Abstract

The world has become more and more dependent upon oil based products, derived from petroleum. Large volume of oil is stored and transported through water transport. Sometimes in transport, oils are spilled onto level or in water. Spillage of oil can seriously affect the marine environment as a result of physical challenges and toxic effects. When an oil spill occurs the damage may be limited and extend over a small area or be extensive and encompass a large area. In all of these situations, it is important for scientists, citizens and government officials to know what to expect and what action need to be taken when spills occur. Bacterial Foraging Optimization Algorithm is considered for solving the problem of oil spillage in marine. The
proposed work focuses on remotely locating the spill areas in marine with the use of automatic robotic swarms termed as Aquaboats. These aquaboats are supposed to enter the sea or ocean and tend to move randomly over the area to locate the spill. And once the spill got in contact with the boundary of aquaboats, it stops and corresponding results are tabulated.

References

- Babu K Shamanna and Aladdin Ayesh, "AquaRobots Phase II: Oil Spillage Detection Using Swarm AquaBots".
- Dennis Fritsch, Kai Wegener and Rolf Dieter Schraft, (2005), "Sensor Concept For Robotic Swarms For The Elimination Of Marine Oil Pollutions".
- Seidlova and J. Pozivil, "Implementation Of Ant Colony Algorithms In Matlab".
- Adamu Murtala Zungeru, Li-Minn Ang and Kah Phooi Seng, "Termite-hill: From natural to artificial termites in sensor networks".
- A. G. Stewart and D. Paulusma, "A study of Ant Colony Algorithms and a potential application in Graph Drawing".
- Sayedmohammadreza Vaghefinezhad and Kuan Yew Wong, "A Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem".

Index Terms

Computer Science Algorithms
Keywords
Marine Aquaboats Bacterial Foraging Optimization Oil Spilling