Abstract

In research paper, the potential to use waste energies from the steel production at B.S.P. Bhilai C.G. investigated. B.S.P is a leading producer of high strength steel, such as slab, bloom, billets, wire, ingots, other steel products every year. The study is based on energy balances in the different production lines. The energy balance are investigated with applying three dimensional mathematical model at different energy flows. The work concludes that there is a great potential for increasing the use of waste energy at steel plant. Today many of these flows are pure losses that are cooled away or burnt. The total heat input for the steel production in one year is approximately 38640 MW & output 37128MW from energy calculations it can be shown that the upper theoretical limit when converting the energy into high quality energy such as electricity is produce. The conclusion is that it is possible to recycle an impressive amount of energy. The technologies for these are briefly are to use duck system over the continuous
Mathematical Modeling & Simulation of Effective Heat Energy Loss in Steel Industry

casting long slab. Flow fluid through it and transfer liquid to vapour. Same vapour strike on turbine and electric energy generate, which is helpful to steel plant, extra facility and comfort purpose or by doing so making it possible for the local power company to produce more electricity.

References

- Mahendra S. Dhande, S.S. Khandare; IJERIA; ISSN, 0974-1518,Vol.4, No.1 (Feb.2011); pp.197 to 208
- Bruce Kozak SMS & Joseph Dzierzawsk S., Continuous Casting of Steel : Basic Principles, The Steel Network [Media], 2011, pp. 1 to 9
- Johan Isaksson1,*, Simon Harvey1, Carl-Erik Grip2, Jonny Karlsson3, Possibilities to implement pinch analysis in the steel industry – a case study at SSAB EMEA in Lulea, World Renewable Energy Congress 2011, Sweden, Industrial Energy Efficiency (IEE), 2011, pp. 1660 to 1667

Index Terms

Computer Science
Emerging Trends in Technology

Keywords
Steel Industry Heat Energy Efficiency Percentage Error