Abstract

Photonics involves the control of photons in free space or in matter. Photonics replace the electron flow with photonic flow. Photonic crystal has the ability to control the flow of light and their capacity to concentrate light. Sharp bending is observed when an electromagnetic wave enters the photonic crystal. Materials that contain photonic band gap have the potential to manipulate the light. Photonics ICs applied in the range of visible light and near infra-red light. In photonic crystals, it is possible to obtain negative refraction behavior at optical wavelength. This review introduces the concept of photonic crystals, fabrication of photonic crystal by lithography method, bending of electromagnetic wave when propagates through photonic crystal waveguide.
Photonic Crystal Structure

References

- Guifang Yuan, Lihong Han, Zhongyuan Yu, Yumin Liu, Pengfei Lu, "2D square lattice elliptical dielectric rods photonic crystal bandgap characteristics", ICOCN, Nanjing, China, 399-401 (2010)
Keywords
Photonic Crystal Photonic Band Gap Transversal Magnetic Transversal Electric.

Index Terms
Computer Science Applied Sciences