements engineering methodology for

realtime process requirement, IEEE transactions on software

engineering volume 3

[3] Cohn, M (2009), Succeeding with Agile: Software

Development using Scrum

[4] Cohn, M (2003) User stories applied for Agile Software

Development 2003 Addison-Wesley

[5] The agile manifesto http://WWW.agilemanifesto.org/ (cited

2010-07-21)

[6] Extreme Programming- a gentle introduction

http://WWW.extremeprogramming.or/ (cited 2010-08-03)

[7] Kishore S, Naik R, Software Requirements and Estimation

[8] http://gannman.x10hosting.com/Portfolio/ExtremeProg.pdf

(cited 2010-09-11)

[9] http://en.wikipedia.org/wiki/DSDM (cited 2010-09-23)

 [10] http://en.wikipedia.org/wiki/Scrum_(development) (cited

2010-09-24)

[11] http://en.wikipedia.org/wiki/INVEST_(mnemonic) (cited

2010-10-12)

[13] Scrum (development) http://en.wikipedia.org/wiki/

Scrum_%28development%29 (cited 2010-09-11).

