Abstract

The vehicular movement is very versatile in nature and produces a lot many movement patterns on the roads followed by the individual vehicle or group of vehicles. The vehicular networks are constructed in order to collect and share the information to and from the vehicles across the given area. The urban traffic management is the major source of the congested traffic pathways. Hence, the urban traffic requires the better management to avoid the traffic jams or snarls across the city highways. In this paper, we have proposed the method to detect and prevent the collision in the urban traffic by utilizing the distance based hurdle evaluation modules. The proposed model is equipped with several factors for the collision detection along with several movement pattern combinations. The proposed model is based upon the multiple
active distance factors for the position evaluation of the other vehicular nodes or obstacles in the VANET cluster. The experimental results have been obtained in the form of various performance factors. The robust performance has been recorded for the proposed model in the form of End-to-End transmission delay, packet loss, number of hello messages on RSU and vehicles.

References

- Priyanka Soni et al. "A Review of Impact of Sybil Attack in VANET’s"
Adaptive Collision Detection and Avoidance Mechanism for Urban Traffic Management

Index Terms

Computer Science

Information Sciences

Keywords
Collision Detection Collision Avoidance Multiple Active Distances Euclidean Distance