Abstract

In MRI images Intensity inhomogeneity (IIH) occurs due to various factors which cause many difficulties in image segmentation. This paper proposes a region based active contour model which deal with Intensity inhomogeneity (IIH) and known as level set formulation (LSF) for image segmentation. The data fitting energy is defined with a contour and two fitting functions that approximate the image intensities locally on two sides of the contour. The level set formulation applies this energy to a level set regularization term, which derives a curve evolution equation for energy minimization. The information of intensity in local regions of image is extracted using a kernel function in the data fitting term, which guide the motion of the contour and enables the proposed method to cope with intensity inhomogeneity. This method not only
segments the image but simultaneously estimates intensity inhomogeneity / bias field and results the bias corrected image.

References

- Tony E Chan and Luminita A. Vese University of California, Los Angeles, Department of Mathematics, "An Efficient Variational Multiphase Motion for the Mumford-Shah Segmentation Model";
- Tony E Chan, Luminita A. Vese, "A level set algorithm for minimizing the Mumford-Shah functional in image processing"; Department of Mathematics University of California, Los Angeles, CA 90095-1555.
- Chunming Li, Chenyang Xu, Changfeng Gui, and Martin D. Fox, Member, IEEE, "Distance Regularized Level Set Evolution and Its Application to Image Segmentation"; IEEE Transactions On Image Processing, vol. 19, no. 12, December 2010.
- Yue Li, Julie Hoover-Fong, John A. Carrino and Susumu Mori, "Simultaneous Segmentation and In-homogeneity Correction in Magnetic Resonance Images"; 33rd Annual International Conference of the IEEE EMBS Boston, September 3, 2011.

Index Terms

Computer Science
Image Processing
Keywords
Image Segmentation Intensity Inhomogeneity Bias Estimation Bias Correction Level Set Method.