Abstract

The only objective of programming is not to determine the algorithm to accomplish a result, but relevance and correctness of the result also need to be ascertained. Correctness can be insured by applying testing to the result. Testing is most critical practice which is performed for supporting quality assurance. It is substantial but also arduous to warrant the quality of software; half of the cost is consecrated to testing when we converse about software development. Efficient ways can reduce percentage of cost and time incurred in testing. In spite of scads of theoretical work in field of Software Testing, its advancement is slow towards automation. In this approach, Genetic Algorithm (GA), which is a meta-heuristic algorithm, is
employed for optimizing path testing to achieve total code coverage.

References

- Hills, W. and Barlow, M. I.: The application of simulated annealing within a knowledge-based layout design system; Proc. of ACEDC, University of Plymouth, UK, pp. 122-127, 1994
- Parmee, I. C. and Denham, M. J.: The integration of adaptive search
Automatic Generation of Test Suits by Applying Genetic Algorithm

techniques with current engineering design practice, Proc. of ACEDC, University of Plymouth, UK., pp. 1-13, 1994

- Reeves, C., Steele, N. and Liu, J.: Tabu search and genetic algorithms for filter design, Proc. of ACEDC, University of Plymouth, UK., pp. 117-120, 1994

Index Terms

Computer Science Advances In Computer Application

Keywords

Software Testing Sut Code Coverage