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ABSTRACT 

Identifying amyloidogenic regions in protein sequences is useful 

in understanding the underlying cause of several human diseases 

and finding potential therapeutic targets. Given the laborious 

nature of experimental validation of segments most prone to form 

fibrils, it was essential that computational approaches be 

developed that could produce reliable, affordable and testable in 

silico predictions. In this paper, we present and assess some of 

the recently developed computational tools for predicting 

amyloid fibril forming motifs that remain as one of the key 

means used to decipher the role of such regions in disease 

diagnosis, prognosis and drug discovery. 
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1. INTRODUCTION 
A large number of diseases caused by the aggregation of 

misfolded proteins results in the formation of amyloid fibrils. 

Numerous studies have shown that, in addition to proteins 

involved in amyloid diseases, many proteins not related to any 

amyloid disease can aggregate into fibrils under destabilizing 

conditions [1]. However, it is obvious that some sequences are 

much more amyloidogenic than others [2]. Evidence indicates 

that short sequence stretches within a protein primary sequence 

may be responsible for amyloid formation [3]. 

The focus of this review is on recent approaches to predict the 

amyloidogenic motifs of polypeptide sequences. Many groups 

have actively worked on developing tools that integrate several 

factors driving protein aggregation in order to identify potential 

amyloidogenic stretches in proteins. Most of the methods were 

published in 2004-2010 and show a good agreement with 

experimental results.  

 

2. OVERVIEW OF PREDICTION TOOLS 
The challenge of predicting amyloidogenic regions has resulted 

in a variety of multi-parametric methods that attempt to predict 

such motif sequences. Each method makes its own hypothesis 

and implements, which range from quite simplistic to quite 

complex [7]. Overall, the success of different computational 

approaches in predicting aggregation-prone regions allow 

proposing that aggregation propensity in polypeptide chains is 

ultimately dictated by the sequence [6]. Here we summarize 

some of the prediction models capable of discriminating between 

amyloidogenic peptides and non-amyloidogenic peptides that are 

purely based on primary structure of proetins. Few of these 

amyloidogenic motif mining tools are made available through 

online resources as mentioned in the subsequent sections. 

 

2.1 3D Profile method 
A computational approach is developed based on the crystal 

structure of the cross-β spine formed by the peptide NNQQYY, 

for identifying those segments of amyloidogenic proteins that 

themselves can form amyloid-like fibrils [5]. Their approach is 

built on experiments showing that a group of six amino acids are 

sufficient for forming amyloid fibrils. A sequence of interest is 

scanned by sliding a window of six residues and maps each 

peptide onto templates of the crystal structure of the NNQQYY 

peptide. Each mapping of sequence to template is evaluated 

energetically with ROSETTADESIGN [4] and the prediction is 

made by taking the best scoring fit between peptide and 

template. The putative prediction is accepted as a prediction if its 

energy is lower than the threshold energy. According to 

Thompson et al., even though the presented template method 

shows promise in discriminating between fibrils and non-fibrils 

especially in tau proteins and myoglobin, this may still be 

improved as more template structures become known. 

 

2.2 PreAmyl 
Zhang et al., use structure and residue-based statistical potential 

for the identification of amyloid fibril forming segments. A 

template library is constructed with 2511 structures with a slight 

perturbation in coordinates of the microcrystal structure of the 

NNQQYY peptide. Each expected hexpeptide is mapped onto 

each of the template structures. The residue-based statistical 

potential (statistical mean force extracted from experimentally 
solved protein structures) is used to evaluate the interaction 

energy scores. The lowest energy score obtained from the 

template structures is then used to assay the fibril forming 

propensity of this peptide [2]. Examination of proteins related to 
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amyloidosis agrees with experimental data. In fact, the major 

limitation of  pre-amyl lies in that only the microcrystal X-ray 

structure of NNQQYY was used, which does not show common 

fibril twists and predictive power may be improved further with 

more experimental structure models. 

 

2.3 Aggrescan 
Aggrescan (O. C. Sole et al., 2007) [6] is a web-based software 

that can predict aggregation-prone segments in protein 

sequences. Using an in vivo reporter method to study a “hot 

spot” in the central hydrophobic core of Aβ, the effect of single 

point mutations on the aggregation propensities of the peptide 

within the cell is calculated. The results are used to approximate 

the in vivo intrinsic aggregation propensities of natural amino 

acids when located in an aggregation-prone sequence stretch. 

This information was subsequently used to generate an 

aggregation profile for any protein sequence under study to detect 

those regions with high aggregation propensities. Identification 

of such regions is accessed through the link 

http://bioinf.uab.es/aggrescan/.  

 

2.4 AmylPred 
A publicly available online tool that utilizes five different and 

independently published methods, to form a consensus prediction 

of amyloidogenic regions in proteins, using only protein primary 

structure data is developed (Frousios et al., 2009) [7]. The first 

method relies on average packing density profiles. The second 

method used is the consensus secondary structure prediction 

algorithm SecStr [8] that has been shown to be able to predict 

amyloidogenic regions as conformational switches, which are 

identified as regions predicted both as α-helices and β-strands. 

Locating the amyloidogenic pattern {P}-{PKRHW}-

[VLSCWFNQE]-[ILTYWFNE]-[FIY]-{PKRH} [9] is another 

method used for the consensus prediction. The TANGO 

algorithm [10]  based on the physicochemical principles 

underlying β-sheet formation, extended by the assumption that 

the core regions of an aggregate fully buried, is the next method 

used (version 2.1) that calculates the tendency of peptides to 

form beta aggregates and aside from the primary sequence.  

Finally, an algorithm that maps all hexapeptides of a sequence 

onto the microcrystalline structure of NNQQNY and calculates 

the resulting conformational energy [2] is used. The tool is 

available at http://biophysics.biol.uoa.gr/AMYLPRED/ 

input.html. 

2.5 Pafig 
The method, named Pafig (Prediction of amyloid fibril-forming 

segments) based on support vector machines is proposed, to 

identify the hexpeptides associated with amyloid fibrillar 

aggregates [11]. The predictive model of Pafig is a 

phenomenological model, based on 41 physicochemical 

properties selected by a two-round selection from 531 

physicochemical properties in the Amino acid index database 

(AAindex) [12]. Because short regions of a protein are 

responsible for its amyloidogenic behavior, Pafig was trained by 

hexpeptides, which were decomposed by scanning for segments 

that could form fibrils with a six-residue sliding window. Using a 

10-fold cross validation test on Hexpepset dataset, Pafig 

performs with an overall accuracy of 81%. 

The features of Pafig do not contain the structural features of the 

proteins. Thus, it is possible that some of the structure 

information is ignored by Pafig, which also exist as the protein 

aggregation and fibril forming factors. However, the lack of 

structural information is likely to overcome by the inclusion of 

different physicochemical properties in the Pafig. Moreover, the 

sample size of the training dataset of Pafig compared with the 

number of all hexpeptides is small, which would affect the 

performance of Pafig. Therefore, collection of more data by 

combining biological knowledge and related sources and 

integration of some structure features into Pafig would improve 

its prediction accuracy rate. 

 

2.6 FoldAmyloid 
FoldAmyloid (S. O. Garbuzynskiy et al., 2010) [1] tool is based 

on using expected characteristics – scales: either expected 

packing density or the probability of formation of hydrogen 

bonds. The scales themselves are obtained from the statistics of 

spatial structures of proteins, and then the scales are used for 

predictions on amino acid sequences. Initially, the values of the 

expected packing density and probability of formation of 

hydrogen bonds for each residue in spatial structures of proteins 

are obtained. The average values for each of 20 types of amino 

acid residues are calculated. The obtained average values are 

then used as the values expected for each residue of a given type 

in a sequence for which the prediction is made. The FoldAmyloid 

web server is available at http://antares.protres.ru/fold-amyloid/. 

 

3. DISCUSSION AND CONCLUSION 
In the absence of high-throughput experimental techniques to 

determine the fibril forming regions, it is vital that computational 

techniques are developed to unravel their effects in protein 

misfolding and implications for disease diagnosis. Reliable 

predictions of amyloidogenic regions have a great impact in the 

development of anti aggregation drugs.  

 

To evaluate the quality of each prediction tools, we compiled 

experimentally proved proteins related to amyloidosis and 

proteins with no experimentally determined amyloidogenic 

regions published in literature [1, 2, 5, 6, 11, 13, 14, 15] in order 

to construct the dataset. We compared a few tools such as 

Aggrescan, Amylpred and FoldAmyloid to evaluate the 

performance of their predictability based on the prepared dataset. 

Of all the tools examined, Aggrescan achieves the best overall 

prediction accuracy in terms of sensitivity and specificity. In 

addition, a significant reduction of sensitivity associated with a 

gain in specificity is noted in all the tools considered under the 

present study. Therefore, even though the algorithms for their 

predictions have improved over time, accurate predictions still 

remain a challenging task and are still subject of intense 

investigations. 

http://bioinf.uab.es/aggrescan/
http://biophysics.biol.uoa.gr/AMYLPRED/input.html
http://biophysics.biol.uoa.gr/AMYLPRED/input.html
http://biophysics.biol.uoa.gr/AMYLPRED/input.html
http://antares.protres.ru/fold-amyloid/
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