
IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

129

An Architecture based Approach for Reliability
Estimation of a Source Code Navigation tool

J Emi Retna
Assistant Professor (SG)

School of Computer Science &
Technology

Karunya University

Sumy Joseph
II M.Tech SE

School of Computer Science &
Technology

Karunya University

Merlin Soosaiya
II M.Tech SE

School of Computer Science &
Technology

Karunya University

ABSTRACT
Annotations play a significant role both in software
development and software maintenance activities. The
semantically rich annotations will be supporting the software
developers to a very significant level. The current source code
annotations which are provided by modern development

environment such as Eclipse are having difficulty in managing
the annotations. Thus, the motivation to improve usability,
efficiency of development tools and to reduce development
time and cost has been emerged. The main objective of this
paper is to provide insights in defining semantically rich
annotations to source code using Tags for Software
Engineering Activities (TagSEA) tool and to improve
navigation and management of annotations while estimating

the reliability of the tool. Reliability is one of the illusive
targets to achieve in the software development for the
successful software projects. It is one of the most important
parameter or attribute of software to be achieved for the
software quality. There are different techniques and models
used for estimating the reliability of the software. We are using
an architecture-based approach for estimating the reliability.

Keywords
Source code navigation, Reliability estimation, tagging, test
resource allocation

1. INTRODUCTION
Software developers use annotations in source code to support

the development process. If the annotations are semantically
rich annotations, then the support extends to a significant level.
Current source code annotations which are provided by
modern development environment such as in Eclipse are
difficult to manage. Thus, the quest to investigate how to
enrich these annotations with additional semantic information
is emerged. The motivation that includes improve efficiency of
development tools, to improve usability and to reduce

development time and cost.

A new approach for software navigation called Tags for
Software Engineering Activities (TagSEA) is considered. It
combines tagged waypoints in a software context. The
reminding and refinding mechanisms from other domains are
very much inspired [11]. The two concept used are the
waypoints used to assist navigation in sailing and the use of
tagging in social bookmarking systems have been delivered the

ideas. Tagging examples can be seen on sites such as Flickr
etc. Basic hypothesis concerning the use of TagSEA is that

tagged waypoints may improve refinding and reminding [12].

In this paper, the use of code navigation tool in software
development and maintenance is explored.

1.1 The Existing Tool Support
The various tools that support annotations and navigation from

within and outside the source code are available. These tools
include: Unstructured Source Code Comments, Task
Annotations, Bookmarks, Grouping Concerns [14], Tours and
Guides [15] etc. But these existing tools not support both
metadata and the critical aspects for managing annotations like
reminding and refinding [11].

2. TAGS FOR SOFTWARE

ENGINEERING ACTIVITIES
TagSEA is a plug-in for the Eclipse IDE that combines the
notion of waypointing with tagging for software
development [11].

Figure 1 Tag filter and a tree of hierarchical tags

The Figure 1 shows TagSEA tool which includes tag tree and

a tag filter. A hierarchy of tags can be viewed which is related
with the programs written within Eclipse IDE. Another part of

the tool is shown in figure 2 which is known as waypoint view.
It contains data like message, location, author and date. There
are different highlighted features for this tool such as tags are
created in a light weight manner, an easy navigational
taxonomy with hierarchical tags and can easily change the
tagged code with refactoring facility etc. [11]

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

130

Figure 2 The Waypoint View

We can tag locations of interest directly in to the source code

as you type. For example: //@tag fontframe.error -
author="ann" -date="enUS:10/19/10" : Check the error

In the above example, the word "@tag" in the comment

indicates that the location has been tagged as interesting. The
words immediately following this indicator are the tag names
or keywords that you can use to return to this location later.
The other data included is author metadata, date metadata, a
comment or a message [11], which is placed after the colon (:)
and has the text: "Check the error”. The descriptive keyword
for a location is used as tagname in the syntax. Names that

have dots (.) in them can be treated as hierarchical in the
views. For example, the tag font frame error could represent
error in fontframe, which is inside the sample project, and can
be visualized as such inside the Tags View. We can add
metadata to identify the author of a tagged location and the
date of creation.

2.1 The Components of TagSEA tool
The TagSEA tool comprises of different components. The
main components of TagSEA tool is mentioned below. It
includes Tags pane, Waypoint pane and Cloud see. The tags
pane gives you a filtered list of all of the tags available in your
workspace. You can use the text box to enter words that may

match tags that you are interested in [11]. The '.' character has
a special meaning in TagSEA: it is used to view tags as a
hierarchy. When you view your tags as a hierarchy, a number
of refactoring actions are available. You can re-parent tags by
dragging them under a new parent. You can delete tags, and
you can "generalize" tags. Managing a growing sea of tags is a
concern for all social tagging systems [13] and this may be a
problem for large software systems as well. Double-clicking

on any waypoint will navigate to the location of that waypoint.
And list all of the tags that are on the selected waypoints.
Clicking on a tag name will open it in the Tags Viewer. Also
to find out more detailed properties about a tagged location,
you can right click on the waypoint and select 'properties'.
Some of these properties can be edited, depending on the type
of waypoint you created. Another feature is we can visualize
tags using a tag cloud. To access CloudSee, select the
CloudSee [11] Icon on the right side of the TagSEA View.

2.2 The Calculation of Tag Reuse
The number of tag occurrences and unique tags are counted.
Hierarchical tags (e.g., set.panellayout and search.end) were
counted as unique. We used this data to calculate the frequency

of tag reuse. For that purpose we have selected ten sample java
programs in which the tags will be created with the specified
syntax. Across these ten sample programs, we discovered a
common pattern: most tags were used only once or twice,

while a small number of tags were used quite often. For
example, in Banking application program, the tag grouping is
used over 10 times. There were instances of the same tag being
reused, with one tag describing six waypoints across three
files. Actually we counted the number of waypoints and tags at

each time slice. We also measure the average number of times
a tag is reused: (#tag occurrences)/ (#unique tags) [11].

The analysis of the tag data revealed that all the programs took
advantage of the hierarchical naming capability of TagSEA
and frequently reused the higher level of tag names. For
example, nearly all of the tags in Library management
program, many of the tags begin with the prefix “libtodo”. The

depth of the tag hierarchies indicates that structure and
grouping are used for the tags in each of the projects. And in
this analysis the tags had a hierarchy depth of at least two and
a maximum hierarchy depth of three.

3. 3. THE IMPORTANCE OF SOFTWARE

QUALITY
Critical software is an application whose failure or disruption
may lead to catastrophic loss in terms of cost, damage to the
environment, or even human life. The software systems are

increasingly being used in critical context. So assuring the
quality for the system is very important. But for the complex
systems ensuring the high quality with less verification is
complex task. Software quality evaluators use various standard
procedures, work instructions, and tools to objectively evaluate
the quality of software processes and work products, which
provide objective insight based on those evaluations, for
achieving the specified requirements. Software quality plays a

significant role in software engineering and software quality
assurance consists of a means of software engineering
processes and methods used to ensure quality.

3.1 Software Quality Concepts
Software quality can be defined as conformance to the stated

functional and performance requirements, explicitly
documented development standards and implicit characteristics
that are expected of all professionally developed software.
Software quality measures how well software is designed, and
how well the software conforms to that design although there
are several different definitions. It is often described as the
'fitness for purpose' of a piece of software. Software quality
can be viewed in three perspectives as,

 Software requirements are the foundations from which
quality is measured and the lack of conformance to

requirement is lack of quality.

 Specified standards define a set of development criteria
that guide the developers in software development life

cycle.

 A set of implicit requirements often goes unmentioned.

 Software which confirms to its explicit requirement but
fails to meet implicit requirements, software quality is
suspected.

The important software quality factors which lead to the
success of the software can be Understandability,
Completeness, Conciseness, Portability, Consistency,
Maintainability, Testability, Usability, Reliability, and
Efficiency.

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

131

3.2 The Importance of Software Reliability
Reliability is one of the most important characteristics of

software. Thus, reliability can be defined as the quality of the
fault free delivery of service within the specified constraints
for a particular period of time. Regardless of the criticality of
any single software application, it is also more and more
frequently observed that software has penetrated deeply into
most every aspect of modern life through the technology we
use. As software becomes more and more crucial to the
operation of the systems on which we depend, the software

should behave in the way it is intended, or it should meet the
requirements for which is defined and designed.

Ensuring high level of reliability for the software system
assures the overall operational success of the system. The
system reliability is the product of the individual reliabilities of
each component [2]. The efficiency of the verification phase
depends upon the correct identification of the most critical

components in the software architecture [2]. Some standards
and methodologies [5] for critical systems suggest asking the
risk levels of the services in which they are involved. The
paper deals with the two important concepts in the software
engineering. One is about the recent method for the software
navigation and the other one is the reliability estimation of the
software. The paper describes the way in which the TagSEA
[11] navigation can be implemented in the complex software

applications and how it helps the software developers to
support reminding and refinding. After that it also analyzes
how to estimate the reliability of this software.

4. SOURCE CODE TAGGING AND

RELIABILITY ESTIMATION
Software Reliability can be estimated by using the various

matrices in the software engineering. The important matrices
[4] which are used mostly includes,

 Exponential distribution models

 Weibull distribution model

 Thompson and Chelson's model

 Jelinski Moranda model

 LittleWood Model

 MTTF (Mean Time To Failure)

 MTTR (Mean Time To Repair)

 POFOD (Probability of failure on demand)

 Rate of fault occurrence

 Reliability=MTBF/(1+MTBF)

TagSEA; a complex application used for the source code

navigation is considered for evaluating the software quality
concepts. The paper proposes an efficient method for

reliability estimation of system in an architecture-based
approach [1]. There were different existing methods used for
the reliability estimation of an application. The most common
method was the black box based approach of software quality
evaluation. In this particular approach, the reliability is
evaluated by considering the entire software as a single entity
and it does not consider the internal structure of the
application. Here the reliability estimation is considered with

an architecture-based approach. The approach is called an
architecture-based one because; it captures all the behavior of
the software and represents it. This can be done in such a way

that, the tool can be represented with its components using a
DTMC model [4]. The individual components of this tool is
identified and represented independently in DTMC. The
DTMC model can be used for the application architecture
representation, because the state of each component changes in

a random manner. A component can be a logically independent
unit which will perform a particular function. Once the
reliability of each component is estimated, then the overall
system reliability can be calculated. System reliability is the
product of the individual reliabilities of the component raised
to the power of the number of visits to each units of
application [1]. When estimating the reliability of the
individual components, it is possible to identify the critical

components of the application to an extent. For determining
the reliability of the tool, we will count the expected visit
count to each component. Expected visit count can be used for
describing the usage of each component in the TagSEA Tool.
The DTMC can be represented as a state transition diagram, in
which each state represents as the TagSEA tool components.
Different preconditions will be given and if all the components
are satisfying the preconditions then we can ensure that the

application is a reliable one.

There are two main models used, one for the reliability
estimation and the other for testing time allocation. In order to
represent the software architecture, we use an architecture
based reliability model; Discrete Time Markov Chain (DTMC)
type state-based model, which is mentioned above. A DTMC
is characterized by its states and transition probabilities among
the states. To represent the application as a DTMC [12],

control flow graph is used. Assuming an application has „n‟
components and with the initial index‟1‟ and the final
component by n, DTMC states represent the components and
the transition from state „i‟ to state j represents the transfer of
control from component „i‟ to component „j‟.

Software reliability of TagSEA can be estimated with a
reliability allocation model. The approach can be used for
evaluating the reliability of TagSEA components by running

the application iteratively. From which, the successful course
of execution path can be determined. Finally all the
components which have done with the successful execution
can be considered as reliable components. Based upon these
reliability criteria the criticality of each component is
evaluated. During the execution of the application, the
transition probability, DTMC model [1, 2] can be obtained.
SRGM (Software Reliability Growth Model) also constructed

for the failure data. SRGM is used for representing the
relationship between the reliability and the testing required. So
for this purpose an SRGM model can be used which will
describes how reliability grows as software is improved. The
output of the reliability allocation model is given to the
optimization model. Thus, required testing resources are
allocated to each component. So the predefined reliability is
compared with the actual reliability which is calculated by the

formula (1-limn Nf/N), [14] where Nf is the number of
observed failures and N is the number of executions of the
input cases. The Figure 3 shows a sample graph with reliability
estimates for the different components.

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

132

Figure 3 Reliability estimation with different

components of an application
The main advantage is that we can analyze reliability based on
software architecture which is an in depth approach. The fault
tolerant mechanism is also evaluated and different levels of
solutions are provided. But one of the drawback includes the

model is not applicable for concurrent system evaluation.

5. CONCLUSION
Tags have been used in software engineering activities like
development, maintenance and also for documenting bugs in
bug tracking systems. Thus to define semantically rich
annotations to source code, a new approach for source code

navigation called Tags for Software Engineering Activities
(TagSEA) is analyzed and reviewed. The reliability estimation
of the tool is explored well with an architecture based
approach in which we will be considering the fault tolerance,
operational environment and the behavior of the tool. Hence
we can conclude that using this architecture based approach for
reliability estimation, the reliability of TagSEA can be easily
estimated so that it can be used to enhance the software

developers to improve navigation and management of
annotations and also to reduce the development time and cost.

6. ACKNOWLEDGEMENT
We would like to thank to K.S. Trivedi and all the other

authors who all were participated in proposing reliability and
testing resource allocation model and also we would like to
thank the researchers at the University of Victoria and at IBM
Cambridge who all have been developed the TagSEA tool and
for providing the results of different series of case studies.

7. REFERENCES
[1] Roberto Pietrantuono, Member, IEEE, Stefano Russo,

Member, IEEE, and Kishor S. Trivedi, Fellow, IEEE
“Software Reliability and Testing Time Allocation: An
Architecture-Based Approach”, IEEE transactions on
software engineering, vol. 36, no. 3, may/June 2010

[2] S.Ramani, S.Gokhale and K. Trivedi,“SREPT: Software
Reliability Estimation and Prediction Tool”, Performance

Evaluation, Special issue on Tools for Performance
Evaluation, vol.39, no. 1, 2000 , pp. 37-60.

[3] S.S.Gokhale, W.E Wong, J. R.Horgan and Kishor S.
Trivedi, “An Analytical Approach to Architecture-Based
Software Performance and Reliability Prediction”,
Performance Evaluation, vol.58, no. 4,pp. 391-412, 2004

[4] A. Mettas,“Reliability Allocation and Optimization for
Complex Systems,” Proc. Ann. Reliability and

Maintainability Symp. pp. 216-221, 2000

[5] K.Goseva-Popstojanova, and K. S Trivedi, “Architecture-
based approach to reliability assessment of software
systems”, Performance Evaluation, vol.45, nos2/3,pp.179-
204, 2001

[6] K. Goseva-Popstojanova, A.P Mathur, K. S.

Trivedi,“Comparison of Architecture Based Software
Reliability Models”

[7] M. R. Lyu,, S. Rangarajan, and A. P. A. van
Moorsel,“Optimal Allocation of Test Resources for
Software Reliability Growth Modelling in Software
Development”, IEEE Trans. Reliability, vol.51, no.2,pp.
183-192, June 2002

[8] S. Yacoub, B. Cukic, and H. H. Ammar, “A Scenario-

Based Reliability Analysis Approach for Component-
Based Software”, IEEE Trans. Reliability, vol.53, no.4,
pp.465-480,Dec. 2004

[9] Rani and R.B. Misra,“Economic Allocation of Target
Reliability in Modular Software Systems,” Proc. Ann.
Reliability and Maintainability Symp., pp. 428-432, 2005

[10] Vibhu Saujanya Sharma a,*, Kishor S. Trivedi
Department of Computer Science and Engineering,

Indian Institute of Technology Kanpur, Kanpur, UP
208016, Indiab Department of Electrical and Computer
Engineering, Duke University, Durham, NC 27708, USA
“Quantifying software performance, reliability and
security: An architecture-based approach”

[11] Margaret-Anne Storey, Jody Ryall, Janice Singer, Del
Myers, Li-Te Cheng, and Michael Muller, “How
Software Developers Use Tagging to Support Reminding

and Refinding,”IEEE Transactions on software
engineering, vol.35, No.4, pp. 470- 483, Jul/Aug.2009

[12] M.-A. Storey, L.-T. Cheng, J. Singer, M. Muller, D.
Myers, and J.Ryall, “How Programmers Can Turn
Comments into Waypoints for Code Navigation,” Proc.
Int‟l Conf. Software Maintenance, pp. 265-274, 2007

[13] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby, “Shared
Waypoints and Social Tagging to Support Collaboration
in Software Development,” Proc. Conf. Computer

Supported Cooperative Work, pp. 195-198, 2006
[14] M.P. Robillard and F. Weigand-Warr, “ConcernMapper:

Simple View-Based Separation of Scattered Concerns,”
Proc. Workshop Eclipse Technology Exchange, pp. 65-
69, Oct. 2005

[15] L.-T. Cheng, M. Desmond, and M.-A. Storey,
“Presentations by Programmers for Program,” Proc. Int‟l
Conf. Software Eng., pp. 788-792, 2007

J. Emi Retna, Assistant Professor (SG), Head of Computer
Technology Centre, Karunya University, where she is
currently working toward the PhD degree in the area of
Software Engineering at the School of Computer Science and
Technology.

Sumy Joseph is doing her M.Tech in Software Engineering

from Karunya University, Coimbatore, Tamil Nadu.

Merlin Soosaiya is pursuing her M.Tech degree in Software
Engineering from Karunya University, Coimbatore, Tamil
Nadu.

