Abstract

Electric Discharge Machining is a non-conventional machining process, used to machining difficult to machine materials. The major problem faced while doing EDM is high Electrode wear rate, surface roughness and low material removal rate. In this research work experimental investigations have been made to find the machining characteristics of different electrode like copper, graphite, copper tungsten and brass on Inconel 718 super alloy. The present paper presents the effects of peak current and pulse on-time (Ton) on the output parameters like
The Effect of Different Electrode Materials on Machining of Inconel 718 By EDM: A Review

Material Removal Rate (MMR), Electrode Wear Rate (EWR) and Surface Roughness (SR).

References

- Ahmad S., and Lajis M. A. (2013) "Electrical discharge machining (EDM) of Inconel 718 by using copper electrode at higher peak current and pulse duration" IOP Conference Series: Materials Science and Engineering 50: 012062
- Ahmad S and Lajis M A (2015), "An Electrical Discharge Machining (EDM) of Inconel 718 ing Copper Tungsten Electrode with Higher Peak Current and Pulse Duration" International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS 15(05)
- Jain VK (1989) "Analysis of electrical discharge drilling of a precision blind hole in HSS using bit type of tool" Microtecnic 2:34–40
The Effect of Different Electrode Materials on Machining of Inconel 718 By EDM: A Review

Index Terms

Computer Science

Information Science
Keywords
Electrical Discharge Machining (edm) Material Removal Rate (mrr) Electrode Wear Rate (ewr) Surface Roughness (sr)