
 National Technical Symposium on Advancements in Computing Technologies (NTSACT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

25

High Performance Dynamic Load Balancing with Inter-

Dependent Tasks in Heterogeneous Databases

Pritesh G. Shah
Department of Computer Science

 Mahatma Gandhi Shikshan Mandal’s
Arts, Science and Commerce College, Chopda, Dist: Jalgaon (M.S)

ABSTRACT

While data mining has its roots in the traditional fields of

machine learning and statistics, the total volume of data

mostly poses the most serious problem for which many

organizations have data warehouses. Implementation of

data mining ideas in high-performance parallel and

distributed computing environments is thus becoming

crucial for ensuring system scalability and interactivity as

data continues to grow relentlessly in size and complexity.

The large set of evolving and distributed data can be

handled efficiently by Parallel Data mining and Distributed

Data Mining. In this paper we present a load balancing

techniques that can deal with inter dependent task. Instead

of balancing the load in cluster by process migration, or by

moving an entire process to a less loaded computer, we

make an attempt to balance load by splitting processes into

separate jobs and then balance them to nodes.

Keywords

Heterogeneous cluster, Dynamic load balancing, distributed
systems, Parallel data mining, Distributed data mining.

1. INTRODUCTION
Data Mining and Knowledge Discovery in Databases
(KDD) is a new interdisciplinary field merging ideas from
statistics, machine learning, databases, and parallel and
distributed computing. It has been engendered by the

phenomenal growth of data in all spheres of human
endeavor, and the economic and scientific need to extract
useful information from the collected data. The key
challenge in data mining is the extraction of knowledge and
insight from massive databases.

Data mining refers to the overall process of discovering
new patterns or building models from a given dataset.
There are many steps involved in the KDD enterprise
which include data selection, data cleaning and

preprocessing, data transformation and reduction, data-
mining task and algorithm selection, and finally post-
processing and interpretation of discovered knowledge
[1,2]. This KDD process tends to be highly iterative and
interactive.

Typically data mining has the two high level goals of
prediction and description [1]. In prediction, we are
interested in building a model that will predict unknown or

future values of attributes of interest, based on known
values of some attributes in the database. In KDD
applications, the description of the data in human-

understandable terms is equally if not more important than
prediction. Two main forms of data mining can be
identified [3]. In verification-driven data mining the user
postulates a hypothesis, and the system tries to validate it.

The common verification-driven operations include query
and reporting, multidimensional analysis or On-Line
Analytical Processing (OLAP), and statistical analysis.
Discovery-driven mining, on the other hand, automatically

extracts new information from data, and forms the main
focus of this survey. The typical discovery-driven tasks
include association rules, sequential patterns, classification
and regression, clustering, similarity search, deviation
detection, etc.

The rest of this paper is organized as follows. First section
gives the introduction and some related terms, followed by
second section which provides the system overview. Third
section describes the proposed load balancing algorithm

followed by load balancing strategies. Fourth section
describes the mechanism for load balancing. Finally, we
conclude this paper.

1.1 Parallel and Distributed Data Mining
Parallel data mining (PDM) deals with tightly-coupled

systems including shared-memory systems (SMP),
distributed-memory machines (DMM). Distributed data
mining (DDM), on the other hand, deals with loosely-
coupled systems such as a cluster over a slow Ethernet
local-area network.

PDM is the ideal choice in organizations with centralized
data-stores, while DDM is essential in cases where there
are multiple distributed datasets.

Parallel and distributed computing is expected to relieve
current mining methods from the sequential bottleneck,
providing the ability to scale to massive datasets, and
improving the response time.

One of the main challenge on which we are focusing in this
paper include work-load balancing, which is especially
important for data mining where other challenges include
finding good data layout and data decomposition, and disk

I/O minimization.

 National Technical Symposium on Advancements in Computing Technologies (NTSACT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

26

1.2 Static vs. Dynamic Load Balancing
There are many approaches to balancing load in disk I/O
resource can be found in literature [4][5][6][7][8][9].

In static load balancing work is initially partitioned among
the processors using some heuristic cost function, and there
is no subsequent data or computation movement to correct
load imbalances which result from the dynamic nature of
mining algorithms. Dynamic load balancing seeks to

address this by stealing work from heavily loaded
processors and re-assigning it to lightly loaded ones.

Computation movement also entails data movement, since
the processor responsible for a computational task needs
the data associated with that task as well. Dynamic load
balancing thus incurs additional costs for work/data
movement, but it is beneficial if the load imbalance is large
and if load changes with time. Dynamic load balancing is

especially important in multi-user environments with
transient loads and in heterogeneous platforms, which have
different processor and network speeds. These kinds of
environments include parallel servers, and heterogeneous,
meta-clusters.

Dynamic load balancing algorithms make changes to the
distribution of work among workstations at run-time; they
use current or recent load information when making

distribution decisions.

2. SYSTEM OVERVIEW
In this study we have considered a cluster computing
platform of heterogeneous system in which n nodes are
connected through high speed network. Where each node is

a combination of various resources including processor,
memory, disk, network connectivity.

A load handler is responsible for load balancing and
monitoring available resources of the node. Fig 1 shows the
queuing system for load handler.

Fig 1: Queuing System for load handler

Load manager or master node process all arrival task in a
FCFS manner. Here we are assuming that all tasks are to
load manager is poison process. After being handled by
load manager task are dispatched to one of the best suited
node for execution.

 The nodes, each of which contains a local queue, can
execute task in parallel. Load manger is composed of three

modules: (1) predictor; (2) selector; (3) scheduler; When
new task is arrives at load manager; the identification of
program being executed is sent to the predictor which

predicts the resource requirements of the task.

These predicted values are then fed to the selector which
selects the node with underutilized and well suited for its
requirement resource. Predictor is used to predict the file
I/O, CPU and memory requirements of a task. For this we
use prediction scheme described in [7] uses a statistical
pattern-recognition to predict the task requirements. The
prediction is made at the beginning of a process’s life,
given the identity of the program being executed.

3. LOAD BALANCING ALGORITHM
We proposed an algorithm for a wide variety of workload
conditions including I/O-intensive, CPU-intensive and
memory intensive load. The objective of the proposed
algorithm is to balance the load of three types of resources
across all nodes in a cluster. In this study analytically

evaluate the performance of algorithm; we are focused on a
remote execution mechanism in which task can be running
on a remote node where it started execution. Thus
preemptive migrations of tasks are not supported in our
algorithm.

To describe this algorithm first we introduce the following
three load indices with respect to Input/output, CPU,
memory resources. (1) CPU load of a node is characterized

by the length of CPU waiting queue. (2) Memory load of a
node is the sum of the memory space allocated to the entire
task running on that node. (3)Input/output load measures
two types of Input/output accesses.

Now we describe the load balancing algorithm of which the
pseudo code is shown in Fig.2. Given a set of independent
tasks submitted to the load Handler.

Input a job with task j given to the load handler

1. for each task

2.Calculate: Memory requirements, Input/output, CPU.

3. IRj= max(IRj, CRj, MRj)

4. Calculate response time R of task j in set of nodes.

5. Calculate whose response time is minimum, execute

 at that node after dispatching the task.

6. Change the current load.

7. end for

8. Loop

9. Wait for load change

10. if(activity_done())

11. if(load_balancing_start())

12. while Heavily_loadedlist is not empty

13. Determine the tasks to be migratable such that

 having minimum CPU consumption.

 National Technical Symposium on Advancements in Computing Technologies (NTSACT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

27

14. selected job=j

15. If Lightly_loadedlist is empty

16. Remaining_jobs=remaining_jobs+1

17.Else

18.Migrate(Lightly_loadedlist[first], Heavily_loadedlist[n],
j, R)

19. End While

20. End Loop.

activity_done() returns boolean value. It returns true if any
one of this activity occurs otherwise it returns false.

load_balancing_start() also returns Boolean value. It

returns true if load balancing is required based on some
parameters. Otherwise it returns false.

Whenever any of activities occur, it starts collecting load
balancing information after which it is decided that whether
load balancing information is required or not.

Our algorithm make an effort to balance the load of the
cluster resource’s by allocating each task to a node such
that the expected response time is minimized

3.1 Load Balancing Strategies
There are three major parameters which usually define the
strategy a specific load balancing algorithm will employ,
which are important in order to address issues such as who
makes the load balancing decision, what information is

used to make the load balancing decision and where the
load balancing decision is made.

We concentrate on selecting a policy such that in policy
selection, information gathering policy specifies the
strategy for the collection of load information including the
frequency and method of information gathering.
Information policy specifies what workload information to
be collected, from where it is to be collected. The

frequency is determined based on a tradeoff between the
accuracy of load information and the overhead of
information collection.

Initiation Policy determines who starts the load balancing
process. The process can be initiated by an overloaded
server (sender-initiated) or by an under-loaded server (
receiver-initiated). Sender initiated policies are those where
heavily loaded nodes search for lightly loaded nodes while
receiver initiated policies are those where lightly loaded

nodes search for suitable senders.

Job Transfer Policy determines when job reallocation
should be performed and which job(s) should be
reallocated. Job reallocation is activated by a threshold
based strategy. In a sender-initiated method, the job transfer
is invoked when the workload on a node exceeds a
threshold. In a receiver-initiated method, a node starts the
process to fetch jobs from other nodes

when its workload is below a threshold. The threshold can
be a pre-defined static value or a dynamic value that is
assessed at runtime based on the load distribution among

the nodes. When job reallocation is required, the
appropriate job(s) will be selected from the job queue and
transferred to another node.

Resource type policy classifies a resource as a server or
receiver of a task according to its availability status.
Location policy uses the results of resource type policy to
find who work co-ordingly with server or receiver.
Selection policy defines the tasks that should be migrated
from overloaded resources to most idle resources.

 4. MECHANISM FOR LOAD

BALANCING

For load transfer among different nodes each node
maintains its own list of participating nodes to which it

wants to communicate for load sharing. Each node
maintains its own job queue. We have to consider interval
between arrival time of task and the time at which last task
was executed. For that At the beginning of each time
interval, each node calculates its load from previous
interval which can be designated as difference between the
load.

Since different node may different intervals at any given

time. It calculates the number of time intervals it will take
to reach an idle state (no tasks to process). If the number of

intervals are less than the network delay then the node will
initiate a migration request. The node responsible for
initiation of load transfers and performs the actions such
that initially select the node from which message will be
sent, assign it to mode ‘W’ which stands for Waiting state
so that it will not further issue any request until replay

comes.

Considering this load request and transfer between the
nodes[10]. Each node keeps two local tables containing
system load information. One contains information
regarding the location of sink Nodes (under loaded nodes),
called sink table, the other

of source Nodes (overloaded nodes), called source table.
Any node that initiates a request for load is considered to
be a sink by the receiving node(s). The sink node (request

initiator) selects a source node from its source table (the
first entry in the table) and sends a message, requesting for
load transfer to it. Initially the table is empty since no
information is available regarding the state of the node is
known and therefore a node is chosen at random. It only
means that when no information is known regarding the
load of any node in the system then every node is as likely
to be considered a source node as any other and therefore

we chose one among all possible ones at random.

The principle of load balancing algorithm is to speed up the
execution of applications on resources whose workload
varies at runtime such that we can’t identify it. Every
dynamic load balancing approach must estimate the timely
workload information of each resource.

*Modification to the above algorithm involves calculating
the load on clusters and then implementing the load

balancing with inter-dependent tasks so that minimum
response time considering inter-agent communications

 National Technical Symposium on Advancements in Computing Technologies (NTSACT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

28

such that the framework for load balancing consisting of
multi-agent with each agent has a specific role to play and
have facility for inter agent communication where each

agent is implemented for managing hosts processors of a
Cluster resource and scheduling incoming tasks to achieve
load balancing. The various layers are: Communication and
Coordination Layers, Management Layer.

5. CONCLUSION
The proposed load balancing scheme aim to achieve the

effective usage of global disk resources in cluster. This can

minimizes the average slow down of all parallel jobs

running on a cluster and reduce the average response time

of the jobs.

Even though there are number of different dynamic load

balancing techniques for cluster systems, their efficiency

depends topology of the communication network that

connects nodes. This research has developed an efficient

load balancing so that there is effective simulation between

inter-dependent tasks.

Two limitations of the load balancing algorithm include:

Preemptive migrations of tasks are not supported, and

simulate this scheme for inter-dependent task. These two

drawbacks are removed in the proposed modified* load

balancing algorithm.

6. ACKNOWLEDGMENTS
Author wishes to thanks my Parents, Dr. Suresh G.

Patil, Founder President, Adv. Sandeep Suresh Patil,

President, Dr. Smita S. Pati,l Secretary, MGSM,

Chopda, Dr. D. D Patil, Principal, Dr. A.L. Chaudhari

Head of Computer & Electronics department, Mr. V.T.

Patil Head of Physics department, Arts, Science &

Commerce College, Chopda Dist. Jalgaon,

Maharashtra India for giving the cooperation during

the research work.

7. REFERENCES
[1] Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data

mining to knowledge discovery: An overview. [86]

[2] Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD
process for extracting useful knowledge from volumes
of data. Communications of the ACM 39 (1996)

[3] Simoudis, E.: Reality check for data mining. IEEE
Expert: Intelligent Systems and Their Applications 11

(1996) 26-33

[4] Xiao Qin, Performance comparisons of load balancing
algorithms for IO-intensive workloads on clusters,
Journal of Network and computer applications(2006),
doi:10.1016/j.jnca.2006.07.001

[4] Xiao Qin ,Dynamic Load Balancing for IO-Intensive

Tasks on Heterogeneous Clusters, Proceeding of the
2003 International Conference on High Performance
Computing(HiPCO3)

[5] Xiao Qin ,Hong Jiang ,Yifeng Zhu ,David R. Swanson
,A Dynamic Load Balancing Scheme for IO-Intensive
Applications in Distributed Systems, Proceeding of
2003 international conference on Parallel processing
Workshop(ICPP 2003 Workshop)

[6] Xiao Qin, A feedback control mechanism for balancing
I/O intensive and memory-intensive applications on
cluster, parallel and distributed computing practices
journal

[7] Xiao Qin, H.Jiang, Y.Zhu and D.swanson, Toward load
balancing support for I/O intensive parallel jobs in a
cluster of workstation, Poc. Of the 5th IEEE
international conference cluster computing(cluster

2003) ,Hong Kong, Dec. 1-4-2003

[8] M. Kandaswamy, M.Kandemir, A.Choudhary,
D.Benholdt, Performance implication of architectural
and software techniques on I/O intensive application,
Proc International conference parallel processing 1998

[9] Kumar K. Goswami, Murthy Devarakonda and
Ravishankar K. Iyer, Prediction–baesd dynamic load-
sharing heuristics, IEEE transaction on parallel and
distributed systems, VOL.4, No.6, june 1993

[10] Xiao Qin, Performance comparisons of load balancing
algorithms for IOintensive workloads on clusters,
Journal of Network and computer applications(2006),
doi:10.1016/j.jnca.2006.07.001.

