Abstract

In chip manufacturing technology, the threshold of major evaluation, which shrinks chip in size
Implementation of LFSR Counter using CMOS Chip Technology

and performance, is implemented in layout level which develops the low power consumption chip, using recent CMOS, Microwind layout tools. This paper compares 3 architectures in terms of the hardware implementation, power consumption and CMOS layout using Microwind CMOS layout tool. Thus it provides solution to a low power architecture implementation of Counter in CMOS VLSI. The Microwind program allows the designer to design and simulate an integrated circuit at physical description level. Such technology is highly applicable in the design approaches for the rural development

References

- Neil Weste, Harris and Banerjee, "CMOS VLSI design";
- Etienne Sicard and Sonia Delmas Bendhia, "Basic CMOS Cell Design";
- Sung-MO Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits-Analysis and design";
- John F. Wakerly, "Digital Design-Principles and Practices";
- Neil Weste and Karmran, "Principles & Applications of CMOS Logic";
- Arshdeep Singh, Oscar Servin, Edward Lee, Lutfi Bustami: A Project report of 4017 CMOS LED CHASER COUNTER.
- A White Paper on "Linear Feedback Shift Registers and Cyclic Codes in SAGE Timothy Brian Brock. World Academy of Science, Engineering and Technology 48 2008172";
- Etienne Sicard, "Micro wind User Manual";

Index Terms

Computer Science
Emerging Trends in Technology
Implementation of LFSR Counter using CMOS Chip Technology

Keywords
- Rural Development Technology
- Microwind Chip Technology
- Layout Level
- Lfsr
- Pass Transistor