Abstract

Considering the raw data extraction algorithms designed for different sensor data this paper focuses on the SCATTEROMETER Level-0 data extracted from raw data products. An analysis of extracted noise images is shown. Then a very simple technique but a very important concept is described and implemented on such noise images. Paper shows the approach which can be helpful for identification of number of orbits in to the raw data products. The main objective of
this approach is to provide the statistics to the application specific user. The approach is based on analyzed behavior of noise images extracted from the raw product. This approach defines a very basic standard to identify number of orbits based on SCATTEROMETER noise images. An implementation algorithm with its time complexity is shown with the corresponding implementation in C language. The proposed approach is for noise images of Data Quality Evaluation Level-0 SCATTEROMETER noise images, but it can also be extended for other noise images. The assumption for the paper is, the scanning geometry of noise image has been established in terms of scans and pixels i.e. header or interpretation format of the noise data.

References

- SCATTEROMETER Payload Design Team-ISRO. OCEANSAT-II SCATTEROMETER PAYLOAD PRELIMINARY DESIGN REVIEW DOCUMENT. SAC-ISRO,2005
- ISRO, NRSC. National Remote Sensing Centre. NRSC. ISRO. Web. 25 Nov. 2015
Index Terms

Computer Science
Image Processing

Keywords

Spatial Data Products Orbit-identification Noise-images Image Data Analysis