Abstract

Mobile computing allows omnipresent and incessant access to computing resources while the users is on the move In the recent years the mobility issues is one of the most significant development and effect the converging areas of computing and telecommunications The way to compute and communicate is changing rapidly. Failure that are rare with fixed hosts become common , host disconnection and mobility makes the fault detection & message coordination difficult. The various distributed applications of mobile / wireless environments are e-commerce , national defense , emergency & disaster management, telecommunications , the background studies report that snapshot is the technique used to tolerate failures in distributed system and
Recent Trends on Consistent Global Snapshot Algorithms for Distributed Mobile Environments

thus well suited for mobile environments. There are different approaches for failure free executions of a nodes providing fault tolerance to the existing distributed system without fault tolerance, the application programs or software executing in a multiprocessor environment in a distributed system could fail entirely if even a single process executing part of it. An efficient recovery mechanism for distributed mobile environment is required to maintain the continuity of computation in the event of node failure. During the study it has been analyzed, to meet the requirement of mobile environment the recovery algorithm should meet the low energy consumption, reduced storage overhead having low communication & bandwidth constraints.

References

- Kanmani P. "Fault Tolerance Using Token Ring Checkpointing In Dmcs"; 2014
Recent Trends on Consistent Global Snapshot Algorithms for Distributed Mobile Environments

- Sung-Hwa Lim "Power-Aware Optimal Checkpoint Intervals For Mobile Consumer Devices" in:Consumer Electronics, IEEE Transactions on (Volume:57 , Issue:

Index Terms

Computer Science Distributed Computing
Keywords
Fault Tolerance Coordinated Snapshot Message Logging And Mobile Distributed Systems