
IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

162

A Tool for Architectural Design Evaluations using
Simplistic Approach

B.Bharathi

Research Scholar,
Sathyabama University, Chennai-119.

G.Kulanthaivel

Assisstant Professor, NITTTR, Chennai

ABSTRACT
Performance analysis of software systems is becoming an
important issue in the software development process. The
software systems are evaluated against certain quality
requirements, but there are no proper systematic approaches.
This paper proposes a simplified approach for software design
evaluations. We consider the integration of performance and

specification model in developing a tool for quantitative
evaluation of software architectures at the design phase of the
software life cycle. The tool developed assists in the selection of
good and acceptable quantitative designs from the available
choices of designs. The application of the tool is also elaborated
with the use of a case study of a simple railway reservation
system.

Keywords: Performance evaluation, performance attributes,

UML diagrams, Layered Queuing Networks

1. INTRODUCTION
Large software systems and realtime systems are very complex
to develop and maintain. Such systems should be developed
with adequate level of performance abilities. The development
of these systems would require the integration of software
analysis and design methods with Software Performance
Engineering (SPE). The evaluation of the software architecture
is very important to avoid rework and to reduce cost of the

whole project. The introduction of evaluation early in the project
life cycle avoids much of rework and saves time and resources.

Evaluation of the software architecture is an area on which

considerable research is going on. The evaluation can be a)
Scenario based, which includes methods, like ATAM, SAAM,
ARID, etc., [4] b) Experience based c) Performance assessment
based. Out of the three methods Performance based methods of
evaluation is the idea of concern in this work. Performance
analysis can be done using the software execution model or the
system execution model. The software execution model provides
the software‟s execution behaviour in the form of execution

graphs. The system execution model uses performance model
notations like queuing network to represent both the hardware
and software requirements and functionalities.

Software Performance Engineering methodology is used to
evaluate performance characteristics of a software architecture
specified by using UML diagrams. Software architecture is
defined by the recommended practice ANSI/IEEE std. 1471-
2000 as the fundamental organization of a system, embodied in
its components, their relationships to each other and the
environment, and the principles governing its design and
evolution. The software architecture apart from specifying the

structure, components and their interfaces also specifies the non-

functional requirements, which impose constrains on the design
and implementations. Non-functional requirement is a

requirement that specifies criteria that can be used to judge the
operation of a system, rather than specific behaviour[3]

2. METHOD DESCRIPTION
Our methodology converts the software model to a performance
model and evaluates the performance model. The software
model is the software architecture represented in the form of
UML diagrams. As we are trying to evaluate early during the

design we need performance information of the components.
The scenario of an Application Simulation Model (ASM), is
created using the SPT (Schedulability, Performance and Time
specification) profile of UML. Translation of the UML diagrams
into different performance models have been surveyed in [1].
The performance model can be a stochastic process algebra,
Petri net, queuing network, simulation model, etc.

Our tool uses the layered queuing network as the performance
model. Though there are number of translation and evaluation
methods there is still a lack of formalization of the whole
process and there are yet to be tools generated based on these

idealogies. The ultimate aim of this tool and the paper at large is
to formalize the transformation process and the evaluation
process. The main objective is to identify potential issues with a
proposed architecture, prior to the construction phase, to
determine its architectural feasibility and to evaluate its ability
to meet its quality requirements. We have developed the tool for
component based systems and the whole process is automatic
and does not require human intervention. This is an added

feature when compared to tools like CLISSPE and XTEAM[2]
with similar applications require human intervention for part of
their execution.

3. TOOL DESCRIPTION
The tool utilizes simple algorithm in two parts as described
below.

Figure 1. Overview of Tool

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

163

3.1 Methodology
3.1.1Algorithms Used

Part I
Input: set of specifications with performance requirements.

Algorithm:

a. •Determine usecases and performance scenarios
b. •Draw sequence diagrams to know information of data

exchanges between components. (Collaboration
diagram can be converted using design tool)

c. •Draw activity diagram to know operational work and

resource allocation. (state charts can be detailed to
derive activity diagrams)

d. •Draw component diagram to indentify components

(optional)

e. •Draw deployment diagram to know interconnections
between the processing nodes.

f. •Add performance (SPT)annotational descriptions to
diagrams.

Output: performance annotated UML diagrams

Part II
Input: UML diagrams from the design tool

Algorithm

a. •Derive LQN from the activity diagram, using the
XMI document generated.

b. •Provide queue behaviour like scheduling behaviour
etc. to nodes.

c. •Solve LQN using simple mathematical model.
d. Derive performance parameters and analyse against

requirements.
f. The results are ranked against user requirements and

applicabilities.
Output: The output can be obtained in human readable form or
parseable form for other programs to execute or in XML form.
The LQN is solved to measure throughput, distributions of
service time, arrival rate, intensity, reusability, etc.

The results can be further utilized for feedback and design
improvement process through reverse engineering.

The elements of Performance model are:

 Hardware resource

 Logical resource

 Phases AND Join/Fork

 OR Join/Fork

The activity diagram is taken into consideration as it can provide
the complete detail of the execution system. So any behavioural
diagram given by the user is finally brought down to activity
diagrams. Synchronous and asynchronous message transfers in

sequence diagrams are converted to activity diagrams with the
use of forks and joins. The conversion process is not elaborated
as it does not come in the purview of this paper.

The performance model is a simple M/M/1 queue for the
simulation. The input arrival time follows a simple poison
distribution and the service time is also deterministic. The

availability of the resources are assumed to be 100% and the
downtime of resources are considered as zero. The performance
measures are calculated as follows.

Traffic Intensity (or Occupancy) :

Mean number of customers in the system:

Total waiting time (including the service time):

Performance measures can be identified:

 The mean time a user spends in the system

 The mean time a user spends waiting in the queue

 The expected number of users in the system

 The expected number of users in the queue

 The throughput (Number of users served per unit time)

Feasibility

 The Feasibility of the Activity Diagram is evaluated
based on the Service time of each activity of the Activity
Diagram. The Comparison of the service time of the activities

with the mean service time for the Activity Diagram. The
difference in values helps in finding the feasibility of the
Activity diagram. If equal to or more than the number of service
times of activities are present then the Feasibilty of the Activity
Diagram is not valid.

The factors that provide feedback:

 No. of Activities

 No. of paths (parallel).

 Mean service time of the activity.

 Max. total time taken by the path

4. FINDINGS AND OBSERVATIONS
The following variables are assumed
m: Maximum Service Time
n: Number of Activities
t: Mean Service Time

t = m / n

m = m + (2 * t) for 1 activity

If „m‟ milliseconds time required for 1 Activity, then for 1
second find out the number of activities carried out.

µ: Service Rate (Time of service for a specified time duration)
λ: Arrival Rate

Arrival Rate is always lesser than or equal to Service Rate.

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

164

Occupancy = Arrival Rate / Service Rate

a) Maximum Service Time =
MAX(TimeTaken)+(Maximum Reusability *
MAX(MeanServiceTime))

b) Service Rate = (1/Maximum Service Time)
c) Activities Per Second = (MAX(TimeTaken)+ Maximum

Reusability * MAX(MeanServiceTime)) * 1000
d) Arrival Rate = MAX(TimeTaken)+(Maximum

Reusability*MAX(MeanServiceTime))
e) Maximum Waiting Time = (Maximum Waiting

Time)*MAX(MeanServiceTime
f) TimeDifference = MeanServiceTime – Estimated

Service Time
g) ExtraTimeUtilized = MeanServiceTime –

TimeDifference
h) If (FeasibleCount >= NoOfActivities/2) THEN 'Not

Feasible' ELSE 'Feasible'

5. CASE STUDY

The case study of a simple railway reservation system is taken
for analysis. In that for simplicity the reservation process alone
is taken into consideration. Various possibilities of doing the
reservation process, to show variations in time and number of
hits to hardware resources is considered. In all the three

methods, the activity diagram is drawn, converted to
performance model and evaluated. The observations are then
analysed and ranked.

The tool identifies the hits to resources for each activity and
calculates the resource utilisation based on this. The result
generated from the tool is an XML file interpreted in human
readable form with the help of the front end pages. For
simplicity one sample activity diagram and some snapshots of

the tool are shown.

Figure 2: activity diagram I: The diagram is given with

observations.

Table 1. Information Table

Table 2.Estimated Service Time for Activity Diagram 1

Action
Service Time

(ms)
Mapping

1 0.5 Phase

2 0.25 Branch

3 0.25 Phase

4 0.45 Logical

5 0.35 Phase

6 0.3 Branch

7 0.15 Phase

8 0.25 Logical

9 0.75 Logical

10 0.8 Hardware

Figure 3: snap shot of the tool with details of the software

model provided as activity diagrams.

Figure 4: Analysis done using the tool

No. of Paths 3

No. of Actions 11

No. of Resources
utilized

4

IJCA Special Issue on “Computational Science - New Dimensions & Perspectives”

NCCSE, 2011

165

Figure 5: Rating of performance measures

6. CONCLUSION
The tool utilizes a simplistic approach to software architecture

evaluation and also helps to identify the best applicable design
of the various choices of designs. The methodology used does
not manifest on complex algorithms. It is a simple user-friendly
tool, which can be utilized during the design process of a
project. The tool can be further extended to analyze and provide
feedback by adding an inference engine to it. The current
research has taken a step front in this direction.

7. REFERENCES

[1] Balsamo,S, Di Marco.A., Inverardi.P., Simeoni,

“Model based performance prediction in software
development: a survey”, IEEE transaction on software

engineering, vol 30, pp 295-310, may 2004.
[2] George Edwards, Chiyoung Seo, Nenad Medvidovic,

“Model Interpreter Frameworks: A foundation for the
analysis of Domain-specific software architectures”,
Journal of computer science, vol14, pg 1182-1206,
2008

[3] Christian Del Rosso, “Continuous evolution through

software architecture evaluation: a case study”, journal
of software maintanence and evolution: research and
practice, pg 351-383,2006.

[4] Gordon P.Gu, Dorina C.Petriu, “ From UML to LQN
by XML algebra-based model transformations”,
WOSP‟05, july 11-14, 2005.

